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Lens spaces in the Regge calculus approach to quantum cosmology
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We study the wave function for a universe which is topologically a lens space within the Regge
calculus approach. By restricting the four-dimensional simplicial complex to be a cone over the
boundary lens space, described by a single internal edge length, and a single boundary edge length,
one can analyze in detail the analytic properties of the action in the space of complex edge lengths.
The classical extrema and convergent steepest descent contours of integration yielding the wave
function are found. Both the Hartle-Hawking- and Linde-Vilenkin-type proposals are examined
and, in all cases, we And wave functions which predict a Lorentzian oscillatory behavior in the late
universe. The behavior of the results under subdivision of the boundary universe is also presented.

PACS number(s): 04.60.Nc, 98.80.Hw

I. INTRODUCTION

The study of simplicial approaches to the quantization
of gravity is generally divided into those based either on
Regge calculus [1], for reviews see [2—5], or dynamical tri-
angulations [6]. In the latter, one typically restricts at-
tention to a given simplicial topology with fixed lengths
assigned to the edges (one-simplices) of the simplicial
complex. The metric is then taken to be generated by
summing over various triangulations of the given topol-
ogy. These triangulations can be obtained by applying
a set of local moves to a starting complex, and with the
specification of a Boltzmann weight, one can thus simu-
late the quantum path integral for the topology in ques-
tion.

In the Regge calculus approach, on the other hand, the
simplicial complex which models the topology of interest
is taken to be fixed, while the squared edge length assign-
ments become the dynamical variables. Thus, the quan-
tum theory is defined by a summation over edge lengths,
which serves to model the continuum integration over the
metric tensor. This approach enjoys some advantages; in
particular one can analyze with ease both classical and
semiclassical issues, and such calculations are often use-
ful in determining the viability of any approach. It is also
possible to study these models within a minisuperspace
of edge lengths, whereby one truncates the allowed set of
dynamical variables to a smaller more manageable set,
known as simplicial minisuperspace. Such information is
not so readily extracted &om the dynamical triangulation
framework.

In [7], the application of the Regge calculus approach
to quantum cosmology was initiated through the study of
the Hartle-Hawking [8] wave function. The particular ex-
ample considered there was to take the spatial universe to
be topologically 8 . The space of complex valued edge
lengths was restricted to that consisting of a single in-
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ternal edge length and a single boundary edge length.
A steepest descent contour of constant imaginary action
which yielded a convergent path integral was found. The
resulting wave function was shown to behave in the de-
sired way, namely a Lorentzian oscillatory behavior, for
values of the boundary edge length greater than a cer-
tain critical value. For values less than the critical value,
the wave function displayed Euclidean behavior. In fact,
it was also observed that a closed contour of integration
existed in this model, which had the property that it was
deformable to the steepest descent contours for all values
of the boundary edge length. As discussed in [9], one can
adopt the viewpoint that the integral should be defined
through a contour specification which is independent of
the arguments of the wave function. The closed contour
found in [7] satisfies this criterion, and as such one may
regard it as a contour prescription for the model.

An important observation made in [7] was that while
an integration over real valued Euclidean geometries may
yield a convergent result for the path integral, it would
not predict oscillatory behavior of the wave function in
the late universe. As a result, one is obliged to study
the path integral in the space of complex valued edge
lengths. General criteria for defining the wave function
of the universe were explored in [10], and explicit com-
putations in continuum minisuperspace models were per-
formed in [9,11—13]. A calculation in three-dimensional
Regge calculus was presented in [14].

The purpose of the present investigation is to study
nontrivial topological and cobordism efFects within this
Regge calculus approach to quantum cosmology. In par-
ticular, we obtain the wave function for a universe which
is topologically a lens space L(p, 1), p & 2. This is
achieved by considering the four-dimensional simplicial
complex to be given by the cone over the boundary uni-
verse L(p, 1). We again restrict attention to a minisuper-
space consisting of a single internal edge length and a sin-
gle boundary edge length. In fact, such spatial universes
correspond to those present in the Eguchi-Hanson [15]
and associated Gibbons-Hawking [16,17] series of gravita-
tional instantons, although their four-dimensional topol-
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ogy is not captured by the cone structures considered
here.

We analyze the wave function of the Hartle-Hawking
[8] and Linde-Vilenkin [18,19] type, and in the cases con-
sidered we find convergent steepest descent contours of
integration which satisfy their requirements. Once the
convergent contours are identified, one can proceed to
evaluate the full path integral, or appeal to a semiclas-
sical analysis. The interesting physical outcome of our
investigation is that for large values of p, classical ex-
trema of the Regge action are present in the Lorentzian
regime for smaller values of the bounding edge length, as
compared to S . Thus, the critical value of the bound-
ary edge length separating the Lorentzian and Euclidean
regimes in these cases is smaller than the correspond-
ing critical value for S . In particular, we find that for

p & 5, there are Lorentzian extrema for all positive values
of the boundary edge length. Consequently, we find in
such cases that the wave function exhibits Lorentzian os-
cillatory behavior for all physical values of the boundary
edge length, without the presence of a Euclidean regime.
For all p, wave functions which exhibit Lorentzian oscil-
latory behavior in the late universe can be obtained. In
addition, for the case of Hartle-Hawking wave functions,
one can establish the existence of a closed contour of in-
tegration which is independent of the arguments of the
wave function. The structure of this contour is identical
to that found in [7].

Finally, we examine the behavior of the results under
lattice subdivisions of the boundary universe. By ap-
pealing to the lattice subdivision moves of Pachner [20],
it is shown that by remaining within the initial minisu-
perspace, one can readily read oK the results on finer
triangulations.

The outline of this work is as follows. In the following
section, we list for reference the relevant equations in the
general formalism of Regge calculus. We then present in
Sec. III the construction of simplicial complexes for the
lens space L(p, 1), due to [21]. We discuss the symmetries
of these complexes and describe some properties of their
associated cones. Section IV is devoted to a study of the
analytical structure of the Regge action in the simplicial
minisuperspace, and the classical extrema are obtained.
This allows us in Sec. V to investigate the steepest de-
scent contours in the space of complex edge lengths, thus
yielding the wave function. In Sec. VI, we present a brief
study of the behavior of the results under subdivisions of
the triangulations.

II. GENERAL FORMALISM

The basic idea in the Regge calculus approach to the
quantization of gravity is to take the spacetime manifold
to be modeled by a simplicial complex. If one restricts
attention to a fixed topology, then one can capture this
chosen topology by complexes which are combinatorially
equivalent. The dynamical variables in the theory are
now given by the assignment of squared edge length vari-
ables to the edges (one-simplices) of the complex. Thus,
the path integration over the metric tensor is replaced by

Here, the variables sp specify the edge lengths of the
boundary and the integration is over the internal dynam-
ical variables s;. The form of the measure p, the contour
of integration C, along with the action I, are required to
complete the specification of the model.

