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Gravitational waves from the inspiral of a compact object into a massive,
axisymmetric body with arbitrary multipole moments

Fintan D. Ryan
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125

(Received 25 July 1995)

The gravitational waves, emitted by a compact object orbiting a much more massive central
body, depend on the central body's spacetime geometry. This paper is a first attempt to explore
that dependence. For simplicity, the central body is assumed to be stationary, axially symmetric
(but rotating), and reflection symmetric through an equatorial plane, so its (vacuum) spacetime
geometry is fully characterized by two families of scalar multipole moments M& and 8& with / = 0, 1,
2, 3, . . . , and it is assumed not to absorb any orbital energy (e.g. , via waves going down a horizon or
via tidal heating). Also for simplicity, the orbit is assumed to lie in the body s equatorial plane and to
be circular, except for a gradual shrinkage due to radiative energy loss. For this idealized situation,
it is shown that several features of the emitted waves carry, encoded within themselves, the values of
all the body's multipole moments M&, S& (and thus, also the details of its full spacetime geometry).
In particular, the body's moments are encoded in the time evolution of the waves' phase C'(t) (the
quantity that can be measured with extremely high accuracy by interferometric gravitational-wave
detectors); and they are also encoded in the gravitational-wave spectrum AE(f) (energy emitted per
unit logarithmic frequency interval). If the orbit is slightly elliptical, the moments are also encoded
in the evolution of its periastron precession frequency as a function of wave frequency, B~(f); if the
orbit is slightly inclined to the body's equatorial plane, then they are encoded in its inclinational
precession frequency as a function of wave frequency, 0 (f). Explicit algorithms are derived for
deducing the moments from AE(f), A~(f), and 0, (f). However, to deduce the moments explicitly
from the (more accurately measurable) phase evolution C'(t) will require a very difficult, explicit
analysis of the wave generation process —a task far beyond the scope of this paper.

PACS number(s): 04.25.Nx, 04.30.Db

~. INTRODUCTION

For some years, Thorne [I] has been arguing that
it should be possible to extract, &om the gravitational
waves produced by a small object spiraling into a mas-
sive black hole, a map of the massive hole's spacetime
geometry. This paper is a first attempt to develop the
mathematical foundations for such a map extraction. As
we shall see, the key to the map extraction is a theorem
(proved in this paper) that, at least in certain idealized
circumstances, the waves emitted by a small object spi-
raling into a massive body carry, encoded in themselves,
the values of all the body's multipole moments [2,3],
which characterize the vacuum spacetime geometry out-
side any stationary body (black hole or otherwise).

A separate paper by this author, Finn, and Thorne [4]
discusses semiquantitatively the implementation of this
paper's results in the analysis of future gravitational-
wave data. As is discussed there, the goals of such a
data analysis would be (i) to extract &om the observed
waves the values of the central body's lowest few mul-
tipole moments, (ii) to see whether those moments are
in accord with the black-hole "no-hair" theorem (which
states that the hole's spacetime geometry and thence all
its moments are fully determined by its mass and its
spin angular momentum), and (iii) via observed viola-
tions of the no-hair theorem, to search for unexpected
types of massive, compact bodies (e.g. , soliton stars and

naked singularities) into which are spiraling small objects
(white dwarfs, neutron stars, or small-mass black holes).

Such interesting observational studies can be carried
out with moderate precision by the Earth-based net-
work of laser-interferometer gravitational-wave detectors
[Laser Interferometer Gravitational Wave Observatory
(LIGO), VIRGO, GEO600, TAMA] [5], which is now
under construction and which can study central bodies
with masses up to 300Mo. Much higher precision will
be achieved by the Laser Interferometer Space Antenna
(LISA) [6], which is likely to Hy in 2014 or sooner and can
study central bodies with masses 3 x 10 to 3 x 10 Mo.
See Ref. [4] for details.

For this paper's first analysis of extracting the central
body's moments &om gravitational-wave data, we make
the following idealizing assumptions.

(i) The central body has a vacuum, external gravita-
tional field which is stationary, axisymmetric, reBection
symmetric across the equatorial plane, and asymptoti-
cally Hat. Correspondingly, the body's multipole mo-
ments turn out to be scalars: The spacetime geome-
try can be characterized by mass multipole moments
M~ and mass-current multipole moments S~ [3], and the
odd-M moments and even-S moments vanish, i.e., the
nonvanishing moments are the mass Mo = M, the mass
quadrupole moment M2, M4, M6, . . . , and the spin an-
gular momentum S~, the current octopole moment Sq,
S5) S7) 0 ~ ~ ~
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(ii) The inspiraling object is sufIiciently compact and
has a sufFiciently small mass that its orbit evolves slowly
and adiabatically from one geodesic orbit to another; and
on the time scale of one orbital period, the orbit can be
regarded as geodesic.

(iii) The geodesic orbits, through which the inspiral
evolves, lie in the equatorial plane, or very nearly so, and
are circular, or very nearly so. (For the M + 300M~
central bodies that can be studied by Earth-based inter-
ferometers, radiation reaction is likely, in fact, to have
circularized the orbit long ago; but for the M 10 Mo
central bodies studied by LISA, the orbit is likely to be
highly noncircular due to recent perturbations by other
orbiting objects [7]. This should be a warning that the
analysis of this paper is only a erst treatment of what
must ultimately be a much more complicated problem. )

(iv) The central body does not absorb any of the in-
spiraling object s orbital energy; i.e. , we can neglect any
energy that goes down the central body's horizon (if it
has a horizon), and we can neglect tidal heating. This
implies that all of the energy lost from the orbit gets
deposited into outgoing gravitational waves.

For a system that satisfies our idealizing circular-orbit
assumption (iii), the gravitational waves are emitted pri-
marily (but not solely) at twice the orbital frequency,
and correspondingly the dominant gravitational "spec-
tral line" is at the frequency

20
27r

where 0 is the orbital angular frequency.
As time passes, radiation reaction will cause the or-

bit to shrink gradually; and correspondingly, f will be
a slowly varying function of time t. There will also be
emissions at frequencies 2 f, 2 f, 2f, . . .

In this paper we shall focus on aspects of the waves
that can be computed without facing any serious com-
plications of the theory of wave emission. We avoid an-
alyzing wave emission in detail because, for a body with
arbitrary multipole moments, such an analysis will be
very complex. Fortunately, we can make considerable
progress by focusing almost solely on gravitational-wave
quantities that depend only on the properties of the cen-
tral body's circular geodesic orbits.

