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We examine quantum Geld theory in spacetimes that are time nonorientable but have no other
causal pathology. These are Lorentzian universes from neighing, spacetimes with a single spacelike
boundary that nevertheless have a smooth Lorentzian metric. A time-nonorientable, spacelike hyper-
surface serves as a generalized Cauchy surface, a surface on which freely specified initial data for wave
equations have unique global time evolutions. A simple example is antipodally identified de Sitter
space. Classically, such spacetimes are locally indistinguishable from their globally hyperbolic cover-
ing spaces. The construction of a quantum field theory is more problematic. Time nonorientability
precludes the existence of a global algebra of observables, and hence of global states, regarded as
positive linear functions on a global algebra. One can, however, define a family of local algebras
on an atlas of globally hyperbolic subspacetimes, with overlap conditions on the intersections of
neighborhoods. This family locally coincides with the family of algebras on a globally hyperbolic
spacetime; and one can ask whether a sensible quantum field theory is obtained if one defines a
state as an assignment of a positive linear function to every local algebra. We show, however, that
the extension of a generic positive linear function from a single algebra to the collection of all local
algebras violates positivity: one cannot find a collection of quantum states satisfying the physically
appropriate overlap conditions. One can overcome this difIiculty by artificially restricting the size
of neighborhoods in a way that has no classical counterpart. Neighborhoods in the atlas must be
small enough that the union of any pair is time orientable. Correlations between Geld operators at
a pair of points are then defined only if a curve joining the points lies in a single neighborhood. Any
state on one neighborhood of an atlas can be extended to a collection of states on the atlas, and the
structure of local algebras and states is thus locally indistinguishable from quantum field theory on
a globally hyperbolic spacetime. But the artificiality of the size restriction on neighborhoods means
that the structure is not a satisfactory global field theory. The structure is not unique, because
there is no unique maximal atlas. The resulting theory allows less information than quantum Geld

theory in a globally hyperbolic spacetime, because there are always sets of points in the spacetime
for which no correlation function is defined. Finally, in showing; that one can extend a local state
to a collection of states, we use an antipodally symmetric state on the covering space, a state that
would not yield a sensible state on the spacetime if all correlations could be measured.

PACS number(s): 04.20.Gz, 04.20.Cv, 04.62.+v

I. INTRODUCTION

In a Lorentzian path-integral approach to quantum
gravity, one can, as in the Euclidean case, imagine con-
structing a wave function of the universe from a sum
over all Lorentzian four-geometries with a single space-
like boundary. Spacetimes of this kind provide the only
examples of topology change in which one can have a
smooth, nondegenerate Lorentz metric without closed
timelike curves; instead, the spacetimes are time nonori-
entable.

The simplest examples of such spacetimes have the
topology of a finite timelike cylinder, S x 1R, with di-
ametrically opposite points of its past spherical bound-
ary identified. This is the topology of antipodally identi-
fied de Sitter space. It is a four-dimensional analogue of
the Mobius strip, which can be constructed from a finite
two-dimensional timelike cylinder by identifying diamet-
rically opposite points of its circular past boundary Z

(see Fig. 1). A more familiar representation of the same
strip is shown in Fig. 2, whose median circle Z was the
one just constructed by identifying points of Z. The ori-
entable double-covering space of the strip is a cylinder
M of double the timelike length (Fig. 3), and M is con-
structed &om M by identifying antipodal points. If the
covering space has the metric of a fIat, timelike cylinder,
the Mobius strip M will be time nonorientable with a
locally flat metric and a timelike Killing vector (defined
globally only up to sign) perpendicular to Z. If the cov-

ering spacetime M is given the two-dimensional de Sitter
metric, the Mobius strip will acquire the metric of an-
tipodally identified de Sitter space.

As recent authors have noted, the time nonorientability
of these spacetimes prevents one &om carrying through
the standard construction of a Fock space or a Weyl al-
gebra of observables [1—3]. Kay [2] requires existence of
a globally defined * algebra and imposes what he terms
the "E-locality condition, " which demands in essence,
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FIG. 1. Diametrically opposite points of the past boundary
Z are identi6ed to construct a smooth Lorentzian universe
with no past boundary.