The Euclidean Einstein action with cosmological term
for a manifold with boundary is given by

d x gA+ d ~ g

d xvhK,16' G gM
(2)

where R is the scalar curvature of the metric g, A is the
cosmological constant, and K is the extrinsic curvature
scalar of the induced metric 6 on the boundary. The
simplicial analog of this action is the corresponding Regge
action [1,22], which takes the form

o.2 g int (M }

2A
V2(o2)0(o2) + ). V4(o4)

o.4 C int(m, }
2 ) V2(o.2)vp(cr2) .

~~ COM

where the Planck length, in units where h = c = 1, is
1 = (16vrG) i~2. The various terms in (3) are described as
follows. The Einstein term is represented by a summa-
tion over internal two-simplices o2 ( int(M) (also known
as hinges). An internal hinge is any two-simplex of the
complex which contains at least one internal vertex, and
the notation int(M) is used to denote this set. The form
of the Einstein action involves the volume of the hinge

V2(o2) and the associated deficit angle 0(o'2). Similarly,
the boundary term is given in terms of the boundary two-
simplices and their associated deficit angles denoted by
g(o2). The cosmological term is simply represented as a
sum over the volumes V4(o4) of the four-simplices o4 of
the complex. As mentioned above, the dynamical vari-
ables in the Regge calculus approach are the edge length
assignments. Thus, the above action should be expressed
in terms of these variables. In fact, the Regge action is
expressible in terms of the squared edge lengths, and for
details of the procedures involved we refer to [1—5].

For ease of reference, we collect here some of the rele-
vant formulas which will be useful in the following.

The internal deficit angle is given by

6)(o.2) = 27r — ) 8g(o2, o4),
C74 QCT2

(4)

where the summation is over all four-simplices containing

an integration over a finite number of edge length vari-
ables.

Given a simplicial complex M with boundary BM, pos-
sibly containing several disjoint components, the corre-
sponding amplitude of quantum gravity will thus take
the form

@0(~b) f ~V(H ) ~XP( ~(~b ~'))
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the two-simplex 02. The dihedral angle Og can then be
expressed in terms of the squared edge lengths, see below.
The corresponding deficit angle for the boundary two-
simplex is

1s

where

Vs([i, j, k, l]) = —Det [Ms([i, j, k, l])],

@(o2) = ~ — ) eg(o„o4) .
0'4 QC72

It remains only to give the explicit formulas for the var-
ious volumes and dihedral angles in terms of the squared
edge lengths. The volume of the two-simplex cr2 ——[i, j, k]
is given by

Ms([i, j, k, l]) = r s,,
sijk

Sij k Sijl
sik sikl
sikl sil

and s;~I, = 2(s,~ + s;I, —s&I, ) Als. o, the four-volume
assumes the form

V2([i, j, k]) = —Det ~ [M2([i, j,k])], (6) V4 ([i,j, k, l, m] ) = —Det ~ [M4 ([i,j, k, I, , m) )], (10)

where

M2([i, j, k])

2 (s.
& + s y —

s&I).12(s;, + s;k —s, A, ) )~ (7)

with

M4([i, j, k, l, m]) =
( s,~.

Sij l

sijm
sikl

sij l

sikl
sil

sikm si l rn

sijm

)
Here, sij is the squared edge length between the vertices i
and j. Similarly, the volume of the three-simplex [i, j, k, I]

I

Finally, the dihedral angle of the two-simplex cr2 ——[i, j, k]
is expressible as

2

es(fi, j t'1 fi, j, t i ml) = srcccs
I

~
et) D»(iltil, j, k) Ii, j, , ittl)mII) ()trs,j,t, tl) tt(rfsij, mtl), )I&3'r

(12)

where

Mss([i, j, k], [i, j, k, )t, m]) = r s'jm
Sij k Sik Sikm
Sij l Sikl Silm

(13)

III. TRIANGULATIONS OF LENS SPACES AND
THEIR CONES

Our task now is to obtain explicit triangulations for
the lens spaces which serve to model the spatial universe.
Once this is achieved, one can reality construct the cor-
responding cone over L(p, 1).

A particularly convenient construction of simplicial
complexes for lens spaces, with a small number of sim-
plices, has been given in [21]. We present here the es-
sential ingredients in this construction. These triangu-
lations are interesting in their use of a small number of
simplices, and the accompanying dihedral automorphism
group. The triangulation of L(k —2, 1) for k ) 4, is de-
noted by S2k, and it has dihedral automorphism group
Dk. The number N; of i-simplices in each dimension is
given by

Prom the above relations, the explicit form of the ac-
tion for a given simplicial complex as a function of the
squared edge lengths can be obtained. In the sequel, we
will be interested in analyzing the analytic properties of
this action in the space of complex valued edge lengths,
for the purposes of computing the amplitudes of interest.

Np ——2k+ 3,
N1 ——2k~+ 4k+ 3,

N, = 4k'+4k,

N3 ——2k'+ 2k . (14)

We denote by C2g = gr(c) the group generated by the
permutation c, and its action can be naturally extended
to the set of all simplices with vertices taking values in the
set Z2k. The automorphism group of the triangulation
is the dihedral group generated by a and 6, although for
the purpose of obtaining the simplicial complex, only the
elements t- and a are required.

The erst step in the construction is to introduce the
set of three-simplices

b„= [0, l, k —i, k —i + 1) withi = O, l, . . . , k —3,
(16)

In particular, the resulting triangulation of I (2, 1)
BP with 11 vertices is the smallest number possible for
this manifold [23].

For k ) 4, let Z2A, = (0, 1, . . . , 2k —1) denote the addi-
tive set of integers mod2k, and consider the permutations
of that set de6ned by

c(i) = i + 1 mod 2k,
a(i) = i+ 2mod 2k,

b(i) = 2k —i mod 2k .



52 LENS SPACES IN THE REGGE. . . 5763

H21 = C2a(&o) U. U C2~(ha —s) . (17)

and the corresponding orbit under the action of C2I, is
written as C2&(A;). Each of these orbits contains 2k
elements, save for C2g(AO) which contains k elements. A
simplicial complex containing k(2k —5) three-simplices is
now given by

K2I, = [y, z, CI, (Eq)] U [x, z, Cy (E2)] U [x, y, Cg (Eq)]

U[y. C.(F.)]
U[y, CA, (F2)] U [z, Cg(Fs)] U [z, CA,, (F4)], (19)

The next step is to introduce three additional vertices
(x, y, z), and consider the simplicial complex

Here, we use the U notation to describe the union of sim-
plices, but when the need arises we will specify precisely
the relative orientations of the three-simplices involved.

