
PHYSICAL REVIEW D VOLUME 52, NUMBER 10 15 NOVEMBER 1995
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We introduce a new basis on the state space of nonperturbative quantum gravity. The states
of this basis are linearly independent, are well de6ned 'in both the loop representation and the
connection representation, and are labeled by a generalization of Penrose s spin networks. The new
basis fully reduces the spinor identities [SU(2) Mandelsthm identities] and simplifies calculations in
nonperturbative quantum gravity. In particular, it allows a simple expression for the exact solutions
of the Hamiltonian constraint (Wheeler-DeWitt equation) that have been discovered in the loop
representation. The states in this basis diagonalize operators that represent the three-geometry of
space, such as the area and the volume of arbitrary surfaces and regions, and therefore provide a
discrete picture of quantum geometry at the Planck scale.
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I. INTRODUCTION

The loop representation [1,2] is a formulation of quan-
tum Geld theory suitable when the degrees of &eedom
of the theory are given by a gauge field, or a connec-
tion. This formulation has been used in the context of
continuum and lattice gauge theory [3], and it has found
a particularly efFective application in quantum gravity
[2,4], because it allows a description of the diffeomor-
phism invariant quantum states in terms of knot theory
[2,5], and, at the same time, because it partially diagonal-
izes the quantum dynamics of the theory, leading to the
discovery of solutions of the dynamical constraints [2,6].
Recent results in quantum gravity based on the loop rep-
resentation include the construction of a finite physical
Hamiltonian operator for pure gravity [7] and fermions

[8), the computation of the physical spectra of area [9]
and volume [10], and the development of a perturbation
scheme that may allow transition amplitudes to be explic-
itly computed [7,11,12]. A mathematically rigorous for-
mulation of quantum field theories whose configuration
space is a space of connections, inspired by the loop rep-
resentation, has been recently developed [13,14] and the
kinematics of the theory is now on a level of rigor com-
parable to that of constructive quantum field theory [15].
This approach has also produced interesting mathemat-
ical spinofFs such as the construction of difFeomorphism
invariant generalized measures on spaces of connections
[14] and could be relevant for a constructive field theory
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approach to non-Abelian Yang-Mills theories.
Applications of the loop representation, however, have

been burdened by complications arising &om two tech-
nical nuisances. The Grst is given by the Mandelstam
identities, because of which the loop states are not inde-
pendent and form an overcomplete basis. The second is
the presence of a certain sign factor in the definition of
the fundamental loop operators T for n & 1. This sign
depends on the global connectivity of the loops on which
the operator acts and obstructs a simple local graphical
description of the operator's action. In this work, we de-
scribe an elegant way to overcome both of these compli-
cations. This comes from using a particular basis, which
we denote as spin network basis, since it is related to the
spin networks of Penrose [16]. The spin network basis
has the following properties: (i) It solves the Mandel-
stam identities; (ii) it allows a simple and entirely local
graphical calculus for the T operators; (iii) it diagonal-
izes the area and volume operators. The spin network
basis states, being eigenstates of operators that corre-
spond to measurement of the physical geometry, provide
a physical picture of the three-dimensional quantum ge-
ometry of space at the Planck-scale level.

The main idea behind this construction, long advo-
cated by Loll [17], is to identify a basis of independent
loop states in which the Mandelstam identities are com-
pletely reduced. We achieve such a result by exploit-
ing the fact that all irreducible representations of SU(2)
are built by symmetrized powers of the fundamental rep-
resentation. We will show that in the loop representa-
tion this translates into the fact that we can suitably
antisymmetrize all loops overlapping each other, with-
out losing generality. More precisely, the (suitably) anti-
symmetrized loop states span, but do not overspan, the
kinematical state space of quantum gravity.
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The independent basis states constructed in this way
turn out to be labeled by Penrose's spin networks [16],
and by a direct generalization of these. A spin network is
a graph whose links are "colored" by integers satisfying
simple relations at the intersections. Penrose introduced
spin networks in a context unrelated to the present one;
remarkably, however, his aim was to explore a quantum-
mechanical description of the geometry of space, which is
the same ambition that underlies the loop representation
construction.

The idea of using a spin-network basis has appeared in
other contexts in which holonomy of a connection plays a
role, including lattice gauge theory [18,19] and topolog-
ical quantum field theory [20—25]. The use of this basis
in quantum gravity has been suggested previously [26],
but its precise implementation had to await resolution of
the sign diKculties mentioned above. Here, these difBcul-
ties are solved by altering a sign in the relation between
the graphical notation of a loop and the corresponding
quantum state. This modified graphical notation for the
loop states allows us to reduce the loop states to the in-
dependent ones by simply antisymmetrizing overlapping
loops.

The spin-network construction has already suggested
several directions of investigation, which are being pur-
sued at the present time. The fact that it diagonalizes
the operator that measures the volume of a spatial slice
[10] gives us a physical picture of a discrete quantum
geometry and also makes the spin-network basis useful
for perturbation expansions of the dynamics of general
relativity, as described in [7,11,12]. It has also played
a role in the mathematically rigorous investigations of
[15,27]. Another intriguing suggestion is the possibility
of considering q deformed spin networks, on which we
will comment in the conclusion.

The details of the application of the spin-network basis
to the diagonalization of the volume and area operators
have been described in an earlier paper [10]. The primary
aim of this paper is to give an introduction to the spin-
network basis and to its use in nonperturbative quantum
gravity. We emphasize the details of its construction, at
a level of detail and rigor that we hope will be useful
for practical calculations in quantum gravity. No claims
are made of mathematical rigor; for that we point the
reader to the recent works by Baez [28] and Thiemann
[27], where the spin-network basis is put in a rigorous
mathematical context. Finally, we note that in this pa-
per we work with SL(2,C) [or SU(2)] spinors, which are
relevant for the application to quantum gravity, but a
spin-network basis such as the one we describe exists for
all compact gauge groups [28].

This paper is organized as follows. In the next sec-
tion we briefly explain the two problems that motivate
the use of the spin-network basis. This leads to Sec. III,
in which we provide the definition of spin-network states
in the loop representation. In Sec. IV, we describe the
spin-network states as they appear in the connection rep-
resentation [29]. The proof that the spin-network states
do form a basis of independent states may then be given
in Sec. V. Following this, in Sec. VI, we review the gen-
eral structure of the transformation theory (in the sense

of Dirac) between the loop representation and the con-
nection representation. The use of the spin-network basis
considerably simplifies the transformation theory, as we
show here. Similarly, old results on the existence of so-
lutions to the Hamiltonian constraint and exact physical
states of quantum gravity may be expressed in a simpler
way in terms of the spin-network basis. Its use makes it
unnecessary to explicitly compute the extensions of char-
acteristic states of nonintersecting knots to intersecting
loops, as describedi in [2,26].

Finally, an important side result of the analysis above
is that it indicates how to modify the graphical calculus
in loop space in order to get rid of the annoying nonlo-
cality due to the dependence on global rooting. The new
notation that allows a fully local calculus is defined in
Sec. VII. The paper closes with a brief summary of the
results in Sec. VIII, and with a short appendix in which
we discuss the details of the construction of higher than
trivalent vertices.