One such quantity is a gravitational-wave spectrum
AE(f), defined as follows: During a short interval of time
when the waves' principal frequency is evolving from f
to f + df, we take all the energy emitted into the princi-
pal spectral line, plus all being emitted into all the other
lines nf with n = 2, 2, 2, 2, . . . , and we add all that en-
ergy together to obtain a total emitted energy dE, . By
our idealizing assumption (iv), this is equal to the energy
lost from the orbit —dE as the orbital angular frequency
varies from 0 = 7rf to 0 + dA = ~(f + df). The quan-
tity AE( f) is the corresponding amount of gravitational-
wave energy per logarithmic interval of frequency:

AE=f '= —0
df dB

Two other gravitational-wave quantities that can be

computed without facing the complications of wave-
emission theory [as well as without requiring assump-
tion (iv) above] are the frequencies of wave modula-
tion that result from orbital precession. There are two
types of precession and corresponding two wave modula-
tions: (i) if the orbit is slightly elliptical, then the ellipse
can precess (a "precession of the orbit's periastron") at
some angular frequency O~ that depends in some way
on the orbital radius and thence on the waves' primary
frequency f; (ii) if the orbit is slightly inclined to the
central body's equator, then the orbital plane will pre-
cess at some angular frequency 0 that also depends on
f. These orbital precessions will modulate the emitted
waves at the angular frequencies O~(f) and A, (f).

In Sec. III of this paper we shall develop algorithms
for computing these three gravitational-wave quantities,
AE, O~, and O„as power series in f, or equivalently in
the dimensionless parameter

v = (~Mf)' = (MO) i

f' f&E(f)
df/dt dE„.„./dt

(4)

Here dE „,/dt is the gravitational-wave luminosity, or
equivalently the rate of loss of orbital energy, dE/dt. —

To compute dE „,/dt fully, even with our idealizing
assumptions, would require dealing with all the com-
plexities of wave-emission theory. Fortunately, however,

In the Newtonian limit, v is the orbiting object s linear
velocity.

In Sec. II [Eqs. (17)—(19)] we will write down the first
few terms of those power series. As is suggested by
the forms of those explicit series, our algorithms enable
us to express the power series' coeKcients entirely in
terms of the central body's multipole moments M~ and
Si. Moreover, if (via idealized measurements) we could
learn any one of the wave functions AE(f), B~(f), or
0, (f), then by expanding that function as a power series
in v = (7rM f) ~ and examining the numerical values of
the coefBcients, we would be able to read ofI' the values
of all the multipole moments M~, S~.

This result is not of great practical interest, because a
system of interferometers can achieve only a modest ac-
curacy in any attempt to measure the functions AE(f),
Bz (f), and 0, (f) (and also because of the idealizing as-
sumptions that have been made). Of greater practical
interest will be measurements of the time evolution C'(t)
of the waves' phase, since via the method of "matched
filters" this quantity can be measured with very high ac-
curacy ( 1/10 to 1/10 depending on the system
[4,8]). This phase evolution 4(t) actually contains contri-
butions from all the waves' spectral lines as well as from
precessional modulations. In discussing C'(t), we shall
assume, for simplicity, that the orbit is precisely circular
and equatorial so there are no precessions; and we shall
focus solely on the portion of 4(t) that is associated with
the primary frequency, @2(t) = 2vr jf dt = 2 f 0dt A.
knowledge of this primary phase evolution is equivalent
to a knowledge of the number of cycles LN that the pri-
mary waves spend in a logarithmic interval of frequency:
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we can compute the leading-order contribution of each
central-body multipole Mt or St to dE, /dt using fairly
elementary wave-generation considerations. We do so in
Sec. IV, and we then use Eq. (4) to deduce each multi-
pole's leading-order contribution to the power-series ex-
pansion of N(f) [Eq. (57) below]. Just as was the case
for our other three wave functions bE(f), O~(f), and
O, (f), each multipole appears first at a difFerent order
in the series: Mi at order v t (beyond where Mo ——M
enters at leading order), and St at vzt+i. This guarantees
that, from the power series expansion of the (accurately
measurable) phase evolution bN(f), one (in principle)
can read o6' the values of all the central-body multipole
moments. However, to produce a full algorithm for do-
ing so would require dealing with the full complexities of
wave-emission theory.

Our derivation and presentation of these results is or-
ganized as follows. In Sec. II we write down the space-
time metric for the central body; we derive equations de-
scribing the metric's nearly equatorial and nearly circu-
lar geodesic orbits, through which the inspiraling object
moves; we use those orbital equations to derive expres-
sions for our gravitational-wave functions LE, O~, and
0, [Eqs. (17)—(19)] in terms of the central body's metric;
and we state (with the proof to follow in Sec. III) the first
few terms of the expansions of these quantities in pow-
ers of v = (mMf)i~s with coefficients depending on the
central body's multipole moments. In Sec. III we brieHy
review key portions of the Ernst formalism for solving
the axisymmetric, vacuum Einstein Geld equations and
of the Geroch-Hansen multipole-moment formalism [2,3]
by which the resulting solutions can be expressed in terms
of multipole moments; and then we devise algorithms for
computing the power series expansions of LE, Oz, and
0 . The explicit power series of Sec. II are derived from
those algorithms. In Sec. IV we digress brieQy from the
main thread of the paper, to discuss an issue of principle
that can be delicate: how to deduce the mass M from
the power series expansion O, (v). Finally, in Sec. V, we
use elementary wave-generation arguments to compute
the leading-order contribution of each central-body mul-
tipole to the gravitational luminosity, and thence to the
waves' phase-evolution function bN(f)

(dP) ' (dpi ' (dzl '
+&~~ I d I +&~~ I ~ I

+g-
I dqd~ ( d'r ) (d~

The lack of t dependence in the metric implies that the
energy per mass p of the small object is a conserved quan-
tity. It has a value

E (dt & (dPb
p gd'r) (d'r j (7)

Similarly, the "z component" of angular momentum per
mass of the small object,

specifying these functions, it is more convenient to clas-
sify the metric by the Geroch-Hansen [2,3] multipole mo-
ments associated with it. Because of the axisymmetry,
specifying the 2l+ 1 independent components of the l-th
tensor multipole moment is equivalent to specifying the
scalar multipole moment formed by the product of the
tensor moment with l symmetry axis vectors, and then
dividing by t.. As discussed and defined in Hansen [3],
these scalar multipole moments can be classiGed into two
families, corresponding to mass and mass current (i.e. ,

momentum density), parametrized by integer values of
l & 0. Because of the re8ection symmetry across the
equatorial plane, the mass multipole moments can be
nonzero only for even l: M, M2, M4, . . . , M~,
The mass monopole moment is the mass itself, so the
"0" subscript of Mo is omitted. Similarly, the current
multipole moments can be nonzero only for odd l: S~,
S3, . . . , S~, . . . . For example, the Kerr metric with mass
m and spin a has Mt+i St = m(ia) (Ref. [3], Eq. (3.14)).
The letters M and S are used here to refer to the mul-
tipole moments of the central body alone, as opposed to
the letters I and J which will be used in Sec. V when
discussing the multipole moments of the entire system,
including the orbiting object.