Consider now the following collection of simplices:

F', = [O, 1,3],
F, = [O, 2, 3],
Fs = [1,2, 4],
F4 ——[1,3, 4],
E, = [o, 2],

E, = [1,3].

where the subgroup CI, C C2A,. of index two is given by
Cg = gr(a).

Finally, we obtain the simplicial complex

S2I = H2I U K2I (2o)

According to [21], S2I, is a DA, -symmetric triangulation
of the lens space L(k —2, 1), for k ) 4.

One can proceed and obtain the explicit set of three-
simplices for a given case of interest, and we list here
the resulting triangulation of L(2, 1). It is important to
note that the relative orientations of the three-simplices
in S2A, need to be specified in order to ensure a vanishing
boundary. This yields

L(2, 1) = +[0, 1,4, 5] + [1,2, 5, 6] + [2, 3, 6, 7] —[0, 3, 4, 7] + [0, 1, 3, 4]

+[1,2, 4, 5] + [2, 3, 5, 6] + [3, 4, 6, 7] —[0, 4, 5, 7] + [0, 1, 5, 6]

+[1,2, 6, 7] —[0, 2, 3, 7] + [y, z, 0, 2] + [y, z, 2, 4] + [y, z, 4, 6]
—[y, z, 0, 6] —[x, z, 1, 3] —[x, z, 3, 5] —[x, z, 5, 7] + [x, z, 1, 7]

+[x,y, 1, 3] + [x, y, 3, 5] + [x, y, 5, 7] —[x, y, 1, 7] + [y, 0, 1, 3]

+ [y, 2, 3, 5] + [y, 4, 5, 7] + [y, 1,6, 7] —[y, 0, 2, 3] —[y, 2, 4, 5]
—[y, 4, 6, 7] —[y, 0, 1, 6] + [z, 1, 2, 4] + [z, 3, 4, 6] + [z, 0, 5, 6]

+ [z, 0, 2, 7] —[z, 1,3, 4] —[z, 3, 5, 6] —[z, 0, 5, 7] —[z, 1, 2, 7] . (21)

a(x) = x, a(y) = y, a(z) = z,

b(x) = x , b(y) = z, b(z) = y . (22)

For the purpose of illustration, let us discuss in some
detail the symmetry properties of the above triangula-
tion of L(2, 1). The general case will then follow quite
straightforwardly.

The symmetry group of L(2, 1) is the dihedral group
D4 of order eight, and one can check explicitly that the
form of the triangulation (21) is indeed invariant. First,
one finds that the vertices split into four independent
orbits under the group action: namely,

In the sequel, we shall endow these simplicial com-
plexes with a geometry by assigning edge length variables
to the one-simplices, so it is useful to discuss the auto-
morphism groups of these complexes, and the resulting
simplicial geometry.

The automorphism group of S2y is the dihedral group
D& generated by a and b of Eq. (15). This is the group of
order 2k with generators satisfying the relations a = 1,
b = 1, and ba = a b. In order to establish this, one
extends the action of the generators to the vertices x, y, z
as follows:

(0, 2, 4, 6},
(1,3, 5, 7},

(y, zj . (23)

(01, 12, 23, 34, 45, 56, 67, 07},

(02, 24, 46, 06j,
(03, 25, 47, 16,05, 36, 14, 27},

(O4, 26},

13,35, 57, 17}

One can define the notion of a homogeneous triangula-
tion as being one for which the vertices form a single orbit
with respect to the action of the symmetry group. For the
triangulations of lens spaces considered here, we see that
they are not homogeneous in this sense. Consequently,
one notes that the number of one-simplifies which em-
anate from vertices of distinct orbits can be different in
general.

The one-simplices are divided into 11 orbits as follows:
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(15,37j,

(x1,*3,*5,z7),

(yO, y2, y4, y6, zO, z2, z4, z6),

fyl, y3, y5, y7, zl, z3, z5, z7),

(xy, zz},

(yz) . (24)

Np(M4) = Np(Ms) + 1

Ni(M4) = Ni(Ms) + Np(Ms)

N2(M4) = N2(Ms) + Ni(Ms),

Ns(M4) = Ns(Ms) + N2(M3)

N4(M4) = Ns(M3) . (27)
A natural geometry is defined as one for which indepen-
dent edge lengths are assigned to each of these orbits,
and the resulting simplicial geometry is easily seen to be
anisotropic. The notion of anisotropy is defined as one for
which independent edge length variables emanate from a
given vertex.

For the general case of S2@, we again note that there
are four vertex orbits:

(0, 2, . . . , 2k —2),
(1,3, . . . , 2k —1),

(25)

Before determining the number of one-simplex orbits,
let us recall that a simplicial complex is said to be two-
neighborly if every pair of vertices form a one-simplex
[23]. For this to be the case, we have Ni ——N0(N0 —1)/2.
The triangulations S2p fail to be two-neighborly precisely
because of the absence of one-simplices of the form

(~0, ~2, . . . , ~(2k —2)) . (26)

%'ith this knowledge, it is easy to see that there are five
orbits involving the vertices x, y, z, which are given by the
extension of the last five entries in (24). In addition, there
are k+ [k/2] orbits among the vertices (0, 1, . . . , 2k —1),
where [x] denotes the greatest integer less than or equal
to x. In general then, the total number (k+ [k/2] + 5) of
one-simplex orbits depends on the particular lens space
under consideration. As a result, if we choose a simplicial
geometry described by (k + [k/2] + 5) independent edge
length variables, the degree of anisotropy of L(k —2, 1)
increases with k.

Given these simplicial complexes for the spatial uni-
verse, we can turn our hand to constructing a four-
dimensional simplicial complex which has L(p, 1) as its
boundary. One means of achieving this is to consider the
complex known as the cone over L(p, 1) [24]. This sim-
ply involves the addition of a single extra vertex, the cone
vertex. denoted by c, and joining this to all vertices of the
bounding lens space. Each four-simplex of the cone then
takes the form [c, as], where os is a three-simplex of the
boundary complex. It is typical to denote by M4 ——c*M3
the four-dimensional cone complex over its boundary M3.
With this orientation, the boundary of the cone M4 is
+M3. The number of i-simplices contained in the cone
are immediately evident:

As verified in [21], the above triangulations of lens
spaces are in fact simplicial manifolds, satisfying the so-
called manifold condition. Given an n-dimensional sim-
plicial complex K, we recall that the star of a simplex
o in K is the collection of simplices which contain 0,
together with all their subsimplices. The link of the sim-
plex 0 is then the set of simplices in the star of 0 which
do not contain o.. The simplicial complex K is said to be
a simplicial n manifold if and only if the link of every k

simplex is combinatorially equivalent to an (n —k —1)
sphere [25].