FIG. 2. For a two-dimensional cylinder, the resulting
spacetime is a Mobius strip whose median circle Z is obtained
by the identification of points in Z.

that the * algebra satisfy the canonical commutation re-
lations in a neighborhood of any point with respect to one
time orientation. Under these conditions he proves that
the spacetime must be time orientable. An independent
study by Gibbons [1] concludes that one is forced to use
a real (i.e. , noncomplex) Hilbert space to describe quan-
tum Geld theory in some time-nonorientable spacetimes
including antipodally identified de Sitter space. This also
suggests that one cannot construct a globally defined con-
ventional quantum Geld theory in a time-nonorientable
spacetime.

The conclusion is surprising, because an observer in
an antipodally identified de Sitter space M cannot clas-
sically distinguish the spacetime from de Sitter space M.
The past of a timelike world line in M (defined by a
choice of orientation near the world line) is isometric to
the past of either of the two corresponding world lines
in M. In fact, the Cauchy problem is well defined on M
for fields with initial data on Z, and the solutions will
be identical to those seen by an observer on Z who trav-
els along the corresponding world line and sees the same
data.

We are concerned in this paper with whether one can
evade these global results by piecing together local quan-
tum algebras and states. We find that one can evade
Kay's no-go theorem if, instead of a globally defined *
algebra one demands only a set of * algebras, each de-
Gned in a local neighborhood. Overlap conditions on the
* algebras then ensure that the local algebraic structure
coincides with that on a globally hyperbolic spacetime.
One would like to use this structure of local algebras
to define quantum states as collections of positive lin-
ear functions (PLF's) on the local algebras, again with
consistency conditions on the intersection of globally hy-
perbolic neighborhoods. We find, however, that if one
considers the algebras of observables on an atlas consist-
ing of all globally hyperbolic subspacetimes that inherit
their causal structure &om the spacetime M, g, then one
cannot consistently define states. In particular, if the
union of a pair of neighborhoods is time nonorientable,

This is because the lift to Z of data on Z will evolve to
an antipodally invariant 6eld on M. The field on M will
therefore be the lift of a solution to the 6eld equation on M.

one cannot consistently extend a generic PLF to the pair
of neighborhoods without violating positivity.

One can define a collection of local states on smaller
atlases, restricted so that the union of any two neigh-
borhoods is time orientable. The collection of algebras
and states is then locally indistinguishable from that on
the globally hyperbolic covering space of any Lorentzian
universe &om nothing. In particular, any local state can
be consistently extended to a collection of states on all
algebras associated with the atlas. But the restriction
on the size of neighborhoods amounts to a restriction on
the size of regions over which one can define correlations
between field operators, and this has unpleasant impli-
cations. The specification of a collection of states on the
neighborhoods that cover and share an initial value sur-
face does not uniquely determine a time evolution: The
extension to a collection of states on the set of all alge-
bras is not unique. In addition, in showing that one can
extend a local state to a collection of states, we use an
antipodally symmetric state on the covering space, and
such a state would not yield a well-defined state on the
spacetime if all correlations could be measured. Finally,
the families of states and algebras depend on the choice
of atlas, and there is no unique maximal atlas.

The ability to construct a family of states and alge-
bras that agrees locally with that of a globally hyperbolic
spacetime relies on the fact that the spacetimes we con-
sider, although time nonorientable, have no closed time-
like curves (CTC's). The simplest example above, the
Bat Mobius strip, has CTC's if one extends the strip to a
timelike thickness greater than its circumference. [These
are smooth timelike curves c(A) that intersect the same
point twice; the tangent vectors at the point of intersec-
tion have opposite time orientation. ] In the nonchronal
region (the region with CTC's) nearby points that are
spacelike separated with respect to the causal structure
of a globally hyperbolic neighborhood are joined by time-
like curves in the full spacetime. Thus events that are lo-
cally spacelike separated will inhuence one another, and
one naturally expects that field operators at points whose
local separation is spacelike will fail to commute or that
there will be restrictions on algebraic states in the lo-
cal neighborhoods. In Yurtsever's [4] generalization of
the algebraic approach to quantum field theory to space-
times with CTC s, massive scalar Geld theory will not in
general have local algebras of observables that agree with