When radiation reaction is neglected, the orbit of the
small object is governed by three conservation laws. The
first follows from the standard normalization condition
for the object's four-velocity:

(«l' («) «p)+ 2~t+ I

—
I I0"'r i gd~) gd~)

II. FUNCTIONS OF THE MULTIPOLE
MOMENTS

In this section, we will review the foundations for ana-
lyzing the three functions b E(f), O~(f), and A, (f) that
contain full information of the multipole moments of the
central body. The metric produced by the central body,
ignoring the eBects of the much less massive orbiting ob-
ject, can be written in terms of (t,P,p, z) as (units where
G = c = 1 are used throughout)

1 2wds = F(« —~dP) + ——e ~(dp + dz ) + p dP

(5)

where F, w, and p are functions of p and ~z~. Instead of

(&t l (dpi
I+&~~ I d

is conserved because of the lack of P dependence in the
metric.

If the object is moving in a circle along the equator
z = 0, then the orbital angular velocity (or "angular
frequency" as we shall call it) is

gtp, P + Q(Std, P) Qtt, Pg4'O', P

dt g@y p

This is easily obtained from the geodesic equation and by
imposing the conditions of constant orbital radius, that
dp/d~ = 0 and d p/d7. = 0.

A circular orbit also implies that dp/dw = 0 and
dz/d7 = 0 in. Eq. (6), while dP/dw = 0 «/d7, so that
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—
gqq

—gqyO

gt—t, —2gqyn —g~~n2
(10)

Similarly, a circular orbit implies, from Eq. (8), that

solving for dt/dr in Eq. (6) and substituting in Eq. (7)
gives

0 = 0 — — gag + ggyO
g

2 &p')
—2 (ggt. + ggpn) (gyp + gppn) ~

(gpss i
4 p')
1/2

+ (a~~ + aye&) l, l,—)4 p') (i4)

where the fact that

+ g- I

—„ I (»)(dp) (dz)
(d )

gqy + gy@O

g„——2g,~n —g~~n

The orbit might also be slightly different from a circle
in the equatorial plane: it might be slightly elliptical or
slightly out of the equatorial plane. In this case, Eqs. (7)
and (8) can be solved for dt/dw and dP/dw, which can be
inserted into Eq. (6) to get

(gyp'i &' (gtpi EL, (gt,, i L,'
& p') ~' «') ~' kp') ~'

where o. is p or z, and the expression is evaluated at
z = 0. The ", "

signifies double partial difFerentiation
with respect to the n index. Equation (14) was derived

by evaluating the second derivative, with respect to ei-
ther p or z, of the left-hand side of Eq. (12). Then,
the values of E and L, were substituted from Eqs. (10)
and (11). This substitution is valid only in the limit of
small deviations of the orbit &om a circle in the equa-
torial plane. The second derivatives were then used to
determine the frequencies of the harmonic oscillators in
the p and z directions which, when subtracted &om 0,
give the precession frequencies of Eq. (14).

The metric functions and their derivatives, when eval-
uated at z = 0, can all be expressed as power series in

1/p. From Eq. (9), n can be expressed as

2= 2
P —gt,@ gtt gpss (i3)

so that

n = (M/p ) (1 + series in p )

was used. When the left-hand side of Eq. (12) is ex-
panded in powers of z and of hp = (radial displacement
&om the value of p which, along with z = 0, maxi-
mizes the left-hand side), and when only the leading-
order (quadratic) terms in z and h p are kept, then
Eq. (12) becomes the law of energy conservation for a
two-dimensional harmonic oscillator. The vanishing of
the mixed pz derivative of the left-hand side (because of
the reBection symmetry, taking a single z derivative gives
zero) implies that the motions in the p and z directions
are independent of each other. These motions correspond
to the periastron precession and the orbital plane preces-
sion, which are at frequencies O~ and O„respectively.
The precession &equencies are

1/p = (M/n ) (1 + series in p )

= (M/n ) i (1+ series in n i ). (16)

Since AE/p, n~/n, and n, /n are all functions of 1/p
and 0, then they too can be expressed as power series
in 0 / . We shall see that the coeKcients of these power
series can be used to obtain the moments.

These power series have the following forms, as can
be derived by an algorithm described in Sec. III below.
Listing just the erst few terms, which are functions of
the lowest; three mass moments M, M2, and M4 and the
lowest two current moments Sq and S3, the functions are
[using v = (Mn) i ]

AE 1 2 1 4 20 Sy s ( 27 M2) s 28 Si q ( 225 80 Si 70M25

(81 Sg SgM2 Ss ) s ( 6615 115 Si 935 M2 35 M2 35 M4 t

+ — +6 + + —— V
2 M M M ) i 128 18 M 24 M 12 M 12 M

( S, 1408 Si 968 SiMz 352 Ss i
M 243 M 27 M 9 M

45927 123 Si 9147 M2 93 M2 S,M2 Sgss 99 M4 )
256 14 M4 56 Ms 4 Ms M~ Ms 4 Ms

(405 2243 Sy 661 M2 21 M2 15 M4 i s
(' s& s,' s&M2 ss i

8 84 M4 14 M' 8 M' 4 M' M' M' s 4) 1 M M )
(1701 8443 Si 1545 M2 95 M2 85 SiM2 Siss M4 i

8 28 M4 7 Ms 8 Ms 3 M~ Ms Ms (18)
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M4)
&»3 S,'

(69 Si 69 M2 41 M2 389 SiM2 SiS3 4
l~ iQ

7 M4 7 M~ 2 Ms 6 Mr Ms M )
(19)

These expressions give some indication as to why all
the multipole moments are obtainable &om any one of the
functions AE(v), 0~(v), or 0, (v) [with v = (M0)i~s =
(7rMf) ~s] The. current moment Si (t = 1, 3, 5, . . .) al-
ways first appears in the coefficient of 0~2i+sli s in AE/y, ,
and of 0& i+ l~s in 0~/0 and 0,/0. The mass moment
Mi (I = 2, 4, 6, . . .) always first appears in the coefficient
of 0~ + li in AE/p, and of 02 ~ in 0~/0 and 0,/0.
Since each multipole moment makes its first appearance
at a difFerent order, then one would expect that all the
moments can be obtained &om these functions.