In particular then, because of the manifold condition,
the Euler character of the lens space triangulations van-
ishes, N0 —Ny+ N2 —N3 = 0. The fact that the complex
is closed implies that N2 ——2N3, the three-simplices are
glued together pairwise. One can then express the infor-
mation in (27) in terms of the two independent quantities
N, (Ms) and Ns(Ms), for example.

IV. ANALYSIS OF THE REGGE ACTION AND
ITS EXTREMA

Having chosen our four-dimensional spacetime to be
represented by a cone over the bounding lens space
M3 ——L(p, 1), we can now obtain the explicit form of
the associated Regge action. The cone structure intro-
duced is appealing in the sense that we can immediately
identify a natural minisuperspace in which to study the
model. Since the only internal vertex is the cone vertex,
all the internal one-simplices are of the form [c, b], where b

is a vertex lying in the boundary. The truncation of edge
length variables to the minisuperspace of interest can be
eKected by considering all internal edges to be described
by a single internal edge length, denoted s, . In addition,
we assume that the boundary lens space is described in
terms of a single bounding edge length sb. Thus, we take
all the independent one-simplex orbits to be described by
a single edge length. This choice is appealing in the sense
that we reduce the degree of anisotropy mentioned in the
previous section, and also a more direct comparison can
then be made with the results for S .

As a result, the Regge action will be a function of only
two variables, and our task will be to perform the integra-
tion over the single internal edge length. In this respect,
we will be able to appeal to the analysis performed for
the case of Ss boundary in [7]. It is perhaps worth noting
that in the model discussed in [7], the simplicial complex
with S boundary was itself a simplicial manifold. In the
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case under study here, the four-dimensional cone does
not satisfy the manifold condition, in particular because
of the fact that the link of the cone vertex is a lens space
rather than S . Nevertheless, it does provide a partic-
ularly simple cobordism with a boundary of non-trivial
topology. Furthermore, the general framework of Regge
calculus requires only that spacetime be represented by a
simplicial complex. One might also note that the simpli-
cial cones considered here belong to the class of simplicial
conifolds discussed in [26].

It is convenient to introduce the scaled. variables:

where

E(z) = aq[7r —2 arccos(zq)]

+a2(z —
&)

/ [27r —as arccos(z2)],

G(z) = «(z —-.')"
and we have introduced the variables

2z —1

2(3z —1)

(36)

(38)

si
z =

Sb

H2sg
) (28)

The coeKcients a, appearing in the action are expressed
in terms of the number of i-simplices of the boundary as
follows:

where H = t A/3. The general formulas of Sec. II now
yield the following results. For the cosmological term, we
note that each four-simplex is of the form [c, os], where O.s
is a three-simplex in the boundary, and has four-volume:

ag ——Ns(Ms) ~3,

&2 = Nz(Ms),

24~2 ( 8 G3 —6N3 (Mg) /Ng (M3)

The number of four-simplices is of course Ns(Ms).
To evaluate the Einstein term, we observe that the

internal two-simplices are all of the type [c, cr~], where
o~ is a one-simplex on the boundary. Hence, there are
N] (M3) internal two-simplices each with volume

V2(int) = —
i

z ——
i2( 4) (30)

The associated dihedral angle of this internal two-simplex
is then

2z —1
8~(int) = arccos

~(2(3z —1))
Here, one uses the fact that the volumes of the internal
and boundary three-simplices are

Vs(int) = —s (3z —1) /

Vs(bound) = s~
v 2 s/2

(32)

Turning now to the boundary term in the action, we
again have a single type of two-simplex. There are
2Ns(Ms) of these and the volume of each is

a4 ——N3(Ms)/(4~2) . (39)

The values are collected in Table I for the cases 2 & p ( 7,
and can be read oB' from equation (14) in general.

It is important to make the following observation re-
garding the factor of 2 appearing in the formula for the
deficit angle of a boundary two-simplex [the first term in
F(z)]. The bounding lens space is represented by a closed
simplicial complex, and closure of the complex means
that each two-simplex is contained in precisely two three-
simplices. Thus, when we elevate this boundary complex
to its associated cone, we immediately know that the
number of four-simplices containing each boundary two-
simplex is again precisely 2, each being of the form [c, 17s]
with o.3 belonging to the boundary. This fact becomes
crucially relevant when we search for the extrema of the
Regge action.

The value of the coeKcient a3 is obtained by deter-
mining the number of four-simplices which contain each
internal two-simplex. Since each internal two-simplex
is of the form [c, |TED], where crq is a one-simplex in the
boundary, we must equivalently determine the number
of boundary three-simplices containing a given bound-
ary one-simplex. This number depends on the indi-
vidual one-simplex. However, since each three-simplex

~3
V2(bound) = ss .

4

The dihedral angle in this case is given by

l0Q(bo und) = arccos
(2 2(3z —1) / ) (34)

I(z, S) = [ SI'(z) + S'G(z)]/H—',
Assembling the various terms, we obtain the complete

Regge action in the form

M3
L(2, 1)
L(3, 1)
L,(4, 1)
L(5, 1)
L,(6, 1)
L(7, 1)

40~a
60~3
84~3
112~3
144~3
180v 3

51 240/51 5~2
73 360/73 15/~2
99 504/99 21/v 2

129 672/129 14~2
163 864/163 18~2
201 1080/201 45/~2

Scrit
3.537 26
1.463 91
0.109891

—0.842 155
—1.54737
—2.090 39

TABLE I. The coefBcients a, appearing in the Regge action
for the cone over the lens space L(p, 1), and the critical value
S „-& of the boundary edge length.
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arccos(z) = —i ln[z + gz~ —1], (4o)

we find that in the neighborhood of z = 3, the action has
the behavior

I(z, S)-,S[2v 3&s(M3)] ln[3z —1] . (41)

According to Eq. (11) the metric in each four-simplex
is specified in terms of the squared edge lengths, and is
real for real values of s;~. In our specific minisuperspace,
we have just a single type of four-simplex, and the signa-
ture of the metric depends on the value of the variable z,
the corresponding eigenvalues being

& = (-'. , —.', —'. , 4(. ——'.)) (42)

contains six one-simplices, the sum of the number of
three-simplices containing all the one-simplices is clearly
6&s(Ms). Therefore, the sum of the internal deficit an-
gles takes the form given above, with the quoted values
of aq and a3.

The explicit form of the Regge action enables us to ex-
amine its analytic and asymptotic properties. On general
grounds, as noted in [7], the action is an analytic function
of the squared edge lengths, apart from the presence of
certain branch surfaces and logarithmic infinities, which
arise when the volumes of various simplices vanish. In
the case at hand, we can explicitly identify the analytic
nature of the action I(z, S). In fact, because of our choice
of cone complexes and simplicial minisuperspace, the an-
alytic behavior of the action parallels that presented in
[7] for the case of Ss.