II. DEFINITION OF THE PROBLEM

The loop representation is defined by the choice of a
basis of bra states (n1 on the state space of the quantum
field theory. These states are labeled by loops o.. By
a loop, we mean here a set of a finite number of single
loops; by a single loop, we mean a piecewise smooth map
from the circle S into the space manifold. The loop basis
is characterized (defined) by the action on the basis of a
complete algebra of observables [2]. A quantum state 1@)
is represented in this basis by the loop space function

&(n) = (nlrb)

For detailed introductions and notation we refer to
[26,29,30]. As shown in [1,2], the functions @(n) that
represent states of the system must satisfy a set of linear
relations, which we denote as the Mandelstam relations.
These code, among other things, the structure group of
the Ashtekar's connection [31] A of the classical theory.
Let U (A) = exp(j A) be the parallel propagator ma-
trix, or holonomy, of the connection A along the curve o. ,
and let T[A, n] = TrU (A) be its trace. Then the Man-
delstam relations are defined, for the present purposes,
as follows [13]. For every set of loops ni, . . . , n~ and
complex numbers ci, . . . , cN such that

) ci,T[A, ng] = 0

These characteristic states were previously defined to be
equal to one on the knot class of a nonintersecting loop, zero
on all other nonintersecting loops, with an extension to the
classes of intersecting loops de6ned by solving the Mandel-
stam identities [2,26]. Now they may be succinctly described
as being equal to one on one element of the spin-network basis
and zero on all the others.
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holds for all (smooth) connections A, the states @(n)
must satisfy

):cA:4(na) = o.

It follows that the states of the bra basis (nl are not
independent (as linear functionals on the ket state space),
but satisfy the identities

(4)

The basis (nl is therefore overcomplete. Let us from now
on concentrate on the SL(2,C) case. There are two cases
of the relation (4) that are particularly interesting. The
first one yields the spinor identity, or proper SL(2,C)
Mandelstam identity: Given any two SL(2,C) matrices
A and B, the following holds between the traces we can
construct in terms of them:

Tr(A) Tr(B) —Tr(AB) —Tr(AB ) = 0.

Let n and P be two loops that intersect in a point p. Let
n . P and n . P be the two loops that are obtained by
starting at p, going around n and then around either P
or P i, so that U .p = U Up and U .p-. ——U (Up)
Then (5) implies that, for every A,

(1o)

The problem that we consider in this paper is to find a
basis of states (sl that are fully independent, so that no
linear combination of them can be set to zero using the
identities (4). Such a basis will be defined in Sec. III,
and the proof of independence given in Sec. V. The rest
of this section describes the motivations underlying the
definitions in Sec. III.

A. The sign difticulty

There is a natural strategy for getting rid of the re-
dundancy expressed in Eq. (10), which we are now going
to describe. This strategy, however, is obstructed by a
sign difBculty, which previously prevented its complete
implementation. The natural strategy is to get rid of the
degeneracy by antisymmetrizing all lines running parallel
to each other. For instance, out of the tree loop states
involved in relation (9), we may pick the two independent
states

T[A, a u P] —T[A, n . P] —T[A, a P i] = 0.

Therefore, we have

(aupl —(a pl —(n p 'I = o.

(6)

The second example which is easily seen deriving from
(4) is the retracing identity

(8)

where p is an open segment with an end point on the loop
a (a "tail" ). In earlier work [2] it has been assumed that
all identities (4) can be derived &om the two relations
(7) and (8). We are not aware of any complete proof, or
of a counterexample of this conjecture.

The redundancy introduced in the loop representation
by the Mandelstam identities is cumbersome. It is not
the spinor identity by itself, nor the retracing identity
by itself that create many complications, since the erst
could be solved by simply choosing a list of independent
intersections, and the second by discarding all loops with
"tails" &om the theory. It is the combination of the two
relations which makes it difBcult to isolate a set of inde-
pendent loop functionals. To see this, consider two loops
n and P that do not intersect. At first sight, one would
say that these are not affected by the spinor relation, but
they are. To see how, consider an open segment p with
one end on n and one end on P. Combining (7) and (8)
we have

(a u Pl —(a q P ~-'I —(a q . P-' . ~ —1l = o, (9)

so that even a nonintersecting multiple loop state enters
the Mandelstam identities. Equation (9) can be repre-
sented graphically as

IVX

where we have indicated antisymmetrization by a wiggly
line. Since the symmetric combination (a . p P . p I

+
(n . p . P . p —1

I
is equal to (a u Pl by Eq. (9), the

two states above exhaust all possible independent loop
states that can be constructed out of three original states.
This procedure should be combined with some suitable
restriction to the independent intersections.

Let us introduce some terminology. We denote a set
of loop segments that fully overlap as a "rope, " and we
call the number of loops that form it, without regard to
orientation, the "order of the rope. " Thus p and p
form a rope of order 2 in the second and third states in
(ii) above. Given an intersection point p of the loop (a
point on the support of the loop where this support fails
to be a submanifold of Z), we denote the number of ropes
that emerge from p as the order of the intersection; and
we say that a loop is n valent if it has intersections of
order at most n. To begin with, we shall only consider
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trivalent loops. For instance, in the example above the
intersection between o. and p in the loop n . p P . p
is trivalent because p and p form a single set of over-
lapping loop segments (a single rope) emerging from the
intersection. We will deal with nontrivalent intersections
in the Appendix.

We may hope to reduce the degeneracy by replac-
ing every overlapping segment with a suitable antisym-
metrized combination, plus "tails" that can be got rid
of by means of the retracing identity. In the example
considered above, for instance, we can reduce the state
(a p P . p ~

to a linear combination of the two states
defined in (11)

= 0

(15)

If we want to pick two independent linear combinations,
we have to choose the symmetric combination (a~ + (ni .

U ai p~, and not the antisymmetric one as before
Namely, we have to choose

, (c~

= 1/2 { )+ 1/2{ ii) C 3 =(c

=1/2~~- + 1/

= 1/2 + 1/2

Thus, to pick the independent combination of loop states,
we have to antisymmetrize the rope in one case, but we
have to symmetrize it in the other case. In general, the
choice between symmetrization and antisymmetrization
can only be worked out by writing out explicitly the full
pattern of rootings in the multiple loop. In other words,
Eq. (13) is in general wrong if taken as a calculation rule
that can be used in dealing with any loop state. More
precisely, at every intersection, the spinor identity pro-
vides a linear relation between the three multiple loops
obtained by replacing the intersection with the three pos-
sible rootings through the loop

So we may hope that any time we have two parallel lines,
we could use the spinor identity as follows: )

(17)

= 1/2{ + 1/2 (

I= 1/2 ~ + 1/2

= 1/2~~~ + 1/2

but the sign in &ont of each term depends on the global
routing of the loops.

