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Blueshift of a tachyon in the charged two-dimensional black hale
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We study the propagation of string fields (metric G„, Maxwell gauge potential A~, dilaton
C, and tachyon T) in a two-dimensional charged black hole. It is shown that the tachyon is a
propagating field both inside and outside the black hole. This becomes infinitely blueshifted at the
inner horizon. We confirm that the inner horizon is unstable, whereas the outer horizon is stable.

PACS number(s): 04.70.Bw, 11.25.Db, 11.55.Ds

Lower dimensional theories of gravity provide a simpli-
fied context in which to study black hole physics [1]. The
nontriviality of these models arises from the nonrninimal
coupling of the dilaton to the scalar curvature. A dilaton
potential of the type produced by the string loop correc-
tions may induce multiple horizons [2]. For example, the
two-dimensional (2D) charged black hole from heterotic
string theories has shown this feature. This has many
analogies with the Reissner-Nordstrom black hole in 4D
general relativity. In addition to the event (outer) hori-
zon (r+), there exists the Cauchy (inner) horizon (r ) in
both the 2D charged and Reissner-Nordstrom black hole.

Penrose [3] has pointed out that the Cauchy horizon
of the Kerr-Newman black hole in 4D gravity is unsta-
ble due to the infinite blueshift of the infalling radia-
tion. Here the large blueshift of infalling matter means
a general divergence of the field energy density as the
evolution approaches the Cauchy horizon. McNarama
[4] has demonstrated that a test scalar field evolved to
have unbounded energy density on r . The literature
in [5—8] considered the stability problem of the Cauchy
horizon within the Reissner-Nordstrom geometry. These
indicated that the Cauchy horizon is unstable to the ex-
ternal perturbations. On the other hand, Poisson and Is-
rael [9] showed that the mass parameter near r becomes
unbounded only when both the infalling and outgoing
radiations are present. This is called the mass inflation.
Ori [10] confirmed this mass inflation within a simplified
model. Recently, Husain [ll] showed that the mass in-
flation also occurs in the 3D space-time. More recently,
Chan and Mann [12] investigated the saine problem in
the 2D charged dilaton gravity. In this case the stress-
energy tensor for matter is taken as a null fluid.

This paper is concentrated on the study of the propaga-
tion of string fields (metric G„,Maxwell gauge potential
A~, dilaton O, and tachyon T) in the 2D charged black
hole. We will show that the tachyon is the only propagat-
ing Beld in the background of double horizons. Following
Ref. [6], we use the tachyon to investigate inner and outer
horizons instead of a null fluid matter. I'urthermore, the
region outside the black hole is also stud. ied. when the
charge of the black hole vanishes (Q = 0).

Prom the conformal invariance of the heterotic 2D

V' 4 —2(V'C) + —n + F+ T— = 0, —
2 4 2

(2)

V'„F" —2(V'„4)F""= 0,

V T —2V' 4V"T+2T=O, (4)

where F„=BI„A
~

is the Maxwell field. The above
equations are also derived from the requirement that the
fields must be an extremum of the low-energy string ac-
tion [14]

S(, — d xv' Ge (—R+ 4(V'C') + n

——,
'F' —

—,
' (V'T)' + T'J.

For an example, we consider the variation of S~ with
respect to the metric G„. This leads to T„=0 with
the stress-energy tensor

T„—T +T „+T
= —2V'„V'.C + 2G„„(V'4 —(V'4)' + 2)

+ V'„TV T + 4G-„(2T —(V'T) )

For convenience, let us take the transformation

—24~4, T~v2T, —R~R.
Then the equations of motion are given by

(7)

R„+V„V.C + F„,F.~ + V'„TV'.T = 0,
(V'C)' + &'C —

—,
'F' —2T' —S = 0,

(8)

(9)

V'„F" + (V'„4)F" = 0,

V' T+ V'CV'T+ 2T = 0,

string theories, one can derive the P-function equations
[2,IS,I4]

B„„+2V'„V' C —F„pF ~ ——V'„TV' T = 0,
1
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where we set n = 8. The Eq. (9) comes from T„"= 0
with the substitution (7). For a later purpose, we have
the stress-energy tensor for the tachyon [after substitu-
tion of (7)]:

(12)

4 =2v2r, Fi, ——Qe ~",T =0,
o

0 (13)

The charged black hole solution to the above equations
is given by setting the tachyon (T) to zero [2]

where

(V'„+ O„C)(W" —F h "—F"ph~ )

+F""(~r „(h,) + (o„~))= 0,

V t + V'„4V'"t + 2t = 0,

hB„(h) = V'„7—' h~ + V~V—'ph„
1- —

p 1-p-

1-p- 1-p-——V'PV hp„——V'PV'„6 p,

(23)

(24)

(25)

with
br~ (h) = G~ (v—'„h„+v'„h„—v' h„).1

2
(26)

J:1 —e
—4~2m+ e

8
(14)

From (23) one can express W in terms of P and h as

Introducing the new coordinate y = exp(2v 2r), f
—,(y —y + ~s ). From f = 0, the double horizons (r~)
are given by

This means that T is no longer an independent mode.
Also from the diagonal element of (21), we have

(15)
V' h —2V', Q —2 V 2G""B„h + F (h + 2P) = 0,
V' h —2V„Q+ 2~2G"'8 h+ F (h+ 2Q) = 0.