There is a square root branch point at z = 8, where
the volume of the four-simplices vanishes. Similarly, one
spots a square-root branch point when the volume of the
internal two-simplices vanishes, at z = 4. In addition,
the vanishing of the volume of internal three-simplices is
responsible for a square root branch point at z = 3, this
point also aKords a logarithmic branch point. Using the
representation,

G(z) = ia4(s —z) ~ (44)

The identity

vr —2 arccos(iz) = 2 arcsin(iz) = 2i arcsinh(z) (45)

has been used in the above. It is here that we notice
that the factor of 2 in the boundary deficit angle is cru-
cial, so that the action in the range real z ( 4 is purely
imaginary. As we shall see, this is important for the
existence of Lorentzian signature solutions to the Regge
equations of motion. One now sees that if the action is
continued. once around all the branch points at z =
3 and 8, we wil 1 reach a second sheet, and the value
of the action is the negative of its value on the first
sheet. Thus, continuing twice around all branch points
returns the action to its initial value. This behavior
can be established by simply noting that encircling all
the branch points renders no change in arccos(zq), while
arccos(zi) M arccos( —zi) = m —arccos(zi).

The asymptotic behavior of the action is important
when discussing the extrema of the action, and when
searching for convergent contours of integration. For
large !z! on the first sheet, we have

action on the first sheet is given by Eqs. (35)—(38) with
positive signs taken for the square-root factors.

As we have seen, for real z ( 8, we have a region
of Lorentzian geometries. In particuIar, however, in the
range real z ( 4, we find that the action is purely imag-
inary. On the first sheet, we have

( 1
F(z) = iai —2arcsinh!

2(1 —3z) '~'
p

(1 (2z —1)'
+iaq

I
z

I
2n —as arccos

(2(3z —1))
(43)

Thus, for real z ) 8, we have a regime of real Euclidean
geometries, while for real z ( 8 there lies a regime of real
geometries of Lorentzian signature.

Due to the presence of the branch points, we need to
declare the location of the branch cuts, and the corre-
sponding phases of the action on its various sheets will
then be determined. One first notes that the function
arccos(z) has branch points at —1, +1, and oo, and
conventionally the branch cuts are placed &om —oo to
—1, and from +1 to +oo. With this choice, arccos(z) is
real for real —1 ( z ( +1. The corresponding cuts for
arccos(zq) in the z plane then lie between the points s to
~s, and 4 tos, respectively. The branch cuts of arccos(zi)
lie between 3 and 8. In addition, because of the pres-
ence of the square-root branch points at 4 3 and 8, it
is convenient to define a first sheet for the action I(z, S)
with a branch cut extending &om 8 to —oo.

With the z-plane cut in the above way, we note that
for real z ) 8, we have real valued Euclidean signature
action, with real volumes and real deficit angles. The

F(z) - a,s.„,(z — )'~' (46)

(47)

where

ag 1S„;i———[2vr —as arccos(s)] .
a4

(48)

The asymptotic behavior of the complete action on the
first sheet then takes the form

I(z, S) S(S —S„;t)z i (49)

Thus, it is clear that the behavior of the action is cru-
cially dependent on whether the value of the boundary
edge length is greater or less than the critical value, de-
noted by S „-&. The values of S„;&for the cases 2 & p & 7
are listed in Table I. Using Eq. (14), one sees that S„;t
remains negative for all p & 5, and tends to a value
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S„;q ———6.23708 as p approaches infinity.
We can turn now to a description and analysis of the

classical extrema of the action. The Regge equation of
motion in this model takes the simple form

I(—z, S) =0.d

dz (50)

This equation is to be solved for the value of z subject
to fixed boundary data S, and via Eq. (28), the so-
lution then determines a complete simplicial geometry.
Our physical restriction on the chosen boundary data is
that S should be real valued and positive. The equation
of motion can be rewritten in the form

Lorentzian
Euclidean

F'(z) ag (z —Is)'~2
[2m —as arccos(z2)], (51)G' z a4 z —— /2

4

where the prime indicates a derivative with respect to z.
It should be pointed out that the above form requires the
relation ai~3 = a2as/2, which is the case for the models
considered here, as can be seen from Eq. (39).

Writing F' = fi + if' and G' = gi + igq, we see that S
is real if and only if fig2 ——gi f2 In par. ticular then, so-
lutions exist when E' and G' are both purely real valued,
or when both are purely imaginary. Thus, we can de-
clare that classical extrema exist in two regions, for real
z ) 8, and for real z & 4. The physical acceptability of
such solutions will require in addition that S is positive.
The fact that these constitute all possible solutions to
the constraint fig2 ——gif2 can be seen, for example, by
expanding the various factors in (51) in series expansions.

From (51), we see that the value of the boundary edge
length is always S ( S„;t,for real z ) 8. Thus, for every
0 ( S ( S„;q, there exists a real Euclidean solution at
real z ) 8. Similarly, for every positive S with S ) S„;&,
there is a real Lorentzian solution at real z ( 4. It should
also be noted that these solutions occur in pairs, in addi-
tion to those on the 6rst sheet, there are corresponding
solutions on the second sheet with opposite value of the
action. Interestingly, as can be seen from the values of
S„;t quoted in Table I, real solutions with Lorentzian
signature exist for smaller values of the boundary edge
length, as compared to the case of Ss studied in [7].

Furthermore, the value of S„;q is negative for p & 5.
Therefore, it appears that no Euclidean solutions exist in
these models. However, one could contemplate encircling
the branch points either at z =

8 or 4. This will cause
a change of sign in one of the square-root prefactors in
(51). However, in addition the value of arccos(z2) will
Hip sign, and thus S will remain negative and less that
S„;t. Thus, no physically acceptable Euclidean solutions
exist in these cases.

On a related matter, one should perhaps note that even
in the case when S„;q is positive, Euclidean solutions do
not exist for every value of z ) 8. This can be seen even
in the case with S boundary. At values of z close to 8,
for example, 8 ( z & 0.4 for S, and 8 ( z & 0.889512
for L(2, 1), one finds that as arccos(zz) ) 2vr, resulting
in a negative value of S.

The structure of the classical solutions are presented
for the cases of L(2, 1) and L(5, 1) in Figs. 1 and 2.

FIG. 1. The classical extrema of the Regge action for the
cone over RP .