There is a simple way out of this diKculty, which does
allow us to get rid of the spinor identities among trivalent
loops simply by antisymmetrization. In order to deter-
mine the correct signs of the various terms in Eq. (17),
we have to take the global routing into account. There
are only three possibilities:

= 0

Unfortunately, this does not work. To understand why,
consider a loop o. and an open segment p that starts and
ends in two different points of o.. Denote by n~ and
o.2 the two segments in which the two intersections with
p partition o.. Then we have, due to the spinor and
retracing identities,

00-GO- CD
"

(~~ —(».& 'u~, .&~+(».&. n, .
~~ =o, (14)

namely (18)
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The signs derive immediately from Eq. (7). Now, the
way out of the sign difBculty is provided by the following
observation. If we multiply each term p of the linear
combinations in Eq. (18) by the sign factor

where n(p) is the number of single loops in the term p,
we obtain the relations

=e

'00 "00"'X='

ropes. It follows immediately from (21) that they satisfy
two relations: (i) their sum is even; (ii) none is larger
than the sum of the other two; and that these two con-
ditions on p, q, and r are sufBcient for the the existence
of a, b, and c. We conclude that our states are labeled
by oriented trivalent graphs, with integers p~ associated
to each link I, such that at every node the relations (i)
and (ii) are satisfied. By definitions, these are Penrose s
spin networks [16]. Thus, a linear combination of triva-
lent loops with the same support, in which every rope
is fully antisymmetrized is uniquely determined by an
embedded, oriented, trivalent spin network. We shall de-
note these fully antisymmetrized states as spin-network
states. From the discussion we have just had we can see
that they comprise an independent basis.

Using the above discussion as motivation, in the next
section we provide a complete definition of spin networks
and spin-network quantum states.

L
= 0

III. SPIN-NETWORK STATES
IN THE LOOP REPRESENTATION

p=c+a, q=a+b, r =b+e.
The three numbers a, b, and c are arbitrary positive in-
tegers, but not so the orders p, q, and r of the adjacent

Thus, if we multiply all terms by (—1) !~!, we can
use the algebra of Eq. (13), and therefore reduce ev-

ery overlapping loop to fully antisymmetrized terms plus
terms where two overlapping loops disappear by means
of the retracing identity. In other words, the independent
states must be constructed by fully antisymmetrizing the
segments along the ropes and multiplying the resulting
terms by (—1)"!r!.

Let us study the set of states determined in this way. It
is easy to convince oneself that if the three ropes adjacent
to a trivalent node are completely symmetrized, then the
rootings of the single-loop segments through the intersec-
tion are uniquely determined. It follows that the (triva-
lent) states that we have obtained by antisymmetrizing
the ropes are fully determined solely by their support, the
order of each rope and an overall sign. Equivalently, they
are determined by a trivalent graph (the support), with
integers assigned to each link (the order of the rope), plus
an orientation of the graph. Furthermore, the orders of
the three ropes adjacent to a given node are constrained
to satisfy some relations among themselves. First, we can
assume that no loop through the node can go back to the
rope it comes from (otherwise we can retrace it away).
Thus there are three sets of loops that run through a
trivalent intersection: the ones rooted &om the first to
the second rope (let us say we have u of them), the ones
rooted from the second to the third rope (6 of them),
and the ones rooted from the third to the first rope (c of
them). It follows that the order of the three ropes are,
respectively,

In this section we define the spin-network states and
their corresponding difI'eomorphism invariant knot states.
As defined by Penrose, a spin network is a trivalent graph
I' in which the links l are labeled by positive integers p~,
denoted "the color of the link, " such that the sum of
the colors of three links adjacent to a node is even and
none of them is larger than the sum of the other two. To
each spin network we may associate an orientation, +I
or —1, determined by assigning a cyclic ordering to the
three lines emerging from each node. In particular, an
orientation is determined by a planar representation of
the graph (by the clockwise ordering of the lines), and
gets reversed by redrawing one of the intersections with
two lines emerging in inverted order. Here we consider
embedded, oriented, spin networks, and we denote such
objects by the capitalized latin letters S, T, B, . . . . An
embedded spin network is a spin network plus an im-
mersion of its graph in the three-dimensional manifold
Z. Later, in discussing the solution of the difFeomor-
phism constraint, we will consider equivalence classes of
these spin networks under diÃeomorphisms; these will be
called "8 knots" and indicated by lower case latin letters
8) t) Py ~ ~ ~ ~

Given a trivalent embedded oriented spin network
(from now on, just spin network) 8, we can construct a
quantum state of the loop representation as follows. First
we replace every link l of the spin network by a rope of
degree p, where p is the color of the link l. Then, at ev-
ery intersection we join the segments that form the rope
pairwise, in such a way that each segment is joined with
one of the segments of a difFerent rope. As illustrated in
the previous section, the constraints on the coloring turn
out to be precisely the necessary and sufBcient conditions
for the matching to be possible. The matching produces
a (multiple) loop, which we denote as pis. Then, we con-
sider the M = g& pi! loops p, m = 1, . . . , M that can
be obtained from pz by permutations of the loops along
each rope. (Each rope of color pr produces pi! terms. )
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We assign to each of these loops a sign factor (—1)'l™l
which is positive (negative) for even (odd) permutations
of the loops in pi. [Equivalently, one can identify c(m)
with the number of crossings along ropes, in a planar
representation of the loops. ] Finally we define the state

D ~

2

u

(Sl —= ).(—1)' '(—1)"' 'O'I (22)
(25)

[here and in the following we write n(ps) as n(m) for
short; we recall that n(p) is the number of single loops
forming the multiple loop p]. We denote the state (S~ de-
fined by Eq. (22) as a spin-network state, or the quantum
state associated with the spin network S.

Notice that, up to the overall sign, the linear combi-
nation that defines (S] is independent of the particular
routing through the intersections chosen in constructing
pz, because every other routing is produced by the per-
mutations. The overall sign is fixed by the orientation of
the spin network. For concreteness, let us assign an ori-
entation to the spin network by projecting it on a plane,
and assign. (—1)'~ l = 1 to the (unique) loop pi among
the p that can be drawn without crossing the segments
[c(1) = 0] along the ropes and in the nodes. We will
show in Sec. IV that the states (S~ we have dered form
a basis of independent states for the trivalent quantum
states.

We represent spin-network states simply by drawing
their graphs and labeling the edges with the correspond-
ing colors, and, if necessary, with the name of the loop
or segment they correspond to. As an example, and in
order to illustrate how the signs are taken into account
by the above definitions, consider the spin network

(23)

This is expanded in loops as

(24)

because for the erst loop we have c = 0, n = 1 and for the
second we have c = 1, n = 1; therefore the spin network
represents the state

On the other hand, the spin network

(26)

is expanded in loops as

(27)

because we have c = 0, n = 2 for the first loop and
c = 1, n = 1 for the second; therefore the spin network
represents the state

= (o.i *p 'un2 *p] + (ni *p * o.2 * p].

(2S)
Notice the plus sign, contrary to the minus sign of the
previous example.

The construction above can be easily extended to loops
with intersections of valence higher than 3. This is done
by means of a simple generalization of the spin networks,
obtained by considering nontrivalent graphs colored on
the vertices as well as on the links. Or, equivalently, by
trivalent spin networks in which sets of nodes are located
in the same spatial point. This is worked out in detail in
the Appendix.

Now, since the spin-network states (S~ span the loop
state space, it follows that any ket state ~g) is uniquely
determined by the values of the (S~ functionals on it.
Namely, it is uniquely determined by the quantities

&(S):=(Sl@). (29)
Furthermore, since, as we shall prove later, the bra states
(S~ are linearly independent, any assignment of quanti-
ties vP(S) corresponds to some ket ]@). Therefore, quan-
tum states in the loop representation can be represented
by spin-network functionals ajar(S). By doing so, we can
forget the difhculties due to the Mandelstam identities,
which the loop states @(a) must satisfy.