In 4E/p, the first two powers of 0 have coefficients
that involve only M, but to difFerent powers. This al-
lows not only for the determination of the mass, but
also if AE/p is only measurable up to a proportional-
ity constant (for exainple, because p or the distance to
the source is not known exactly), this constant can be de-
termined. In 0~/0, the mass M can be determined &om
the first term. In 0, /0, there is no term that involves
only the mass. If all the terms in the 0,/0 expansion
are zero (because Mi = Si = 0 for l & 1), then the mass
M cannot be determined at all &om 0,/0. This case
corresponds to the gravitational field of the more mas-
sive object being spherically symmetric, so that there is
no orbital plane precession possible. If some of the terms
in the 0,/0 expansion are nonzero, then it is possible
to determine M &om this expansion, as we shall see in
Sec. IV.

III. DETERMINATION OF THE MULTIPOLE
MOMENTS

In this section we shall develop an algorithm by which
the power series expansions (17)—(19) can be derived, to
all orders; and we shall show that each moment S~ or
M~ first appears in that expansion at the order described
in Sec. II. The appearance of each moment at a unique
order guarantees that the multipole moment can be de-
termined &om knowledge of the power series.

We will divide this presentation into five parts. In
Sec. IIIA, we will review the Ernst potential and its re-
lation to the metric. We will show that the Ernst po-
tential is completely determined everywhere by a set of
coefIicients called a~0 and a~q which describe the metric
on the equatorial plane. In Sec. III B we will show that
all the ajo and aji can be determined &om AE/p, , 0~/0,
or 0,/0. In Sec. IIIC the algorithm described in Sec.
IIIB to do this will be summarized. In Sec. IIID we will
show how to go &om the a~0 and a~i to the multipole
moments M~ and S~. In Sec. IIIE, we will show how

I

Eqs. (17)—(19) can be derived.
In Secs. III and IV we assume that any one of the

dimensionless functions, AE/IJ„0~/0, or 0,/0, is known
exactly to all orders in O. In addition, in Sec. III, we
assume that M is known —if b, E/p, or 0~/0 is the known
function, then M is easily extracted &om the first term in
either series (17) or (18); if 0,/0 is the known function,
then M can be determined from the algorithm described
below in Sec. IV.

A. The Ernst potential

Fodor, Hoenselaers, and Perjes [9] give details of the
computation of the multipole moments &om the complex
potential (, a function of p and z. This ( is related to
the Ernst potential [10] t by

QP2 +. Z2 (
gp'+ z'+ (' (20)

where I' is related to the metric by [see Eq. (5)]

g~~ = —+,

and g is related to the metric by (Ref. [11],Eq. (I.3b))

gyp = —E dp
p F |9z

(22)

The Ernst pot;ential F is powerful for generating sta-
t;ionary, axisymmetric solutions to the gravitational field
equations. It contains all the information of the space-
time geometry in a single, complex function, and thus so
also does (.

The potential ( has the property that it can be ex-
panded as (Ref. [9], Eq. (15))

OO
A;

(p2 + z2) j+A
j,A;=0

(23)

The a~~ can be nonzero only for non-negative, even j
and non-negative k. Because of the refIection symmetry
across the equatorial plane, a~A, is real for even k and
imaginary for odd k.

Since the measured function, any one of EE/y„0~/0,
or 0 /0, is directly related to the metric in the region
around the equatorial plane z = 0, then it is most con-
venient to convert the measured function into the coef-
ficients that contain information of the equatorial plane
metric, namely, a~0 and a~ q.
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Assume for the moment that for any positive, even
integer m, all the a~0 with j = 0, 2, . . . , m and the
a~q with j = 0, 2, . . . , m —2 are known; and assume
that for any positive, odd integer m, all the a~0 with
j = 0, 2, . . . , m —1 and a~& with j = 0, 2, . . . , m —1
are known.

From these a&0 and a~q, all the a~y for j + A: & m can
be computed from (Ref. [9], Eq. (16))

denotes the fact that this is as computed only using the
known a~0 and a~~ at stage n, and setting all unknown
a~0 and a~q to zero. In particular, a2n+2 0 and a2n q were
set to zero in calculating (AE/p)„, and we will remedy
this situation below.

We can express these two functions, the actual EE/IJ,
that is being deciphered and the computed (AE/p)„, as
power series in 0 /:

a„,
( + 2)( +1) 0

+ . oI &~ I ~,—. t q—op—e(& + q
A:, l,p, q

—4p —5q —2pk —2qt —2)

+a„+z ~ z(p+ 2)(p+ 2 —2k)

+a& z z+z(q + 2) (q + 1 —2t) (24)

AE/p=) A 0 /,

(KE/p)„= ) B 0 / .

(25a)

(25b)

It is easy to verify that if az„,z (which is unknown
at this nth stage) were changed from zero to a nonzero
value, then to leading order in 0, (AE/IJ, )„would change
by

The sum is over all integer values of k, I,, p, and q that give
nonzero contributions, namely, 0 & A: C r, 0 & jt & 8 + 1,
0 & p & r —k, —1 & q & 8 —l, and k and p even.

All the coefBcients a~A, that are within the summation
sign in Eq. (24) have the property that j+ k ( r+ s+ 2.
Thus, a, ,+z (with s ) 0) is a function of the a~.o and
a~ q q with j & r+8+2, but no higher order a~0 or a~

This shows explicitly that (, and thence also the entire
spacetime metric, are fully determined by a knowledge
of the a~0 and a~ q q, or equivalently a knowledge of the
equatorial plane metric.

B. Computing a~0 and a~~

The process [12] of determining the a~a and a~q from
AE/p, Q~/0, or 0,/0 occurs in iterations, each stage
labeled by n = 0, 1, 2, . . . . For now, assume that it is
AE/p that is known, rather than O~/0 or 0,/A. Assume
that the a~0 are known up to order j = 2n, and the a~q are
known up to order j = 2n —2. That is, aoo, a2o, a40, . . . ,
az, o and cod, azq, a4q, . . . , az„q q are known. (At the
n = 0 stage, only oop = M is known. ) All unknown a~o
and a~q are set to zero at this nth stage. The goal of this
nth stage is to figure out what a2 +2 0 and a2 q must be
in order to reproduce the observed functional form for
AE/IJ, .