One can also examine the nature of the classical ex-
trema of the Regge action for the case of vanishing cos-
mological constant A. In this case, the action consists
solely of the F term (36), and the equation of motion
then takes the form

Solutions exist for those values of z which satisfy

f 2z —1
arccos

i2(3z —1))
Since cos i(z) is real for real —1 ( z ( +1, we see that
a solution exists on the real axis at

[2 cos(27r/as) —1]

[6 cos(2n /as) —2]
(54)

For the lens spaces L(p, 1), p = 2, 3, 4 considered here,
the value of z lies on the real axis with z ) 8, thus
corresponding to a Euclidean signature solution. Recall
that 8, = zsp, so that for each value of the boundary

Lorentzian

Euclidean

FIG. 2. The classical extrema of the Regge action for the
cone over L(5, 1). In this case, solutions with Lorentzian sig-
nature are present for all physical values of the scaled bound-
ary edge length squared S. There are no physical Euclidean
signature solutions.

a2 2z —1F'(z) = i 2m —as arccos
~ ~

= 0 .
2(z —4)"' q23z —1 )

(52)
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data 8b ) 0, we have a full Euclidean signature solution
for the Regge equations on the cone over I (p, 1). There
are no Lorentzian signature solutions in these cases. On
the other hand, for all p & 5, we find that z lies on the real
axis with z ( 4, and thus we have a Lorentzian solution
for all positive values of the boundary edge length sb.

V. STEEPEST DESCENT CONTOURS FOR THE
WAVE FUNCTION OF THE UNIVERSE

Therefore, the wave function is given as

S
4'o(S) = dz exp[ —I(z, S)] .

We wish to determine if @o(S) can be obtained in a
form which exhibits oscillatory behavior for large values
of the bounding edge length S. As shown in [7] for a
universe with S topology, this is indeed possible. We
recall that there are two Lorentzian extrema when S )
S„;q, one on the erst sheet of the action, and one on the
second sheet. At the corresponding values of real z & 4,
the action is purely imaginary and of opposite sign on
the two sheets. The aim is then to identify a convergent
steepest descent contour C of constant imaginary action
which passes through one, or both, of these Lorentzian
extrema.

As we have noted, the critical value S„;t for the lens
spaces studied here is smaller that the corresponding
value for spherical topology. Therefore, once we have
succeeded in identifying the steepest descent contours,
it means we can de6ne an oscillating wave function for
relatively smaller values of the bounding edge length. In-
deed, we see that for p & 5, oscillatory behavior can be
obtained for all positive values of S.

Based on our explicit knowledge of the analytic prop-
erties of the action and its extrema, we can determine
the nature of the steepest descent contour by resorting
to general argument, as reviewed in [7]. Consider, for ex-
ample, the Lorentzian extremum lying at some value of
real z ( 4, the action here is purely imaginary with value
Im(I) = I,„t. By construction, a contour of constant
imaginary action consists of two sections, one of steepest
ascent, the other of steepest descent. Descending most
steeply away &om the extremum, one could in general
end either at infinity, a singular point of the action, or at
another extremum with the same value of Im(I). From
(41), we see that the only singular point is at z =
where the value of Im(I) diverges, so the contour cannot
end there. Since the other extremum at this value of z
lies on the second sheet, it has opposite value of Im(I),
so a contour cannot connect them. Thus, on general

Armed with the classical solutions to the Regge equa-
tion of motion, we can proceed with our determination
of the wave function of the universe. The remaining data
needed is a specification of the measure p, and the in-
tegration contour C. We shall take the measure in the
form

d8q
dp, (s, ) =

grounds, the steepest descent contour must be in infinite
in extent, and passes from inanity to inanity through the
extremum. Indeed, one can verify this explicitly, and an
example for the universe with BP topology is given in
Fig. 3.

The convergence of this contour can be veri6ed by re-
calling the asymptotic behavior of the action, as pre-
sented in the previous section. Beginning on the erst
sheet, at the Lorentzian extremum with real z ( 4, the
locus of the contour on the upper half of this sheet is
given asymptotically by

S(S Scrit) Im(z ) = Iext (57)

The asymptotic behavior of the real part of the action on
this section of the contour is

Re[I(z, S)] - S(S —S„;,)[z['~

thus guaranteeing convergence.
Moving downwards from the extremum, we immedi-

ately cross the branch cut, and hence pass onto the sec-
ond sheet. However, due to the alteration in sign of
the action, one cannot proceed to infinity on the second
sheet. Instead, one finds that the contour enjoys travers-
ing the branch cut once more, moving onto a third sheet.
For large values of S, this crossing .point lies between
z = 4 and 3. Having emerged onto the third sheet, the
contour is asymptotic to

—0.2 0.2

Re [zl

I

0. 4
I

0. 6 0.8

I IG. 3. A section of the steepest descent contour of integra-
tion for the cone over RP . The branch points at z =

4 3
are indicated by the crosses, while the Lorentzian extremum
at Re[z] = 0.1, corresponding to S = 17.1246, is marked by
a bold dot. The value of the action on the first sheet at the
extremum is I = 1469.32i and the branch cut is highlighted
by the solid line extending from z = — to —oo. The contour
proceeds upwards from the extremum along the first sheet of
the Regge action. Below the branch cut, the contour lies on
the second sheet. Finally, it traverses the cut between the
branch points z = —and —,reaching a third sheet.
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where

S(S+ S„;i)Im(z ) ) = I,„g,

S„;q ———[2m + as arccos(s)] .
a4

(59)

(60)

For S & S„;q, the Hartle-Hawking wave function is also
given by considering the two Euclidean extrema. How-
ever, because of the alternate signs, it is the extremum
on the first sheet which gives the dominant contribution:
namely,

Convergence is ensured due to the fact that

Re[I(z, S)]-,S(S+ 8„;g)ized'~2

For smaller values of S, the crossing point to the third
sheet lies between z =

3 and 8. When the dust settles,
however, the end result is that a convergent contour of
integration for the wave function exists. Since it passes
through the Lorentzian extrema, the desired oscillatory
behavior in the late universe, i.e. , when S ) S„;q, is
guaranteed. In fact the steepest descent contour just
described has a complex conjugate partner with Im(I) =
—I,„q, where one begins at the extremum on the second
sheet.

It turns out that one can also find a steepest descent
contour when S ( S„;q. Beginning at a Euclidean ex-
tremum with real z ) 8 on the first sheet, the action is
purely real, and hence a contour of constant Im(I) = 0
is required. Clearly, one contour extends along the real
axis &om 8 to +oo, corresponding to an integration over
real Euclidean geometries. However, such a contour is of
steepest ascent. The section of steepest descent can be
found, and in fact is one which encircles all three finite
branch points. The contours for the extremum on the
second sheet are equally given.

The existence of convergent steepest descent contours
allows us to perform a complete numerical integration
yielding the wave function. For illustrative purposes how-
ever, it suKces to resort to the semiclassical approxima-
tion, and evaluate the wave function to first order.