In particular, we can consider spin-network character-
istic states @z (S), defined by @~(S)= hT s. We will later
see that the Ashtekar-Lewandowski measure induces a
scalar product in the loop representation under which
the spin-network states are orthonormal; then we can
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identify the characteristic states as the Hilbert duals of
the spin-network bra states. On the other hand, this
identiGcation depends on the scalar product, and thus in
general one should not confuse the spin-network charac-
teristic states (kets) with the spin-network states (bras).

It is easy to see that the calculations of the action of
the Hamiltonian constraint C presented in [2] imply im-
mediately that if @(S) vanishes on all spin networks S
which are not regular (formed by smooth and non-self-
intersecting loops), then C@(S) = 0. Notice that this fol-
lows &om the combination of two results: the Grst is that
(S]C = 0 for all regular S; the second is that Cvj(S) = 0
if S is not regular; both these results are discussed in [2].
Thus, states Q(S) with support on regular spin networks
solve the Hamiltonian constraint, and, at the same time,
satisfy the Mandelstam identities. Indeed, they are pre-
cisely the extensions of the loop states with support on
regular loops defined implicitly in [2] and discussed in de-
tail in [26]. The spin-network basis allows these solutions
to be exhibited in a much more direct form.

The same conclusion may be reached using the form of
the Hamiltonian constraint described in [7], in which we
consider the classically equivalent form of the constraint

f& fg C, wh—ere f are smooth functions on Z.

Notice that in general a knot state ]K) does not sat-
isfy the Mandelstam relations. Diffeomorphism invari-
ant loop functionals representing physical states should
be constructed by suitable linear combination of the el-
eznentary knot states ]K). The spin-network construc-
tion provides a way to circumvent this diKculty. Indeed,
the 8-knot states form a complete set of solutions of the
diffeomorphism constraint; and the s-knot states corre-
sponding to regular spin networks are solutions of all the
constraints combined.

The space of the trivalent s knots is numerable, for
the same reason for which the set of the knots without
intersections is numerable. However, we recall that dif-
feomorphism classes of graphs with intersections of order
higher than 5 are continuous. To construct a separable
basis for diffeomorphism invariant states including spin
networks of all valences, a separable basis must be se-
lected for functions on each of these moduli spaces. As
these spaces are Gnite dimensional, this can be accom-
plished. For a classiGcation of the resulting moduli spaces
of higher intersections, see [32].

This concludes the construction of the spin-network
states and of the s-knot states in the loop representa-
tion. To set the stage for the demonstration of their
independence, we Grst deGne the spin-network states in
the connection representation.

A. Diffeomorphism invariance and spin networks
in knot space

One of the main reasons of interest of the loop repre-
sentation of quantum gravity is the possibility of com-
puting explicitly with diffeomorphism invariant states.
These are given by the knot states. A knot K is an
equivalence class of loops under diffeomorphisms. We re-
call from [2] that a knot state, which we denote as Qlc, or
simply as ]K) in Dirac notation, is a state of the quan-
tum gravitational Geld with support on all the loops that
are in the equivalence class K:

) = ( = 0 o~ther~rrise'.

) = ( —:0 ottrerreiee. (31)

Clearly, the same idea works for the spin-network states.
Let us consider the equivalence classes of embedded ori-
ented spin networks under diffeomorphisms. Such equiv-
alence classes are entirely identiGed by the knotting prop-
erties of the embedded graph forming the spin network
and by its coloring. We call these equivalence classes
knotted spin networks, or 8 knots for short, and indicate
them with a lower case Latin letter as S, t, r. . . . An 8
knot 8 can therefore be thought of as an abstract topo-
logical object independent of a particular embedding in
space, in the same fashion as knots. Then, for every knot-
ted spin network s we can define a quantum state ]s) (a
ket) of the gravitational field by

IV. THE CONNECTION REPRESENTATION

We recall that in the connection representation one
may consider a loop state @,or ]o.), defined by the trace
of the holonomy of the Ashtekar SL(2,C) connection A
along 0!:

g (A) = (A]a) = T[A, cr] = Tr(U ). (32)

Consider a spin network S. We can mimic the construc-
tion of the loop representation, and deGne the quantum
state

gs(A) = (A]S)

) ( I )
c(m)+tt (m) T [A

s
] (33)

where, we recall, n is the number of single loops and c

Note that here we do not use the factor of 1i2 that has been
conventional since the work of Ashtekar and Isham [13], but
return to the original convention of [2]. This choice is sub-
stantially more convenient for the present formalism, because
otherwise we have to keep track of a factor of 1/2 for every
trace, and these factors come into the relations between the
spin networks and the loop states.
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counts the terms of the symmetrization. Let us analyze
this state in some detail. For every link l with color p~,
there are p parallel propagators U~(A) along the link /,
each one in the spin-& representation, that enter the def-
inition of @s(A). Let us indicate tensors indices explic-
itly; we introduce spinor indices A, B, . . . with value 0, 1.
The connection A has components AA, which form an
sl(2, C) matrix, and its parallel propagator along a link t
is a matrix U~~ in the SL(2,C) group. Since SL(2,C) is
the group of matrices with unit determinant, we have

connecting the open ends of the lines where the indices
are. We then have, for instance,

)up II&
II

a-i

detUl + 2&AB& UIc +ID (34)

where eAB is the totally antisymmetric two-dimensional
object defined by

016'01 = t' = l. Also

(39)

One can write @s(A) explicitly in terms of the paral-
lel propagators V~A, the objects eAB and e and the
Kroneker delta bA. Thus, any spin-network state can be
expressed by means of a certain tensor expression formed
by sl(2, C) tensors, e and h objects.

Penrose has described in [33] a graphical notation for
tensor expressions of this kind. This notation is going
to play a role in what follows, so we begin by recalling
its main ingredients. We indicate two-index tensors with
thick lines, with the indices at the open ends of the line,
respecting the distinction between upper indices, indi-
cated by lines pointing up and lower indices, correspond-
ing to lines pointing down. More precisely, we indicate
the matrix of the parallel propagator U g of an (open or
closed) curve o. as a vertical bold line as in

The most interesting relation is the identity

~A ~C' ~A ~C' —& &AC

which becomes

(4O)

(36) (42)

where the label n is understood unless needed for clarity;
we indicate the antisymmetric tensors as in

which is of course related to the loop representation
spinor identity. Because of this last relation, in the Pen-
rose diagram of any loop state we can use the graphical
relation

A B

AB A B (37)

l/2 + 1/2

(43)

and the Kroneker b as in

B. (38)

Finally, we indicate the sum over repeated indices by

where the bar indicates symmetrization, on any (true)
intersection or overlapping loop.

Now, consider a generic (multiple) loop state in the
connection representation; this is given as a product of
terms, each of which is the trace of a product of matrices.
We can represent these traces in terms of the correspond-
ing graphical tensor diagram, which will result as a set of
closed lines. We adopt the additional convention of draw-
ing lines that form a rope as nearby parallel lines, and
of reproducing the intersections of the original loops as
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intersections in the Penrose diagram (true intersections,
representing intersections of the loop states, should be
distinguished from accidental intersection forced by the
planar nature of the Penrose diagram). In this way ev-
ery multiple loop state is represented as a closed diagram.
Let us denote this diagram as G(n) (for graphical tensor
notation) .