52 QUANTUM FIELD THEORY IN LORENTZIAN UNIVERSES. . . 5689

oppositely oriented observers more transparent.
The quantum theory of a neutral scalar 6eld on

Minkowski space can be described in terms of the space
V of real solutions to the Klein-Gordon equation,

Kf:=(—V' V +m)f=0,
which are 6nite in the norm,

(2.1)

(2.2)

P where Z is t =const surface, n is a unit normal to Z, and
is an arbitrary positive constant. One makes V into a

complex vector space by a choice of complex structure J,
which in turn relies on choosing an orientation of time. If
0 is the orientation for which n is future pointing, then

Jf —i(f(+) f( )) (2.3)

FIG. 3. The double cover M is related to M by the identi-
6cation of antipodal points.

w(fg) = f ds, fVg, '

(2.4)

where f(+) is the positive frequency part of f with re-
spect to O. A reversal of time orientation reverses the
assignment of positive and negative &equencies. By it-
self, however, the space of real solutions is independent
of orientation.

Given a choice 0 of time orientation, one can de6ne a
symplectic product u on V by writing

the ordinary local algebras of observables associated (by
the usual construction) with sufficiently small globally
hyperbolic neighborhoods of each spacetime point. On
the other hand, in Kay's approach [2], one requires such
an agreement (E-quantum compatibility). This require-
ment can be implemented both for massless and massive
scalar field theories in some spacetimes with CTC's [2,5]
though it is not clear how these works can be extended
to more general spacetimes. Antipodally identified de
Sitter space avoids CTC's by expanding rapidly enough
that timelike curves that loop through Z cannot quite
return to their starting point.

Lorentzian universes with no past boundary and no
CTC's can be constructed in the way shown in Fig. 3 &om
any compact orientable three-manifold Z that admits an
involution —a diÃeomorphism I that acts &eely on Z and
for which I = 1. That is, if T: R ~ R is the map
t l—+ —t, the manifold is the quotient

M = (R x Z)/(T x I).

where

dS =n dS (2 5)

with n the normal that is future directed with respect to
O. The corresponding inner product on V has the form

(fig) =
2 ~(»») +, ~(» g) . (2.6)

T=C+A+Ats, A+ . . (2.7)

An observer with time orientation 0 opposite to 0 will
use normal

(2.S)

surface element

The completion of V in the inner product ( ) ) with com-
plex structure J is the one-particle Hilbert space 'R of
the &ee scalar Geld, and the corresponding Fock space is

Countably many three-manifolds admit kee involutions,
including all lens spaces and most other spherical spaces;
each gives rise to a top ologic ally distinct class of
Lorentzian universes from nothing.

dS =6 dS= —dS

and symplectic structure

(2.9)

II. QUANTUM FIELD THEORY WITHOUT A
CHOICE OF TIME ORIENTATION

(0(f, g) = d S fV' g = (u (f, g) . — (2.10)

A. Minkowski space

We begin with a Fock-space &amework for concrete-
ness and to make the subsequent algebraic treatment of

The complex structure on V similarly changes sign, be-
cause the positive and negative frequency parts of f E V
are interchanged:

(2.11)
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(fig) = ~—(f, ~g) + —~(f, g)2
'

2
1 Z= —~(f, Jg) ——~(f, g)2

'
2

= (fig). (2.12)

Equation (2.6) then implies that oppositely oriented ob-
servers assign to the same pair of real solutions (and
hence to the same one-particle state) complex conjugate
inner products:

Expectation values of elements in the algebra depend
on orientation in the manner

el@(F) .~(G)le) = &el'(F)" [
—~(G)]le), (220)

or, for general algebraic state [p],

p[&(F) ~(G)l = p(&(F) "I—~(G)]). (2.21)

Note that Eq. (2.21) follows from the relation between
p and p acting on a string of smeared P's,

The map l) ~ l) induces an antiunitary map Z': W
T, with p[4(F)" &(G)l = p[&(F)" &(G)] (2.22)

Zc lfi) (3. . lfI.) = ulfi) (3. . (m.
l fg) . (2.13)

because vr(F) = P(BqF) —and 7r(F) = P(BtF—), where
t = —t.