To implement the Hartle-Hawking proposal, we wish to
obtain a real valued wave function. This can be achieved
by combining the two sections of the contour, passing
through both Lorentzian, and both Euclidean extrema.
The form of the wave function for S ) S„;~ is therefore

S'
Op(S) =

~
~

2 cos (I g(S) ——), (62)
q 2~H4I."„,(S) y 4

S'
4'0(S) = —

~

— „~ exp[—I,„i(S)] . (64)

It is now a simple matter to plot these wave functions
for the lens space universe. In Fig. 4, the Hartle-Hawking
wave function is given for BP, in the semiclassical ap-
proximation. The corresponding wave function in a con-
tinuum minisuperspace model has been obtained in [27].
In Fig. 5, the case of L(5, 1) is presented. Here, we again
remark that an oscillating wave function is allowed for
all positive values of the boundary edge length, as is also
the case for all p ) 5. For all L(p, 1),p & 2, we find an
oscillating wave function for large values of the boundary
edge length.

As shown in [7], when one considers both sections
of the steepest descent contour passing through the
Lorentzian minima, they can be joined to form a closed
contour. This closed contour is one which encircles all
three branch points twice. By similar argument, one can
establish the closure of the contour for the lens space
models considered here. This is appealing since one then
has a contour prescription for the model, in the sense
that the contour is independent of the argument of the
wave function [9]. Furthermore, the closed contour can
be deformed to the steepest descent contours for all val-
ues of S, thus accounting for both Lorentzian and Eu-
clidean regimes. Recall that the form of the steepest
descent contours obtained above depends on the particu-
lar minimum through which they run. Thus, in line with
the arguments set forth in [9], it is the closed contour
which should be taken as the defining contour for the
Hartle-Hawking wave function in these particular simpli-
cial minisuperspace models.

We also mention the wave functions of the Linde-
Vilenkin [18,19] variety. The proposal here is to define
the wave function to consist purely of outgoing waves. In
other words, the wave function should be defined in terms

where the action is written as I = i,I, and I,„q(S) and
I,"„~(s) are evaluated at the value of z corresponding to
the extremum S. The Huctuation term, in a form valid
for real z ( 4, is given by

I"(z, S) = —,[
SI'"+S'0"]-

S a2 1
[27r —as arccos(z2)]4(, z&

a2a3 1

Sv 2 (4 —~) (I —')"*(~—») )
S a4 1
Hz 4 (s —z)s/z

0.04

0.02

0
N

V)

-0.02
CO

-0.04

—0 06

—0.08

—0.6 —0. 4 —0.2

FIG. 4. A section of the semiclassical Hartle-Hawking wave
function for a universe with RP topology. The range of S
values included is 6 ( S ( 20, and H = 50.
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which share a common two-simplex [0,1,2] by three three-
simplices sharing a common one-simplex [x, y]:

0.01
N

CQ

0

[2:,0, 1, 2] —[y, 0, 1, 2] m [x, y, 1, 2] —[x, y, 0, 2]

+[x, y, o, 1] . (67)

—1.5 —0. 5 0

The (3,2) and (4,1) moves are inverse to the above.
If we denote by LN;, the increase in the number of i-

simplices due to a (k, l) move, then it is straightforward
to check that under the (1,4) move we have

FIG. 5. The semiclassical Hartle-Hawking wave function
for a universe with L(5, 1}topology, in the range 0 ( S ( 8,
with H = 50.

LNp ——1,

LNg ——4,

of the contour passing through the Lorentzian extremum
on the first sheet alone, giving it a form

LN2 ——6,

S'
@o(S)=

~ ~
exp i I—,„q(S) ——

i,2rrH4I,"„,(S) y

(65)

LN3 ——3 .

The changes under the (2,3) move are given by

LNp ——0,

(68)

Clearly then, wave functions satisfying the requirements
of the Linde-Vilenkin proposal are possible for all the lens
spaces studied here.

ANg ——1,

AN2 ——2,

VI. BEHAVIOR UNDER BOUNDARY
SUBDIVISION

AN3 ——1 . (69)

The final topic of our investigation is to determine how
the above results behave when the boundary universe
undergoes a simplicial subdivision. While the triangula-
tions presented in Sec. III do indeed capture the topology
of the lens spaces, they are by no means the only available
triangulation. Indeed, one can subject these complexes
to various subdivision moves, which yield combinatorially
equivalent triangulations.

For our purposes here, we shall appeal to a set of moves
due to Pachner [20]; these are known as (k, l) subdivision
moves, since they replace a set of A: simplices by a set
of l simplices. Of particular relevance to us is the fact
that the triangulations of Sec. III are simplicial mani-
folds. According to the result of [20], the (k, l) moves
are equivalent to the so-called Alexander moves [28] for
closed simplicial manifolds. Therefore, all combinatori-
ally equivalent triangulations of the lens spaces can be
obtained via the (k, l) moves.

In the three-dimensional case of interest here, there are
four (k, l) moves, with k = 1, . . . , 4, and k + l = 5. The
(1,4) move is described by adding a new vertex x to the
center of the three-simplex [0,1,2,3], and linking it to the
other four vertices. The original three-simplex is then
replaced by four three-simplices:

We recall that the Regge action in our simplicial min-
isuperspace was fixed in terms of the coeKcients a;, which
in turn were related to the N;(Ms). When we perform a
subdivision move of type (k, l) on our bounding com-
plex, the resulting four-dimensional complex is still a
cone over this subdivided boundary. However, the sub-
division creates a number of new internal simplices, and
also of course additional boundary simplices. If we now
decide to maintain the nature of our simplicial minisu-
perspace, described entirely in terms of a single internal
edge length, and a single boundary edge length, then we
must endow the newly generated edges with those values.

With this declaration in place, the effects of the subdi-
vision moves are easily established, the net result being
an alteration in the values of the a,. coeKcients. The
changes can readily be extracted by combining Eqs. (68)
and (69) with Eq. (39). In this way, we immediately
obtain the Regge action for the cone with subdivided
boundary, and most importantly the analytic structure
of the action remains intact, so that the previous analysis
carries through.

One interesting feature of these subdivisions is their
influence on the critical value of the boundary edge length
S„;q. If we perform n subdivision moves of type (1,4),
we And

[0, 1, 2, 3] m [x, 1, 2, 3] —[x, 0, 2, 3] + [x, 0, 1, 3]
—[~, 0, 1,2] . {66)

The (2,3) move involves replacing two three-simplices

~Dr(Ms) + 4n

Ks(Ms) + 3n
6[m, (M, ) + an] l'1)

(7o)
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In the limit of large n, the critical value tends to S„;q ——

5.6106. For the case of S boundary, for example, this
means one can extend the Lorentzian regime of extrema
to smaller values of the boundary edge length, by per-
forming such subdivisions.