Notice that the diagram G(o.) reproduces the topo-
logical features of the original loop o.; it can be naively
thought as a simple two-dimensional drawing of the loop
itself. But the correspondence is not immediate, as is
clear &om the fact that the sign relations above imply
that the same loop may correspond to either G(a) or to
—G(n) depending on the way the loop is drawn:

GABE UC = (U )Li (49)

representing the spin network is obtained by writing one
of the loop states, and consider all the permutations with
no sign factor, namely by considering all symmetriza
tions of the lines along each rope. The resulting linear
combination of graphical tensors gives directly the ten-
sor representing the spin-network state (up to an overall
sign that we can absorb in the orientation). Thus, we
can conclude that the antisymmetrization that defines
the spin-network states is in fact a symmetrization of the
SL(2,C) tensor indices. Let us now study what such a
symmetrization implies.

For every SL(2,C) tensor, we have &om (34) the well-
known relation

Consider a link /, and let UA be the parallel propagator
of A along l. Consider the product of two such propaga-
tors along the same link

(44) UA» = U ~U~D.

G( ) (
I)m(a)+c(a)+n(a) D( ) (45)

where m(n) is the number of minima in the diagram
D(n), c(n) is the number of crossings, and n(n) is, as be-
fore, the number of single-loop components of o.. This is
an important formula, since it allows one to translate rig-
orously between graphical relations of the loop pictures
and tensor relations of the corresponding holonomies. In
a sense, this formula renders explicit an intuition that
underlies the entire construction of the loop representa-
tion.

Let us work out the main consequence of this formula
in the spin-network context. The definition of the spin-
network states becomes, in tensor graphical notation,

G( ) =):(—1)' '(—1)"' '"G(~'). (46)

Therefore, expressing the right-hand side in D notation,
we have

or, simplifying the even exponents, noticing that the
number of minima does not depend on the permutations,
and absorbing an overall sign in the orientation

G(s) = ):D(~'). (48)

Thus we obtain the crucial conclusion that the tensor

In order to distinguish between the drawing of the loop
and the graphical tensor notation G(n) of the trace of
the corresponding holonomy, &om now on we denote the
drawing of the loop as D(o.). G(o.) cannot be imme-
diately identified with D(o.). However, the relation be-
tween the graphical tensor diagram G(n) of the tensor

(A) and the planar representation D(a) of the loop n
is not too dificult to work out. In fact, we have

This can be written as the sum of its symmetrized and
antisymmetrized components

'+ —,'UAa~

However, it is straightforward to show from the proper-
ties of two-component spinors that

(52)

so that we have the identity

UA U& 2 UA UU + 26AQ (53)

If we write this in graphical tensor notation we have
precisely Eq. (13). Following the same proce-
dure, it is easy to show that a product of matrices
Ugy 'Ugy A'. - U~„" can be decomposed in a sum of
terms, each one formed by totally symmetrized terms
Ug ~ 'Ug, ' - U~, "~ times a product of e matrices.

Of course what is going on here has a direct inter-
pretation in terms of SU(2) representation theory. Each
matrix U~ lives in the spin-2 representation of SU(2);
the product of n of these matrices lives in the nth ten-
sor power of the spin-& representation, and this tensor
product can be decomposed in the sum of irreducible
representations. The irreducible representations are sim-
ply obtained by symmetrizing on the spin-2 indices. The
reason we have reconstructed the details of the decompo-
sition is that this leads us to the precise relation between
the tensorial expression of the connection representation
states and the loop representation notation.

In fact, a fully antisymmetrized rope of degree p is
represented in matrix notation by a fully symmetrized
tensor product of p parallel propagators in the fundamen-
tal spin-& representation. Therefore a rope of degree p
corresponds in the connection representation to a prop-
agator in the spin-p/2 representation. The result that
every loop can be uniquely expanded in the spin-network
basis is equivalent to statements that the symmetrized
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products of the fundamental representation of SL(2,C)
give all irreducible representations.

&Ac+1B1 ' ' ' &ApB~ ) B +1C] Bqcz ) CP+1 A] B A

A. Nodes and Sj symbols: Explicit relations

The trivalent intersections between three ropes de6ne
an SL(2,C) invariant product of three irreducible repre-
sentations. Clearly the fact that there is a unique triva-
lent intersection in the loop representation is the reQec-
tion of the fact that there is a unique way of combining
three irreducible representations to get the singlet repre-
sentation, or, equivalently, that there is a unique decom-
position of the tensor product of two irreducible represen-
tations. In this subsection we make the relation between
the two formalisms explicit for the sake of completeness.

Consider a triple intersection with adjacent lines col-
ored p, q, and r. These correspond to the representations
with angular momenta t„=p/2, l~ = q/2, and l = r/2.
The restriction on p, q, and r that p + q + r is even and
none is larger than the sum of the other two corresponds
to the basic tensor algebra relations of the algebra of the
irreducible representations of SL(2,C), namely the angu-
lar momentum addition rules. In fact, the two conditions
are equivalent to the following familiar condition on t„
once (tz and Iq are fixed:

=
~&p

—t~~, ~&p
—

&~~ + 1, . . . , (&p + &~) —1, &p + &q. (54)

Now, let p, q, and r be fixed, and let us study the cor-
responding intersection in the connection representation.
This is given by a summation over the symmetrized in-
dices of the three products of parallel propagators. Let
us raise all the indices of the propagators adjacent to
the node. Let us denote by UB the spin-& propaga-
tor along the link colored p, and by VB and TVB the
propagators along the links colored q and r, where the
propagators are oriented towards the intersection, so that
the upstairs indices refer to the end on the intersection.
Since the other index of each matrix is not going to play
any role, we drop it, and write simply U V and TV

We must have at the intersection

KAz" A~, B1-"Bq,c&" C

+1B1 ' ~A B &B +1 C1 ' ' &Bqc&~C&+&Az ' ' ~B„A )

where the sum is over all the symmetrizations of the A,
B, and C indices. Now, notice that if we read the graphi-
cal representation of the tensor as representing the loops,
each of the terms in the sum corresponds precisely to the
rooting of a individual loops between the p and the q
links, and so on. Thus, we obtain precisely the spin-
network vertex. On the other hand, the relation between
the matrix KA, ...A B,...B, c, .. .c and the 3j symbols is
also clear. For every representation with spin /&, let us
introduce the index mp that takes the (2lp + 1) values

flap — Lp Lp And in the basis v „ in the repre-
sentation space related to the fully symmetrized tensor
product of 2t„spinors g~, . g~, we write

Urnp = W(A~
' ' ' PA~)am, (58)

Then we can write the vertex in this basis as

K

By uniqueness this must be proportional to the 3j sym-
bols of SU(2):

( lp tq t„
~(mmmp

(6o)

We have to symmetrize this in each of the three sets of
indices. We obtain p!q!r! terms, and it is not difBcult to
see that this sum is the only invariant tensor with the
required properties. Thus,

UA, - UAp VB, V Bq~c,

xW "KA~.. Ap B~.. Bq c~...c„., (55).

where KA, ...A B,...B C, ...C is an invariant tensor, sym-
metric in the first p entries, the middle q, and
the last r. Since the only invariant tensor is
KA, ...A B,...B C, ...C must be a sum of products of
eAB's. None of the eAB's can have both indices among
the first p indices of KA„".A„B,".B„c," C„, since ~AB is
antisymmetric and the erst p indices are symmetrized.
Similarly for the middle q and the last r. Thus we have
e~~'s with an A index and a B index (let us say we have
a of them) Eg~ s with a B index and a C index (6 of
them) s~~'s with a C index and an A index (c of them).
Clearly we must have a+ b = p, b+ c = q, and c+a+ r.
Thus KA, ...A B,...B C, ...C may contain a term of the
form

V. DEMONSTRATION
OF THE INDEPENDENCE

OF THE SPIN-NETWORK BASIS

We are finally in the position to prove the indepen-
dence of the spin-network states ~s). We will do this
in the connection representation. The independence of
these states is a linear property, and it should therefore
be possible to prove it using only the linear structure of
the space. However, it is much easier to construct a proof
using an (arbitrary) inner product structure on the state
space. Since linear independence is a linear property,
once we have proven independence using a specific inner
product, the result is independent of the inner product
used.