(28)

(29)

with

Here r+(r ) correspond to the outer (inner) horizons.
In the case of Q = 1, we have r+ ———0.056 and r
—0.679.

To study the propagation of string fields, we introduce
small perturbation fields around the background solution
as [15]

Adding the above two equations leads to

V' (h —P) + F (h + 2$) = 0.

And the off-diagonal element of (21) takes the form

a, ((a„—r,'„)y+ ~2h) = o.

(3o)

Also the dilaton equation (22) together with (27) leads
to

V'
Q + 4v 2fB„(6+ 2~2(B,f + 2v 2f)h + F Q = 0. (32)

W(r, t)Fg„——Fg„+Tg„——Eg 1— ) From (31), the relation between P and h is given by

c = 4+ $(r, t),
G„„=G„„+h„= G„[1—h(r, t)],

C)T = T + t—:exp
~

——
~

[O + t(r, t)],i 2)

(18)
(19)

(2o)

m„.(h) + v„v.y —sr~. (h) v, 4
+2E„pT P —F„pE hP = 0, (21)

h~. v „v.c —G~"sr~. (h) o,4 + ~'0 —h~"~„~~.~
+2G" Q~C g„P —F„„&~"+ F„Fp h" = 0, (22)

where we choose the metric perturbation (h~ ) in such
a way that the background symmetry should be restored
at the perturbation level. This is an important point in
studying all black holes [7,15]. One linearizes (8)—(11) in
order to obtain the equations governing the perturbation
as

9' P + 2 ~20„f (h + P) + F2 / = 0. (34)

Calculating (30) + 2 x (34), one finds the other equation

V' (h+ P) + 4~20„f(h+ P) + F (h+ 4P) = 0. (35)

In the beginning we started with two fields (h, P). How-
ever, from (30) and (35) we have four modes (h —P, h+
P, h + 2P, h + 4P). When Q g 0, it is not easy to find
out the solutions which satisfy both (30) and (35). In-
stead, we first check whether the graviton (h) and dilaton
(P) are physically propagating modes in the 2D charged
black hole blackground. We consider the conventional
counting of degrees of freedom. The number of degrees
of freedom for the gravitational Beld (h~„) in d dimen-

v 2h = B.P+ —— P+ U(r).
18 f
2

Here, U(r) is the residual gauge degrees of freedom and
thus we set U(r) = 0 for simplicity. Substituting (33)
into (32), we have
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sions is (1/2)d(d —3). For a d = 4 Schwarzschild black
hole, we obtain two degrees of freedom. These correspond
to the Regge-Wheeler mode for odd-parity perturbation
and Zerilli mode for even-parity perturbation. We have
—1 for d = 2. This means that in two dimensions the
contribution of graviton is equal and opposite to that
of a spinless particle (dilaton). In the 2D dilaton black
hole (Q = 0), two graviton-dilaton inodes (h —P, h + P)
are thus trivial gauge artifacts [16,17]. In addition, a
Maxwell field is introduced in the charged 2D black hole.
The Maxwell field has d —2 physical degrees of freedom.
For d = 2, Maxwell field has no physical degrees of free-
dom. We confirm this from (27). We thus insist that
graviton-dilaton and Maxwell modes become gauge arte-
facts in the charged 2D black hole. Since these are not
physically propagating modes, it is not necessary to con-
sider (30) and (35).

One remaining equation that describes a physically
propagating mode is just the tachyon equation (24),
which can be rewritten as

2
f2t" + ff't' —[~2ff' —2f(1 —f)]t — t = 0, (36)

where the prime (I) denotes the derivative with respect
to r. In order to study the tachyonic propagation, we
transform (36) into the form of Schrodinger equation.
Introducing the coordinate transformation

r -+ r*:—g(r),

then (36) can be rewritten as

where the effective potential VT(r) is given by

VT(r) = f[v 2f' —2(1 —f)]. (41)

VT',"(r*) oc exp(r. +r*), r* -+ oo(r M—r+) (42)

and

VT'"(r*) oc exp( —lc r*), r* —+ oo(r -+ r ). (43)

It is useful to introduce the null coordinates (v = r* +
t, u = r* t) to des—cribe the inner structure of the charged
black hole. In these coordinates the metric is given by
ds = fdvdu As is s.hown in Fig. 2, the Cauchy horizon

consists of two branches (the right with v = oo
and the left with u = oo). In order to find the energy den-
sity of the tachyon measured by a freely falling observer
(FFO) with two-velocity U" (U"U„= —1), we have to
consider the boundary conditions. Initially the tachy-
onic mode falls into the hole from the exterior region.
After solving the equation near the horizons

As is shown in Fig. 1, VT(r) is a double-humped barrier
well (VT',") between the Cauchy horizon and event horizon,
while it is just a potential barrier (VT" ) outside the event
horizon.