From the known values of a~o and a~q, the metric func-
tions gzz and gzy on the equatorial plane can be computed
with Eqs. (20)—(23). Then, the metric function gyp can
be obtained Rom Eq. (13).

Therefore, with the a&0 known up to j = 2n, the a~~
known up to j = 2n —2, and all other a~0 and a~q (tem-
porarily) set to zero, the three metric functions gqq, gq4„
and gyp can be expressed as power series in 1/p on the
equatorial plane z = 0. Then, 0 can be computed as
a power series in 1/p using Eq. (9). This series can be
inverted to have 1/p as a series in 0, so that the metric
functions are power series in O. With Eqs. (2) and (10),
we can compute AE/p as a power series in 0; we will
call this computed function (AE/p) . The n subscript

+ M —(2n+1) /3 g (4n+5) /3
9 (26a)

The 0( + )/ term would not change if a2 q were
changed. ; however, if the a2 +2 0 term were changed &om
zero to a nonzero value, then (b,E/p) would change to
lowest order by

( + 3)( + ) M —(2 +sl/sg(4 +sl/s (2 b)9
a2 +20M " 0 " . 26b

7

gM (2n+1) /3
a2n, s = ~ 16n+ 20

(A4 +5 —B4 +s ),

gM (2n+3) /3
'"+ (4n+ 3)(4n+6)( '"+ "+ )

(27a)

(27b)

Then the process can be repeated at the (n + l)th
iteration stage.

Now, we will repeat the above argument of Sec. IIIB
for what to do at the nth stage if instead of DE/p, , it is
B~/0 that is known. A similar procedure as in the AE/p
case can be followed, except that instead of Eq. (10),
Eq. (14) must be used. To compute the g~~ function that
appears in this equation, it is necessary to compute the p
function that appears in the metric (5) evaluated on the
equatorial plane (see, for example, Ref. [11], Eq. (I.4a)
or Ref. [13],Eq. (7.1.26)):

1 p' (dg„l '
g,', (d(g, p/gt, t,)l

4 p get.

(28)

Following a similar argument as in the AE/IJ, case, at
the iteration labeled by n,

Based on these facts, then the a2 q and a2 +2 0 terms
can be computed at the nth iteration stage, by simply
setting the az„q and ag +g p seen in Eqs. (26) to the
values that would have made (AE/p)„agree with AE/p
to order 0 "+ (rather than setting az„q and aq„+z o
to zero as was done at the beginning of the nth stage):
we set
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(O,/O)„= ) D.O-/' (29a) C. Summary of above

can be computed to order 0( + )/ and compared to

O, /O = ) C.O-/'. (29b)

(2 + 4) M —(2n+3)/3O(4n+3)/3 (30a)

and a2n l has no effect on the 0( + )/ term. The
leading-order eKect of an a2 +2 p on (O~/O)„ is

+ 1)(2 + 3) M —(2n+3)/3O(4n+4)/3 (30b)

From these facts, the next two coeKcients should be set
to

It is easily veritable that the leading-order effect of an
a,„,on (Op/O)„ is

To summarize the iterative process that allows for the
determination of the a~0 and the a~q.

Stage n, Step 1. With the a~0 up to j = 2n and the
a~l up to j = 2n —2, and the higher order a~0 and a~l
set to zero, use Eqs. (20)—(23) and (13) to compute g&q,

gqy, and gy~ as functions of 1/p on the equatorial plane.
Stage n, Step 2. Prom these gqq, gqy, and gyp, compute

(AE/p, )„[with the help of Eqs. (2) and (10)], (O~/O)„
[with Eqs. (14) and (28)], or (O, /O) [with Eqs. (14),
(24), and (28)] as a function of O [with the aid of Eq. (9)
to get 1/p as a function of O].

Stage n, Step 3. Set the values of a2 l and a2 +2 0 us-
ing Eqs. (27) for AE/p, , Eqs. (31) for O~/O, or Eqs. (34)
for O, /O.

Stage n, Step 4. Go to Stage n+ 1, Step 1.

M (2n+3) /3
a2n, l =

2n+ 4
(C4„+3 —D4„+3),

M(2n+5) /3

(n+ 1)(2n+ 3) '

(31a)

(31b)

D. Computing the moments

After as many as desired of the a~0 and a~ ~ terms have
been computed, the a~A, can be computed with Eq. (24).
Then, using the algorithm in Ref. [9], the multipole mo-
ments can be computed &om the a~I, . in terms of

If it is O, /O that is known, then it is also necessary to
compute the second derivatives of the metric functions
gqq, gq@, , and gyp, evaluated on z = 0. These re-
quire the a~2 and a~3 terms, which can be obtained &om
Eq. (24). At the iteration labeled by n,

(O, /O)„= ) II.O-/'

pp= p2+ Z2~ p2+ Z2)) Z

M) + iS) ——
s")

0

(2l —1)!!

the multipole moments are

(36)

can be computed to order 0( + )/ and compared to

where these S, not to be confused with the S~, are
recursively computed by

O, /O=) S.O /'. (32b) s'" = (, s"= ~& s" = ~
0 ) 0 —) 1

(9Z BP
(37)

Following the same type of argument as in the case
of b, E/p, and O~/O, the efFects of a2 i and a2 +2,p on
(O, /O) are

—i(2n+ 2)a,„M ('"+')/'O('"+')/'- (33a)

—(n+ 1)(2n+ 3)a2„+2 M ( "+ )/ O( + )/, (33b)

M(2n+3) /3
2n, 1 =Z

2n+ 2
(+4 +3 —~4 +3)

M (2n+5) /3
2n+2, p

( 1)(2 3) ( 4n+4 4n+4) ~

(34a)

Whether analyzing b.E/p, O~/O, or O, /O, this itera-
tion can be repeated up to an inde6nite order.

respectively, and a2„~ has no effect on the 0( n+ )/

term. The next two coefBcients therefore should be set
to

in which All, Bq2, and B22 are given by

R;~ = (p + z )i(i —1 (G;G*+ G;G~), (39)

with

S(") = —a—S'"-'+ (n —a) —S("-')
n |9p Bz

+a
I [a + 1 —2n] Vi —

~

S "(„,)
/ )

+(a —n)(a + n —1)p2S( + a(a —l)p2S

+(n —a)(n —a —1) p, ——
I
S.+,( -i)

/)
a(a —1)Biis 2 + 2a(n —a)Ai2S

+(n —a)(n —a —1)B22S
~

n ——I, (38). 2 r 3i
2). '
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0( 0( &(
Gi ——r——p —,G2 ——p—+ &—+(,

gp Bz Op
(4o)

and, &om these B,j,

Yl (p/2) (+11 +22)1 '72 p+12- (41)

Therefore, knowledge of the mass M and AE/p, 0~/0,
or 0,/0 allows for determination of the Ml and Sl.