Ashtekar and Lewandowski [14] have recently studied
calculus on the space of connections, and have defined a
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measure dpAL(A) on (a suitable extension of) the space
of connections, or, equivalently, a generalized measure on
the space of connections [28]. Loop states and their prod-
ucts are all measurable in this measure (in fact, the mea-
sure is defined using the technology of cylindrical mea-
sures, where the cylindrical functions are precisely the
loop states). Thus, the measure defines a quadratic form,
or a scalar product, on the linear span of the loop states,
which is finite as long as we consider only finite linear
combinations. For our purposes, the measure dpAL(A) is
convenient for several reasons. First, it is diKeomorphism
invariant. Second, it is under good control, so calcula-
tions with it are easy. Here, we will use the original
Ashtekar-Lewandowski measure defined for SU(2) con-
nections. The extension to SL(2,C) connections is dis-
cussed in [15]. In the present context, since loop states,
as functionals on SL(2,C) connections, are holomorphic
(functions of A and not A) they are determined by their
restriction on the SU(2) connections; thus, the SU(2)
measure that we employ defines a Hilbert space struc-
ture on these functionals, and this is all we need here. In
any case, we refer the reader to [15] for a more accurate
treatment of this point.

Let us thus consider functionals f (A) of the connection
of the form

f(A) = f(U, (A), . . . , U „(A)),

where f(gi, . . . , g„) is a function on the nth power of
SL(2,C), and thus in particular on the nth power of
SU(2). An example is provided by the loop states g (A).
The AL measure can be characterized as follows by

(&- &l )
= f dl «(&)4-(&)4l (&) (63)

Now, what we want to prove is that the spin-network
states Q, are linearly independent. Suppose that we can
prove that they are all orthogonal with respect to this
scalar product, namely

(@., q. ) g 0 (64)

for every 8, and

(@„g,l) = 0 for every s' g s. (65)

Then their linear independence follows, because if there
were a linear combination of spin-network states such
that

Pa —) Cm48~ l (66)

we would have, taking the scalar product of the above
equation with @, itself, a vanishing right-hand side and
a nonvanishing left-hand side. Thus, to prove indepen-
dence, we have to prove (64) and (65).

Let us consider a given spin network 8. We have, using
definitions,

(& & ) = f ~l «(&)& (&)4"(&). (67)

The spin-network state is a sum (over permutations m) of
products (over the single loops in the multiple loop p' )
of traces of products (over the single links l covered by
the loop n; ) of holonomies of A . Then

) ( 1)n(m)+c(m) (68)

where dH is the Haar measure on the nth power of
SU(2). The measure defines an inner product between
loop states via

Therefore, using the definition of the Ashtekar-
Lewandowski measure, we have

mt
ls ~ l

il
Tr g(l,', , ), (69)

where we have labeled as 1, . . . , I the links of the spin
network. Now we have to use properties of the SU(2)
Haar measure. The main properties we need are

d ()U()

(70)

See [35] for a detailed discussion.
Let us analyze the efFect of the integration graphically.

Pick a link l, and consider the corresponding group inte-
gration I d~(g(l)). Let the colors of this link be p and p'
for s and s'. Then the integration over g(l) is the integra-
tion over the product of 2p U's. The result is the product
of e~~'s described above. Notice, however, that only the
terms in which all the e~~'s have one index coming from
one of the spin networks and one index from the other can
survive, because the others vanish due to the symmetry
in the spin-network indices and the antisymmetry in the
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result of the integration. Therefore, in each of the links
involved in the integration there should be precisely the
same number of segments in 8 and 8'. This is sufFicient
to see that any two spin-network states corresponding to
diferent spin networks are orthogonal.

Let us now take 8 = 8'. Then, integrating the link l
gives a set of epsilons that connects the two copies of 8
one with the other. We obtain thus terms in which at
every end of l the two other adjacent links can simply
be retraced back, plus terms which will vanish upon the
next integration. Thus the two copies of 8 get completely
retraced back, leaving at the end just products of inte-
grations over the identity, each giving 1. Thus, we have
shown that all spin-network states are normalized. This
completes the proof for trivalent states. The extension to
higher valence intersections is siinple; see also [28]. We
may note that this result parallels the discussion of the
independence of the spin-network basis for Hamiltonian
lattice gauge theory, given, for example, in Furmanski
and Kowala [19]. Given that the Ashtekar-Lewandwoski
measure is built &om the projective limit of inner prod-
ucts for lattice gauge theories, for all analytic embeddings
of lattices in Z, it is not surprising that the result extends
&om lattice gauge theory to this case.

VI. RELATIONSHIP
BETWEEN THE CONNECTION

AND THE LOOP REPRESENTATION

By definition of the loop representation [2], these bra
states (g l

in 'R, are to be identified precisely with the
loop states (nl:

(73)

In other words, the loop representation state @(n) is the
state that is represented in the dual connection represen-
tation 'R by the measure dp, where

g(n) = dp, (A)T[A, n]. (74)

(dphil@') = (& @').

This construction depends only on the linear structure
of the quantum theory, namely it does not depend on a
specific scalar product (,) which may or may not be de-
fined on the state space. In the absence of a scalar prod-
uct there is no canonical map between ket space and bra
space, and therefore no canonical association of a dual
state (a measure) dp, (A) to a given connection represen-
tation state @(A); nor, equivalently, there is any canon-
ical mapping between the connection representation 'R

and loop representation Z,~.

If a scalar product is given, then we can map connec-
tion representation states into loop representation states,
because, given a connection representation functional
g(A), there is a unique dual state d)My(A) such that, for
every y',

(4l&v) = (&v~0) = j&v(&)4'[&) (71)

In particular, each loop state l@ ), which is defined in
the connection representation VZ, by (Alp ) = T[A, n],
determines a dual state (g l

in 'R„via

(@-ld» = (dpi&-) = dp(A)T[» nl (72)

In this section we review the relation between the loop
representation R~ and the connection representation 'R,
which was introduced in [2]. This relation is simpler in
the light of the spin-network basis. To see this, we may
recall &om [2] that there exists a third relevant represen-
tation. This is the representation R dual to the con-
nection representation. The (ket) states in 'R, are, by
definition, the bra states of the connection representa-
tion, namely they are linear functionals on the space of
functionals @(A). Equivalently, we may think of these
states as measures on the space of the connections. We
denote the states in R, by ldp). The operators defined
in 'R are immediately de6ned also in R by their dual
action.