Under a set of rn moves of type (2,3), one finds that

~Ni(Ms) + n

Ns(Ms) g n

6[Ns(M3) + n] (1)
Ni(Ms) + n i3) (71)

VII. CONCLUSIONS

We have studied the wave function for a universe which
is topologically a lens space. The crucial element in the
construction was to assume that the four-dimensional
spacetime was modeled by the cone over the bounding
lens space. By restricting attention to a simplicial min-
isuperspace, the Regge action simplified to the extent
that one could investigate its relevant properties explic-
itly. Indeed, it should be observed that the coefBcients
a,. appearing in the action are determined solely in terms
of the number of i-simplices of the boundary universe
N, (Ms). This followed as a direct consequence of the
choice of cone structure for the four-dimensional simpli-
cial spacetime, and was not reliant on the boundary uni-
verse being of lens space topology. In particular then,
the analysis presented here can be applied to spatial uni-
verses with arbitrary topology. Given a simplicial com-
plex which models a universe with some general topology,

The limiting value for large m in this case is S„;t
—6.237 80. Therefore, by performing such moves we can
ensure that the region of Lorentzian extrema covers the
full range of physically allowed values of S.

In Sec. III, we discussed the symmetry properties of
the lens space triangulations and their resulting simpli-
cial geometry. It is clear that the (k, l) moves affect this
geometry, as can be seen from the relations (68) and (69).
In general, one sees that new one-simplices are intro-
duced as a result of these moves, and thus the degree
of anisotropy may be altered by assigning independent
edge lengths to them.

the Regge action in the minisuperspace of interest here is
completely fixed, and is of the form given in Eqs. (35)—
(38), with the values of the a, coefIicients given by Eq.
(39).

We may also be interested in studying the situation
when the universe is given by the disjoint union of a
number of components of varying topology. The wave
function of the universe in this case is then a topology
changing amplitude. Let us suppose that the universe
consists of the disjoint union of a number of components,
and we then construct the cone over this boundary.

Given this cone structure, we can immediately identify
a convenient simplicial minisuperspace in which to study
these amplitudes. Again, we let the simplicial geome-
try of each boundary component be described in terms
of a single edge length. In addition, we allow an inde-
pendent internal edge length to emanate from the cone
vertex to each of the boundary components. With this
choice of minisuperspace, the Regge action is given by a
sum of independent terms, one for each of the boundary
components, and consequently the wave function factor-
izes into a produce of single-component wave functions.
However, such a factorization property is a direct conse-
quence of the nature of the minisuperspace, and the cone
type cobordism.

Of course, one can consider more sophisticated cobor-
dism structures, and in particular it would be interesting
to perform an analysis when the four-dimensional space-
time is itself a simplicial manifold.

Indeed, since the triangulations of [21] are themselves
simplicial manifolds, they provide an ideal opportunity to
study nontrivial cobordism effects in three dimensions.
In particular, for example, if one removes the link of
any vertex from the triangulation of I (p, 1), the resulting
structure is a simplicial manifold with S boundary. In
this way, one could study the wave function for a universe
with S topology, cobordant to a variety of lens spaces,
and compare notes with the wave function obtained when
one takes the trivial cobordism, i.e. , the three-disc.

ACKNOWLEDGMENTS

This work was supported by Stichting voor Funda-
menteel Onderzoek der Materie (FOM).

[1] T. Regge, Nuovo Cimento 19, 558 (1961).
[2] J. A. Wheeler, in Relativity, Groups and Topology, edited

by C. DeWitt and B. DeWitt (Gordon and Breach, New
York, 1964).

[3] J. B. Hartle, J. Math. Phys. 26, 804 (1985).
[4] R. M. Williams and P. A. Tuckey, Class. Quantum Grav.

9, 1409 (1992).
[5] H. W. Hambler& in Critical Phenomena, Random Sys-

tems, Gauge Theories, Proceedings of the Les Houches
Summer School 1984, edited by K. Osterwalder and R.
Stora (North-Holland, Amsterdam, 1986).

[6] F. David, in Gravitation and quantizations, Proceed-

ings of the Les Houches Summer School, Les Houches,
Prance, 1992, edited by J. Zinn-Justin and B. Julia, Les
Houches Summer School Proceedings Vol. 57 (North-
Holland, Amsterdam, 1995).

[7] J. B. Hartle, J. Math. Phys. 30, 452 (1989).
[8] J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960

(1983).
[9] J. J. Halliwell and J. Louko, Phys. Rev. D 42, 3997

(1990).
[10] J. J. Halliwell and J. B. Hartle, Phys. Rev. D 41, 1815

(1990).
[ll] J. J. Halliwell and J. Louko, Phys. Rev. D $9, 2206



5772 DANNY BIRMINGHAM

(1989).
[12] J. J. Halliwell and J. Louko, Phys. Rev. D 40, 1868

(1989).
[13] J. J. Halliwell and R. C. Myers, Phys. Rev. D 40, 4011

(1989).
[14] J. Louko and P. A. Tuckey, Class. Quantum Grav. 9, 41

(1992).
[15] T. Eguchi and A. J. Hanson, Phys. Lett. 74B, 249 (1978);

Ann. Phys. (N.Y.) 120, 82 (1979).
[16] S. W. Hawking, Phys. Lett. 60A, 81 (1977).
[17] G. W. Gibbons and S. W. Hawking, Phys. Lett. 78B,

430 (1978).
[18] A. Linde, Zh. Eksp. Teor. Fix. 87, 369 (1984) [Sov. Phys.

JETP BO, 211 (1984)]; Nuovo Cimento 39, 401 (1984);
Rep. Prog. Phys. 47, 925 (1984).

[19] A. Vilenkin, Phys. Rev. D 30, 509 (1984); 33, 3560
(1986); 37, 888 (1988).

[20] U. Pachner, Arch. Math. 30, 89 (1978); Eur. J. Combi-

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[281

natorics 12, 129 (1991).
U. Brehm and J. Swig, tkowski, "Triangulations of Lens
Space with Few Simplices, " T. U. Berlin report, 1993
(unpublished) .
J. B.Hartle and R. Sorkin, Gen. Relativ. Gravit. 13, 541
(1981).
W. Kiihnel, in Advances in Dijferential Geometry and
Topology, edited by F. Tricerri (World Scientific, Singa-
pore, 1990).
J. Munkres, Elements of Algebraic Topology (Addison
Wesley, Menlo Park, 1984).
C. P. Rourke and B.J. Sanderson, Introduction to Piece-
&vise Iinear Topology (Springer, Berlin, 1972).
K. Schleich and D. M. Witt, Nucl. Phys. B402, 469
(1993).
K. Schleich and D. M. Witt, Nucl. Phys. B402, 411
(1993).
J. W. Alexander, Ann. Math. 31, 292 (1930).