We have seen that each atp and at i I is determined
f'rom AF/p, 0~/0, or 0,/0 by the value of a certain
coeKcient in the power series expansion. Then, with
Eq. (24), all the a, with r + s = t are determined, and
with Eqs. (35)—(41), it can be verified that a variation of

( by p„+, I a„,p"z' leads to a variation in Ml +i Sl such
that

produce the correct dimensions. Then, for example, to
find the S1Ss dependence in the 0~/0 function, an 0~/0
can be chosen (by varying the function order by order as
needed) such that when the above algorithm to compute
the multipole moments is performed on this chosen 0~/0,
all the multipole moments except Sq and S3 are zero,
while SI and S3 take on different nonzero values. Then,
looking at the (0~/0)„ function as computed in Step 2
of the above iterative process, the dependencies of 0~/0
on S]S3y S] S3& SQS3, etc. , can be inferred by examining
how (0~/0)„changes as Si and Ss change values. For
brevity, shown in Eqs. (17)—(19) are the first few terms
only, but additional ones are not hard to compute. The
calculation was verified by checking that when the mo-
ments take on their Kerr values, Eqs. (17)—(19) give the
correct expressions that can be computed independently,
directly &om the Kerr metric.

apt ——Mt + iSt + LOM (42) IV. DETERMINATION OF THE MASS FOR 0 /0
"LOM" is an abbreviation for lower order moments: some
combination of Mj and SA, with j ( l and k & l. Equiv-
alently by virtue of Eq. (24),

(t ] ) Il
alo ——(—1)' „Ml + LOM, (43a)

al 11 ——i(—1)~' i/ „Sl + LOM
] II (43b)

Given an integer m, for even m, knowing the ajp up to
a o aild the aj& Up to a —2 ] is equivalent to knowing
M Sg M2 S3 M4, . . . , S I, M; for odd m, knowing
the ajp up to a~ ] p and the ajar up to a j I is equiv-
alent to knowing M, S] M2 S3 M4 ~ ~ M i S
Thus there is a unique term in the power series expan-
sion of any one of the functions AE/p, 0~/0, or 0,/0
where each multipole moment appears to leading order,
and there is a prescribed algorithm for obtaining the mo-
ments.

E. Deriving expansions for AX/gs, A~/0, and A, /0

Finally, Eqs. (17)—(19) can be derived as follows. First,
use the method of Sec. IIID above to compute Mt as a
function of aoo a2o - ato, and aoi aaI - . at —2, I
(or Sl as a function of aoo, a2O, . . . , al 10, and aoi,
a21, . . . , al 11). Then, by inverting the series, obtain
alo as a fun«ion of Mo, Sl )I M2 )I ~ . .

)I Sl—1 )I Ml (or al —1,1
as a function of Mo Si M2 . . . Ml 1 Sl). Inverting
is trivial as long as the problem is solved for the l —1
case before trying to solve for the l case. The metric
functions and from these, AE/p, 0~/0, or 0 /0, can
then be expressed as functions of the ajp and aj~ using
the equations in Sec. IIIA. Then inserting the values of
these ajp and ajar in terms of the multipole moments, we
obtai. n Eqs. (17)—(19).

Alternatively, we can derive the expansions by simply
figuring out how the diferent combinations of the mul-
tipole moments appear in the expansions. First of all,
each term has as many powers of M as are required to

)4F, —7Fs21"
8F4 )

(44a)

while if I"4 ——0, then the mass is

t 2Fs 4Fs 41'
3F2 9F24 36Fs

3/2

3F22 )
(44b)

In the case that the coefficient of the 0 term in the 0,/0
expansion is zero (Fs ——0), there is a general procedure
that can be followed to obtain the mass. With the equa-
tions of Sec. III, specifically, those leading up to expres-
sions (33) but carrying the process out to one more order,
the next-to-leading order eff'ects of the a2 1 (for n & 1)
and a2 +2 o (for n & 0) on (0,/0) are

—2'n(2n+ 3)a M-~'"+'ll'0~4"+'i/'

—2(n+ 1) (2n+ 3)a2 +2 OM ~ + i/ 0 + . (45b)

Comparing these with Expressions (33), the mass can
be determined by looking at the first nonzero term in the
0,/0 expansion. If the first nonzero term is an 0~ +
term for integer n & 1, then the mass is

With AE/p, or 0~/0 known as a function of 0, it is
easy to determine the mass M since it appears in the first
term in either expansion, Eqs. (17) or (18). For 0,/0, it
will be shown in this section that M can be determined in
the case that there is some precession (0,/0 is not zero
for all 0). This is possible because up to any order in the
0 expansion of 0, /0 = g F' 0 /2, there are roughly
twice as many terms as multipole moment variables, and
information of the mass is contained in the redundant
terms.

If the coefficient of the 0 term in the expansion of
0, /0 is nonzero (Fs P 0), then a method to determine
M can be derived by examining Eq. (19). If F4 g 0, then
the mass is



52 GRAVITATIONAL WAVES FROM THE INSPIRAL OF A. . . 5715

t' (n + 1)E4„+s
)) n(2n + 3)E4„+s)

(46a)

If the Grst nonzero term is an O~ + ~/3 term for integer
n & 0, then the mass is

3/2

& (2n + 2)E4 +4 ) (46b)

After M is determined, then the multipole moments
can be determined as described in Sec. III, where it is
assumed that M is known.

V. LEADING-ORDER EFFECT OF THE
MULTIPOLE MOMENTS ON THE

GRAVITATIONAL-WAVE PHASE EVOLUTION

Another interesting but much more accurately measur-
able function of 0 is the gravitational-wave phase evolu-
tion for circular orbits in the equatorial plane, expressed
as AN as a function of 0, as defined in Eq. (4).