In the absence of an inner product there is no canonical
map between the state space of R and the state space
of R, . On the other hand, however, the representation
'R is directly related to the loop representation 'R~. In
fact, by double duality, any functional of the connection
@(A) defines a linear map on the state space of 7Z„via

And the loop state vP(n) corresponding to the connection
representation state g(A) is then given by

@(n) = (&-ldp~). (76)

In particular, a scalar product in the connection repre-
sentation can be assigned by fixing a measure dp, (A) on
the space of connections, so that

(& @') = dp(A)@(A)&'(A). (77)

Then, the induced map between the connection represen-
tation and. the loop representation is the known expres-
sion for the loop transform

g(n) = dp(A)T(A, n)@'(A). (78)

To implement this relation explicitly we must use a
measure dp(A) which respects the invariances of the
theory. Nontrivial gauge-invariant and difFeomorphism-
invariant (generalized) measures on the space of con-
nection have recently been constructed [14], and the
Ashtekar-Lewandowski measure we used above is the sim-
plest of these. The existence of this measure allows us
to establish a definite linear map between the connection
and the loop representation. Let us do so, and study its
consequences. We will discuss elsewhere the extent to
which we can take the resulting scalar product, and thus
the resulting identification of the two representations, as
the "physically" correct one.
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For every ket state @(A) in the connection repre-
sentation, the Ashtekar-Lewandowski scalar product as-
sociates to it the bra state (or measure) dye(A)
dpAi, (A)vP(A). Let us consider a spin-network state
@,(A). The corresponding bra state is dp, (A)
dpAi, (A)@,(A). By the property of the spin-network
states under the Ashtekar-Lewandowski integration, we
have then the remarkable result

(&., &") = (du'I&. ) = ~- .

The loop representation state bra state (sI corresponding
to @, is defined solely in terms of the linear properties
of the representation. The loop representation ket state
Is), on the other hand, is defined by

@.(~) =j&y. (&)&(&,~(, (80)

and it follows immediately that it is the adjoint of (sI.
Thus, the Ashtekar-Lewandowski inner product becomes
in the loop representation

(sl") = ~- (s1)

VXI. PENROSE DIAGRAM NOTATION

a remarkable result indeed. In other words the spin-
network basis is orthogonal with respect to this inner
product. It is important to notice that these results do
not hold for the loop states themselves, for which inner
products of the form (nIn') = () are inconsistent with
the Mandelstam relations.

g ( ) (
I)n(ca)+c(tx)+en(~)+ 1D ( ) (s4)

We recall that c(a) and m(n) are the number of cross-
ings and the number of minima in D(a). Notice that the
SP notation is not "topological, " in the sense that the
way the loop o, is drawn matters for the determination
of the sign: adding a minimum and a maximum is equiv-
alent to changing the sign of the state. Notice that the
permutations of the loops along a rope change the num-
ber of crossings; therefore the antisymmetrization in the
P notation corresponds to a symmetrization in SP nota-
tion (hence the name). While it is more cumbersome for
calculation, the significance of the SP notation is that
it has an immediate interpretation in terms of Penrose
graphical tensor calculus, which we defined earlier in the
connection representation. Indeed, we have immediately
that

Therefore Eq. (13) holds rigorously within this nota-
tion. Thus one can solve the spinor identity (on trivalent
states) by restricting to the states in which every rope
is (in P notation) fully antisymmetrized. It is important
to note that the P notation is completely topological, in
that a diagram corresponds to the sa~e loop state no
matter how it is oriented or drawn. This is a great ad-
vantage in calculations.

For completeness we mention that a variant of the P
notation has been used in some published work [10]. The
variant, which we may denote symmetric Penrose nota-
tion, corresponds to what Penrose called the spinor cal-
culus, as opposed to binor calculus. In this notation,
which we will refer to as SP notation, the diagram that
corresponds to a loop a will be labeled S(a). It is defined
by

Our final task in this paper is to exploit the results
we have described to introduce a notation for the loop
states, which simplifies the graphical calculus in the loop
representation. We recall that we indicate as D(n) the
pictorial representation of the loop n. We are now going
to define a notation for the loop states, which we denote
as the Penrose notation, or P notation. (This was also
called the binor formalism by Penrose. ) This is done as
follows. In P notation a loop state In) is also represented
by a certain pictorial representation of the loop itself,
which, to distinguish it, we will call P(n). However, the
representation takes into account the sign factor that we
discussed in previous sections. The P notation P(a) of
a loop state In) is defined by

P(a) = (—1)"( )+ D(n), (s2)

where n(n), we recall, indicates the number of single
loops, or components, of the multiple loop o.. The im-
portant aspect of the P notation is that with these con-
ventions the spinor identity is now local. In fact it now
reads as

sp(a) = G(n). (s5)

Finally, we mention the fact that the P notation can
be obtained &om the graphical tensor notation by adding
the imaginary unit to each e, and adding a minus one for
every crossing.

A. Loop operators in Penrose notation

(PI& [~1(s) = & [P ~(s)1((~ PI —(~ P 'I), (86)

(pI&'[~](s t) = & [p ~(s)]&'[»~(t)]

).(—1)""(( .. P)'I. (s7)

A most valuable aspect of the Penrose diagram no-
tation we have introduced is the simplification it allows
in the calculus with the loop operators. In this section
we describe the action of the loop operators on the loop
states expressed in Penrose notation.

We recall [2] that in terms of the standard loop nota-
tion the action of the loop operators T and T is given
by

(83) The distributional factor E [P, a(s)] (which does not
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play any role in the diagrammatics) is defined in [2]. The
geometrical part of the action of these operators can be
coded in the "grasping" action shown in

To notate the action of the operator we may then intro-
duce the fundamental "grasping" rule

.
( 2

However, as is well known by anybody who attempted to
perform complex computations with these operators, the
local graphical action expressed in Eq. (88) does not suf-
fice to compute the correct linear combination appearing
on the right-hand side (RHS) of Eq. (87). The diffi-
culty is given by the signs in &ont of the various terms.
These signs are dictated by the global rooting proper-
ties of the loop that are being grasped. In particular the
sign is determined in (87) by r(i), which is defined [2]
as the number of segments that have to be reversed in
order to obtain a consistent orientation of the loop after
the rerooting. While complete, this way of determining
the sign is cumbersome, and in computing the action of
operators as the area, the Hamiltonian, or the volume,
the determination of the signs is the hardest part of the
calculation. This diKculty disappears using the Penrose
diagram notation.

Let us begin by considering the action of T on a loop
state:

By using this rule we have immediately the correct ac-
tion, represented as

(94)

eb
], » &z~l

The good news is that this generalizes immediately
to the higher-order loop operators. For example, let us
represent the T loop operator as

(89)
Then we can use the fundamental grasping rule above to
compute the action of T on a generic state. We obtain

l,' h
)lls

)

II
l

II o

Il~

To compute this we express the RHS of (86) in Penrose
notation. The result is

Iphb
~l

)l

Notice the plus sign, due to the change of sign

3
( S

(92)

This suggests that we indicate the operator T [o.](s) by

(96)

By expanding the diagrams, and taking into account the
sign rules, it is straightforward to show that the RHS of
this diagram represents the correct linear combination of
loop states, corresponding to the RHS of Eq. (87). This
result generalizes to higher-order T operators. Thus,
by using the Penrose notation the grasping rule of Eq.
(93) encodes automatically the pattern of the signs in
the action of the T operators.