First we consider the region inside the black bole. It
is very important to note that inside the black hole the
radial coordinate (r or r*) is timelike, whereas the time

(t) is spacelike. Hence to quest the internal structure of
black hole is an evolutionary problem. Near the horizons,
the potential decreases exponentially as

f92f'g" ., t+ f&fg" + f'g')

0
[~2ff' ——2f(1 —f)]t—,t = 0. (37)

(44)

we have the ingoing wave near the event horizon (r+):

Requiring that the coeKcient of the linear derivative van-
ishes, one finds the relation

t'"e ' ' ~„=T'"(~) exp( —ice(t+ r*)j. (45)

/ 1
g (38)

Vr(r)
Prom this relation one can determine the explicit form of

r* = g(r) = ln~e ~" —e ~'+~
K+

1
ln~e ~' —e ~'-

~ 4"

with the surface gravity at r~ defined as

2~2(y+ —y )

y~ 0.5 1.5

62
2 + ~' —vz (r)) t = 0, (40)

Assuming t(r*, t) ~ t (r*)e ', one can cast (37) into
the one-dimensional Schrodinger equation

FIG. 1. The graph of the effective potential of tachyon
[VT(v)]. This takes the double-humped barrier well (VT'")
inside the black hole, while it takes a simple potential bar-
rier (VT,"') outside the black hole. The event horizon is at
r+ ———0.056 and the Cauchy horizon is at r = —0.679.
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p=T' U U~ iU t'"
i iU t+ (49)

When a FFO1 crosses the left branch of the Cauchy hori-
zon, one has

U toc , t ('x)ex p( ),

ered
Oj' fehyVf

where the prime means the differentiation with respect
to the given argument. In order to calculate t '(u), we
consider the deviation from the wave [t'" = exp( —iver')]
treating VT',"(r') in (43) as the infinitesimal perturbation.
Following Ref. [6], we find t '(u) oc exp( —"2") as u ~
oo. Therefore, this wave gives a 6nite energy density at
the left Cauchy horizon. On the other hand, the energy
density measured by a FFO2 which crosses the right (v w-
oo) horizon is proportional to the square of

U t+oc t ( ,)eexop ( ) . (51)

FIG. 2. Conformal diagram of a portion of the 2D charged
black hole space-time. Two observers are shown falling
through r = r+ into the interior region and then through
the Cauchy horizon at r = r . FFO1 (FFO2) crosses the left
(right) branches of r = r . An incident wave is scattered from
the potential (Vz "'), then proceeds into the interior region
where further scattering by VT'" occurs. The scattered wave
will be rescattered into hole, to give a tail with a power-law
(in time) decay. The energy density near the right branch
due to this tail decays sufficiently slowly so that in6nite en-
ergy densities are developed. These are measured by FF02.

Substituting the form of t+'(v) oc exp( —"+2") into (51)
together with v —K+ & 0, leads to a divergent energy
density on the right Cauchy horizon. The monochromatic
tachyon waves with small amplitude and purely ingoing
near the event horizon develop the infinite energy density
near Cauchy horizon. This corresponds to the blueshift
of the tachyon. Further, this means that the Cauchy
horizon of the 2D charged black hole is unstable to the
physical perturbations.

Now, let us consider the same problem outside the
2

black hole. Note that the last term (~se ~ ) of f
in (14) decreases faster than the second (e ~"), as r
increases. Outside the black hole, we then immediately
recover the 2D dilaton black hole background as

On the other hand, the boundary condition near the
Cauchy horizon is

4 = 2~or, 0 T=0, ( f 0—
GP -I

0 f
t'"e ' '

~

= exp( —icU(t + r*)j
+R'"((u) exp( —i(u(t —r*)), (46) with

(52)

t*"(r', t) = ~2p tin

with the mode constant a(cU). Considering the boundary
condition near the Cauchy horizon, this takes the form

where the first term refers to the ingoing mode into the
left branch with u = oo, while the second denotes the
backscattered mode into the right branch with v = oo.
Here T'"(w) and R'"(w) are the transmission and reflec-
tion amplitudes, respectively, for given mode ~. We need
the total tachyonic function [t'"(r*,t) in (20)] to obtain
the energy density. This is given by the Fourier integral
transfrom over the frequency ~:

2v 2r—
(53)

This corresponds to the Q = 0 case. The difference
is that the position of event horizon is shifted from
r+ ———0.056 (for Q g 0) to r+ ——0. Actually VT" in
Fig. 3 (potential for the 2D dilaton black hole) is approx-
imately a copy of the right barrier (VT" ) in Fig. 1 except
the shift of r+ and scaling. These differences are not im-
portant to our considerations outside the black hole. For
simplicity, we use VT,

"' (instead of VT"t) to investigate
the exterior region. Here, we briefly study how string
modes propagate outside the 2D dilaton black hole [15].
Introducing r* = g(r), we have g f = 1. Explicitly, one
can find the form of g(r) as

t'"(u v) I. - e "[t (u) + t'(v)]. (48)
1

g(r) = r + ln(1 —e "). (54)

From (12) and (20) the energy density measured by a
FFO is dominated by [6]

Note that r* ranges from —oo to +oo, while r ranges
from the event horizon of the black hole (r+ ——0) to
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@OUT
T

0 5.-

02
+ k H„"'(r*) = 0. (60)

0 4"
The other graviton-dilaton mode (J—:It+ P) is also given
by the one-dimensional differential equation. Consider-
ing J " (r", t) Jg" (r*)e '", from (58) we obtain

0 3"

0 2"

0. 1-

d2
+ (k2 Vout) gout

where the potential well is given by

Vout 16 —2~2' (1
—2~2r)

(cosh ~2r*)z

(61)

+oo. We can visualize the 2D dilaton black hole as pre-
senting a potential barrier (well) to the oncoming waves
(for example, t, h + P, h —P). First let us discuss the
tachyonic propagations outside the black hole. Assum-
ing t " (r', t) t " (r')e ', we find the equation for
the tachyonic mode from (36):

02
2 VOllt gOllt QT 4p (55)

where V&" is given by

Vz"' ——f [y 2f' —2(l —f)] = 2e ~"(1 —e ~'). (56)

The scattering of tachyon by (56) was discussed in [15]
and is shown in Fig. 2. For graviton-dilaton modes, (30)
and (35) reduce to

V' (h —P) =0, (57)

7' (h + P) + 4y 28„f (It + P) = 0. (58)

Here, we obtain two modes (6 —P) and (6+P). Defining
H = h —P and considering the trial solution of the form

Hout( e t) Hout( e) —ikt

we have the free field equation from (57):

(59)

FIG. 3. The graph of the potential barrier of tachyon out-
side 2D dilaton black hole (Vg" ). This is approximately a
copy of right barrier (Vf ) in Fig. 1. The apparent differ-
ence is due to a shifting from r+ ———0.056 (Q g 0) to r+ ——0
and scaling. For simplicity, we use this potential to inves-
tigate the exterior region. The asymptotically Hat region is
located at r = oo.

Outside 2D dilaton black hole, we find the well-known
Schrodinger problem with the constant energy (E = I" ):
a potential barrier (56) for the tachyonic mode, a poten-
tial well (62) for one graviton-dilaton mode (6+ P), and
no potential for the other graviton-dilaton mode (6 —P).
It is emphasized that the potential well for J = tt + P
is obviously a new feature of d = 2 black hole. From
(61), one finds an exponentially growing mode with time
(e '"', k = in). Naively, this means that the event hori-
zon is unstable. However, according to [16], (h+ P) and
(h —P) are not the physical degrees of freedom; they
are nothing but gauge artifacts. Further, it is explic-
itly shown that this exponentially growing mode with
time can be removed by the coordinate transformation
(just a translation) [17]. The tachyonic mode is also the
physically propagating one outside the black hole. The
stability should be based on the physical degree of free-
dom. With the potential barrier (56), one cannot find
the bound state solutions which lead to the exponentially
growing modes. Therefore, the event (outer) horizon of
2D charged black hole is stable.

In summary, all string fields except the tachyon are
nonpropagating in the 2D charged black hole with double
horizons. Only the tachyonic mode is a physically prop-
agating one both inside and outside the black hole. The
crucial problem has to do with the inner (Cauchy) hori-
zon of the 2D charged black hole. Inside the black hole,
the radial coordinate (r or r*) is timelike, whereas the
time (t) is spacelike. Hence, to investigate the internal
structure of black hole is an evolutionary problem. This
horizon is believed to be unstable under tachyonic pertur-
bation because it is a surface where the infalling matter
got infinitely blueshifted [2—8]. On the other hand, out-
side the black hole we have the conventional scattering
problem with the potential barrier. The outer (event)
horizon of 2D charged black hole is stable.
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