Unfortunately, a similar analysis cannot be conducted
for LN as was done for the other functions, because the
dE „,/dt that appears in AN cannot be computed from
the Ernst formalism. Rather dE „,/dt = dE/dt ca—n
only be computed by solving wave equations to compute
the wave generation: equations which (apparently) will
not decouple from each other nor allow a separation-of-
variables solution. These hindrances make the calcula-
tion much more difBcult than solving perturbations of
the Kerr metric, for which decoupling and separation-of-
variables do in fact occur and simplify the problem. To
make the situation in the general case even more diK-
cult, LN depends also on the inner boundary conditions
for the gravitational-wave equations and on the amount
of energy absorbed by the central body through, for ex-
ample, a horizon or tidal heating of matter. These inner
conditions are not, in general, determined from just the
multipole moments. However, at least in the case of a
Schwarzshild black hole, the effects of the horizon do not
appear until a very high order [14]. It is perhaps possible
that just as we made the idealizing assumption (iv) of
energy balance when computing LE, we can also make
some type of simplicity assumption (such as regularity
of the wave functions at the origin), and get an accu-
rate enough answer, but this is not clear. Despite this
uncertainty, if in the future the task were undertaken
to determine LN as a function of at least the lowest
few multipole moments, the potential to experimentally
test the "no-hair" theorem for black holes would be very
promising [4]. It will be shown below that if we once
again make our four idealizing assumptions, then AN
contains full information of all the multipole moments.
While we cannot yet construct a general algorithm to ac-
tually extract all the multipole moments from LN, we
can, it turns out, extract M, Si, and M2 (enough, in
principle, to test the no-hair theorem). The following is
just a limited discussion of how each multipole moment
appears to leading order in AN, which in turn depends
on how each multipole moment appears to leading order

A. The dominant contribution to —dE/dt

The luminosity dE, /dt = dE/dt can b—e deter-
mined by computing the symmetric trace-free radiative
multipole moments [15] that determine the gravitational
field of the source. The mass multipole moments II. and
current multipole moments JL, are those of the entire
source (including the orbiting object of small mass p),
as opposed to the M~ and S~ moments which are the
moments of the central body alone. The L subscript is
shorthand for I, indices: L means aia2 ~ a~. Because
the entire source is not axisymmetric, these IL, and Jl.
are not reducible to scalar moments, as the M~ and S~

moments are. For nearly Newtonian sources, in terms
of an integral over the mass density p of the source and
Cartesian coordinates yk, these moments are given by
(Ref. [15], Eqs. (5.28))

STF
I )&) = j&'vp(, v &)v

J (t) = lf d ypbf)lira~, s 1ls'&.—

(47a)

- STF
(47b)

The STF superscript means that the expression is to be
symmetrized and made trace-free on its l free indices.

in LE and in the gravitational-wave luminosity.
We will divide the discussion in three parts. In

Sec. V A we will show a simple way, based on the
mass quadrupolar radiation formalism, to compute how
central-body multipole moments with l ) 2 (M2, Ss,
M4, . . . ) show up to leading order in the gravitational-
wave luminosity, dE—/dt Fo. r example, we will see how

M2 first shows up at v order (beyond where M first
appears) in the luminosity. However, while we can com-
pute this M2v term, we cannot compute, for example,
M2v or M2v terms. In Sec. VB we will show that there
is another effect which must be taken into account when
calculating the leading order infiuence of Si (at vs order)
on the luminosity. Moreover, we will calculate the lead-
ing order occurrence of not only Si but also Si (which
shows up at v4 order) in the series expansion for the lumi-
nosity. The Sz v term is calculated for its usefulness in
Sec. V C, where the leading-order efFect of the multipole
moments M~, S~, and Si on LN are computed. Prom
these leading order effects, and some well-known terms
derived elsewhere, we also infer the entire series for LN
up through v order (including Siv, Siv, and M2v ).
Whom this fully known part of the series we get a sim-
ple way of testing the no-hair theorem. Incidentally, we
could also, for example, calculate the leading-order effect
of M2 on the luminosity, which is an M2v term, but this
would be of little practical value since we cannot calculate
M2v terms at present anyway. Therefore, we will limit
this discussion to just the leading-order effects of M~, S~,
and Sz on LN, and save the more general discussion of
higher order terms and combinations of multipole mo-
ments [such as an expression similar to Eqs. (17)—(19)]
for future work.
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Repeated indices are summed. The u is the mate-
rial's velocity, so that pu is the mass-current density.
The expression yI, means y, y, . . . y, and yL, q means
yaiy . - ye&

In terms of these radiative multipole moments, the
gravitational-wave luminosity is (Ref. [15], Eq. (4.16 ))

dE ) (l + 1)(l + 2) 1 (l+~) (1+i)
dt (l —1)l l!(2l + 1)!!

+ ~ 4l (l + 2) 1 ([+y) (]yy)
(l —1) (l + 1)!(2l+ 1)!!

(48)

The angular brackets indicate averaging over time. A
number in parentheses to the above right of a moment
indicates taking that many time derivatives of that ra-
diative moment.

The leading-order contribution comes from the mass
quadrupole radiative moment I;~. This quadrupolar con-
tribution to the energy loss for a mass p moving in a circle
of radius p at angular frequency 0 is (see, for example,
Ref. [16], Eq. (3.6))

dE 32 2 4 6
dt 5I,~

(49)

It turns out that for all central-body moments except
Sq, the leading-order correction to Eq. (49) arises from
a modification of the orbital radius p as a function of O.
Each mass moment M~ (l ) 0) or current moment S~
changes p by the following [where v = (MB)~/s]:

2 ( (—1)'/ (l+ 1)!!M) v2'~

( 2( 1)(&—&)/2 llI S v2t+& $p=Mv
i

1—
3 (l —1)!!M'+~

(50a)

(50b)

Equations (50) are derived by using (43), (20)—(23), (13),
and (9). Inserting Eqs. (50) into (49) gives the following
leading-order effects of the central-body moments on the
energy loss, due to the mass quadrupole radiation con-
tribution:

dE 32 p gp

2

4(—1)'/2 (l + 1)!!M~ v2'
x 1+

3 l!!M'+i
l=2, 4, ...

8( 1)(l—1)/2 ill S v2l+1

3 (l —1)!!M'+'
l=1,3, ...

. (51)

B. Additional contributions from S& and S~

In this section we discuss another contribution to the
radiated power, dE/dt, which arises for all central body

moments, but which is negligible compared to the p-
change contribution (51) in all cases except for Sq. For
Sq, the second effect together with (51), comprises the
full leading order dE—/dt.