These simplifications extend to all the higher T oper-
ators. For example, in [10] we showed how this notation
simplifies the computation of the action of the volume op-
erator which is defined in terms of a T operator. This
made much simpler the work of solving the correspond-
ing spectral problem, leading to the computation of the
eigenstates and eigenvalues of the operator that corre-
sponds to the volume of an arbitrary region of space.
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VIII. CONCLUSION

We have defined a basis of independent states in the
loop and in the connection representations of quantum
gravity which solves the Mandelstam identities. This ba-
sis is labeled by a generalization of Penrose spin net-
works. It is orthonormal in the scalar product defined
by the Ashtekar-Lewandowski measure, and provides a
simple relation between the connection and the loop rep-
resentation. We have introduced a notation for the loop
states of quantum gravity based on Penrose's graphical
tensor notation. In this notation, the action of the loop
operators becomes local, and can be expressed in terms
of the simple graphical rule given in Eq. (93).

An intriguing suggestion on the possibility of modi-
fying the &amework we have presented in this paper
follows &om the following observation. Because of the
short-scale discreteness of the geometry [10], the only re-
maining divergences in nonperturbative quantum gravity
must be in&ared divergences, analogous to the spikes, or
the uncontrolled proliferation of "baby universes" seen
in nonperturbative numerical calculations employing dy-
namical triangulations [36] in both two and four dimen-
sions. In the present context, a source of such diver-
gences may be the sum over the colorings of the spin
networks, which label the representations of SU(2). This
suggests that a natural invariant regularization of the
theory could be provided by replacing SU(2) with the
quantum group SL(2)~. Such a strategy has been suc-
cessfully implemented in three dimensions by Turaev and
Viro [21], and there have been attempts to extend it to
four-dimensional diffeomorphism-invariant theories [23].
The use of q-deformed spin networks in the loop repre-
sentation of quantum gravity is presently under investi-
gation [37]. Furthermore, spin networks may make it pos-
sible to de6ne quantum gravity on manifolds with a finite
boundary [38], and to use the methods of topological field
theory to describe the structure of the physical quantum
gravity state space in the presence of boundaries. In this
context, the level q of SL(2)~ turns out to be related to
the inverse of the cosmological constant [38]. These inves-
tigations reinforce the conjecture that the q deformation
could play the role of in&ared regulator. The possible
relevance of q deformations of the gauge group SU(2)L,
in quantum gravity is also suggested by the important
role quantum groups play in knot theory [39], as well as
by the possibility of quantum-gravity-induced, quantum-
group deformations of the space symmetries [40].

Finally, we remark that the existence of a spin-network
basis for the space of diffeomorphism invariant states of
the quantum gravitational field, as well as the impor-
tant role they seem to play in both practical calculations
[10—12,38] and mathematical developments [28,15,27]
may be seen as vindicating the picture of a discrete, com-
binatorial description of spacetime geometry, as well as
the reasoning that led Penrose to their original construc-
tion [16].
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APPENDIX

In this appendix we extend the definition of spin-
network states to intersections of any order. The compli-
cation introduced by higher-order intersections is the fact
that the order of the ropes entering the intersection does
not determine the routing uniquely. For instance, in the
simplest possible fourth-order intersection, with all four
ropes of order 1, we have three possible rootings:

(A1)

out of which two are independent, due to the spinor iden-
tity. Nevertheless, with a small amount of additional
technical machinery, it is possible to extend the spin-
network basis to include arbitrary intersections. This
is because given the order n of an intersection i, and
given the coloring p~, . . . , p of the n ropes adjacent to i,
there is only a Gnite number of ways of rooting the loops
through the intersection, and therefore a (smaller) finite
number k(pi, . . . , p„) of independent rootings. For com-
pleteness, we put k(pi, . . . , p„)=0 if a consistent rooting
through the intersection does not exist for n ropes of or-
der pi, . . . ,p; this is for instance the case if P.p~ is odd.
In the particular case of trivalent intersections (n = 3)
we have k(pi, . . . , ps)=1 if the sum of three colors p~ is
even and none of the three is larger than the sum of the
other two, and k(pi, . . . , ps) =0 otherwise.

In order to extend the de6nition of spin-network states
to nontrivalent loops, it is suKcient to choose a unique
way of labeling the k(pi, . . . , p ) independent rootings
through an intersection i, by means of an integer v; =
1, . . . , k(pi, . . . , p ). Once this is done, we define a gen-
eralized spin network s as an oriented embedded graph
I', with positive integers, or colors, p~ and v; assigned
to each link l and to each of node i, satisfying the re-
lations v; & k(pi, . . . , p~), pi, . . . , p being the colors of
the links adjacent to the node i. The construction of the
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corresponding spin-network quantum states (s[ is then as
before.

The task of labeling independent spin networks can be
achieved as follows. For every n, we choose a unique
trivalent graph 1 (") with n &ee ends, and no closed loop;
for instance, we may choose

ropes. We obtain

(A2)

r
/

I
I
l
I
1

~ ~ ~

Such a graph will have n links adjacent to the free ends,
and (n —3) internal links, which we denote as "virtual"
links. For every n, and every set of colors p~, . . . , p
we consider the possible colorings qz, . . . , q~„q) of the
virtual links of I'(") which are compatible with the col-
orings pq, . . . , p of its external links (under the spin-
network vertex conditions). We obtain in this way a fam-

ily of colored trivalent spin networks I z"), . . . , I &(
with n external links colored pq, . . . , p . It is not difB-
cult to see that these are linear combinations of rootings
through the intersection which exhaust all possibilities,
up to the spinor identities and which are independent
&om each other. We label these intersections with the
integer vq ——1, . . . , k(pq, . . . , p ). If there is no way of
matching the coloring we put k(pq, . . . , p„) = 0.

Let us work out an example of fourth-order intersec-
tion:

(A4)

/
s I

l
I

=pc,
J S

(A5)

where we have used the spin-network notation. The co-
efficients c; depend on (and can be computed &om) the
original rootings in the fourth-order intersection. The in-
dex i ranges &om max(]p —q[, [r —s[) to min(p+ q, r + s).
Finally, once the pairing is chosen, it is clear that the
decomposition of Eq. (13) is always possible and unique,
and it reduces the spinor identities completely. Thus, we
have

In this way, the fourth-order intersection is "expanded"
into two trivalent intersections. Notice that in Eq. (A4)
the external ropes are symmetrized, while the internal
one is not. By using the spinor relations, we can then re-
place the diagram with a linear combination of diagrams
in which the internal rope too is symmetrized. Thus, we
can represent the intersection as

(A3)

We arbitrarily pair the four ropes; for instance, let us pair
the North and West ropes and the South and East ones,
and "expand" the intersection by introducting an addi-
tional ("virtual" ) rope between the joins of the paired

k(p, q, r, s) = max([p —q[, [r —s[)
—min(p+ q, r ~ s) (A6)

independent fourth-order intersections between ropes of
orders (p, q, r, s), and we have a simple way of ordering
them in terms of the color of the internal rope.
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