In computing this second contribution, it will be suf-
Q.cient to treat each radiative moment in its Newtonian
sense: the gravitational Geld is the sum of the Geld due to
the small mass and the Geld due to the large mass. The
contribution &om the small mass comes direc'tly from us-
ing Eqs. (47). The contribution of the large mass can be
computed as follows.

If the orbiting object of mass p were absent, then the
radiative moments would be determined &om just the
moments of the central body: II, oc Ml and JL, oc Sl.
These moments are stationary and therefore do not ra-
diate. However, in the presence of the orbiting ob-
ject, the large mass moves along a path —(p/M)x&,
where xI, is the path of the small mass [xq ——pcos(Ot),
x2 ——p sin(Ot), and xs ——0]. Therefore, the multipole
moments due to the large mass are what the stationary
moments would be in a Cartesian coordinate system dis-
placed by (p/M)x~. The changes in the I + 1 radiative
multipole moments, due to this displacement, are

- STF
hII.+g

—— —(l + 1)II,(p, /M) x, ,

(l+ 2)l
JL, (p/M) x,+,I+1

- STF
b JL,+g ——

(52a)

(52b)

These can be derived from simply applying a coordinate
displacement to the metric of Eqs. (11.1) of Ref. [15].

For example, the current quadrupole radiative moment
J,~ picks up a contribution &om the J~ = Sqb~3 moment
of the large mass, and when added to the direct contri-
bution &om the orbiting object, it produces for the total
radiative current quadrupole moment

d&vn
p&; ~~I ~&I

dt

- STF3 p———z;Sib 32M (53)

This result for J,~ is given in Kidder, Will, and Wiseman

Equation (53) inserted into (48) leads to a contribution
to the luminosity of

E 32 p yp

ij

1 2 1 Sg 3 1 S~ 4x —v v +- v
36 12 M2 16 M4 (54)

The S~v term is of the same magnitude as the leading-
order Sq term in Eq. (51). However, it is easy to verify
that no other central-body moment, M2 S3 M4 S5, . . . ,
contributes to dE/dt by this means, through Eqs. (48)
and (52), at the same leading order as in Eq. (51). This is
because the time derivatives in Eq. (48) each contribute
a factor of 0, enough factors that the contributions of
the Il, (l ) 2) and Jl, moments end up being suppressed
suKciently that they do not appear in the luminosity at
leading order.

Now, to Gnish computing the gravitational-wave lumi-
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dE
dt

32 P ~0 1247 2 3 44711 4v 1 — v + 4m. ivy v
5 M 336 9072

11 Sg 3 1 Sq 4 M2 4v + — v — v

4(—1) / (l + 1)!!Mi v '

3 l!!M'+'
l=4, 6

8( I) (&—i)/2 I tl S v 2i+i

3 (l —1)!!M'+'
1=3,5, . ..

(55)

Above, the erst line has the terms that were derived
elsewhere. The second line shows the remaining terms
that appear through v order (the M2 term is explic-
itly written out, rather than including it in the sum-
mation of the third line, which could have also been
dane). The third and fourth lines show the leading or-
der occurrences of the higher (l ) 3) moments. The

SiM 2vs term from Eq. (55) is well known [17,18].
The (—SiM —2M2M= )v term agrees with previous
work (Ref. [16],Eq. (3.13), the isq v term) for the Kerr
metric.

C. Computation of Lh &

Finally, we want to compute, from Eq. (4), the leading-
order effects of the central-body multipole moments on
LN. This computation requires, in addition to the
leading-order effects on dE/dt = dE—„,/dt, also the
leading-order effects of the moments on AE. By combin-
ing Eq. (26b) with (43a), as well as combining Eq. (26a)
with (43b), and using Eq. (17) to get the contributions
through v order, we get

1 2 3 2 81 4—v 1 ——v ——v
3 2 8

(—1)'/ (4l —2) (l + 1)!!M( v2'

3 l!!Mi+i
L=2,4, ...

(—1)&i i!/2 (8l + 12) l!!Si v i+i

3(l 1).. M+
l=1,3, .. .

. (56)

(There is no Si2 contribution at v4 order. )
Combining Eqs. (4), (55), and (56), we get all the terms

nosity d—E/dt, we want the leading order occurrence of
each multipole moment, but in addition, to facilitate a
discussion below of testing the no-hair theorem, we also
want the entire series through order v4. Equation (54)
can be added to (51), since both are contributions to

dE—/dt, and this gives us the first appearances of the
multipole moments. But to get the series through order
v4, we also need. to add in additional contributions to
the luminosity: these terms, which do not involve any
multipole moments except for Mo, are derived elsewhere
(see, for example, Ref. [16],Eq. (3.13)). Adding all these
terms up, we get

(—1)!' !/ (8l + 20)l!! Si v +'
3 (l —1)!!M'+'

l=3,5, ...
(57)

Since each multipole moment makes its erst appear-
ance at a difFerent order, then LN does contain full in-
formation of the multipole moments.

It should be stressed that Eqs. (55), (56), and (57) ig-
nore many higher order terms —only the erst appearance
of each multipole moment is shown.

If LN can be measured and written as a series expan-
sion in powers of 0 /, and the coeKcients of the 0
0 i, 0 2/s, and 0 i/s terms [i.e., the terms on the first
two lines of Eq. (57)] can be determined, then from the
four coeFicient values, it would be possible to solve for
the four unknowns: p, M, Sq, and M2. Then by check-
ing to see whether M2 ———Si/M or not, we could see
whether the moments of the larger object correspond to
those of a Kerr black hole satisfying the no-hair theo-
rem or not [19]. In reality, as the orbiting object nears
its last stable circular orbit, the v parameter in Eq. (57)
becomes close to unity, so that many more terms in the
series would need to be known for a high accuracy test
of the no-hair theorem, as well as to look at higher order
moments such as S3.

There is still much work that is required even after a
complete series for LN is developed. Some of our four
idealizing assumptions made at the beginning of this pa-
per need to be removed: We have considered only circular
and equatorial orbits, but should generalize to all orbits.
There is also the issue of how LN depends on the inner
boundary conditions, that is, how it depends on whether
or not the central body absorbs energy through a horizon,
through tidal heating, etc. Traveling through an accre-
tion disk would also change the orbiting object's energy
and angular momentum, thereby affecting LN.

However, seeing that the information of the multipole
moments is contained in many ways in the gravitational
waves is encouragement that even after the problem is
solved for the general case, we most likely will still have
the ability to determine the central body's spacetime ge-
ometry &om future gravitational-wave measurements.
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in LN through v order, as well as the leading-order
effects of the higher moments Mi, Si (l ) 3):
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