A pure state [4'] can be regarded as assigning to time
orientations 0 and 0 vectors 4 E T and @ g T, with
4 = Z4; more generally, an (algebraic) state [p] assigns
states p and p to orientations 0 and O.

The Heisenberg field operator [P] similarly assigns to
time orientations 0 and 0 operators P and P, acting on
T and W respectively. For orientation 0, smeared field
operators

(2.i4)

have commutation relations

[P(E),P(F)] =i E(x)(G g„—G„,)(x, y)F(y)d4xd'y,

(2.i5)

B. Globally hyperbolic spacetimes

We now generalize the treatment of a scalar field to
arbitrary globally hyperbolic spacetimes M, g. We use an
algebraic approach for quantum fields (see Haag [6] for
a review) developed for curved spacetimes by a number
of earlier authors (Ashtekar and Magnon [7], Isham [8],
Kay [9],Hajicek [10],Dimock [ll], Fredenhagen and Haag
[12], and Kay and Wald [13,14]).

Corresponding to orientations 0 and 0, one defines
abstract algebras A and A as the free complex algebras
generated by symbols of the form (P(F), F C C() (M))
and (P(F),F g Co (M)), modulo the commutation re-
lations:

where G g (G„t) is the advanced (retarded) Green func-
tion. An observer with opposite time orientation D will
adopt the opposite sign for the commutator, because
she will use the opposite definitions G g ——G, q and
&rat = Gad~

[&(E) &(F)] = i E(&)(G-d- —G-~)

x(x, y)F(y)d V d Vy,

[&(E) &(F)1 = i E(*)(G-~- —G-~)

x(z, y)F(y)d V d Vy (2.23)

(&(~) &(~)f = */&(~)(G-~- —&-t)(*,u)I" (u)~'*~'v

(2.16)

The structure of the algebra is clearer if one uses the
fact that each smeared field operator can be written as
the symplectic product of P with a real solution f to the
Klein- Gordon equation

To each globally hyperbolic subspacetime U, gl~ of
M, g and each choice of orientation 0 on U corresponds
a local algebra Al~ cia defined as above, with M replaced
by U. On each overlap, U g U', there is a linear or anti-
linear isomorphism Z between the restrictions of A(~ c)l
and Al~i ciil to p's smeared with functions having sup-
port on U g U'. For F C Co (U ll U'),

&(F) = ~(»f) = dS [&P(x)n V f (x) —~(x)f (x)],
ZP(F) = P'(F), Zi = i if 0 = 0',
ZP(F) = P'(F), Zi = i if 0 g 0'. —(2.24)

where

f(*) = (G-~- —G-~)(~ y)F(y)d'*.

The canonical commutation relations are simply

[~((t', f), ~(P, g)] = i~(f, g) .

(2.17)

(2.is)

(2.i9)

In particular, for U = M with agreeing orientations, the
map Z embeds A(~ c)l in Al~ ~) as a subalgebra.

In the algebraic approach, with a fixed time orienta-
tion, a physical state is a positive linear function (PLF)
p on the algebra of observables. When the algebra is rep-
resented by a set of linear operators on a Hilbert space,
a state p is represented by a density matrix. Again, one
can democratically define a state [p] as an assignment of
a PLF, p, or p, to each choice of orientation (0 or 0),
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where p E PX'. Formally, a state [p] is an equivalence
class of pairs, (p, 0), satisfying

(~' 0') —= (~ 0) -:

p'=p if 0'=0, and p'=p if 0'$0, (2.25)

where, for an arbitrary string of operators,

~(4(I")".&(G)] = s[&(I") "&(&)]

implying

(2.26)

~[&(I") "~(G)1 = s(&(&)".
I

—~(G)1). (2.27)

The restriction of a state [p] to the pair of subalgebras
associated with a globally hyperbolic neighborhood U is
a state [p~] on U. As in Eq. (2.21), states on overlapping
neighborhoods U and U' are related by

p(~ci)(A) = p(~ ci )(A') if 0 = 0',

p(p ci)(A) = p(U ~ )(A') = p(U ci )(A' t) if 0 g 0'
(2.28)

where A' = ZA, with 2 given by Eq. (2.24).

III. QUANTUM FIELD THEORY ON
TIME-NONORIENTABLE SPACETIMES

A. Existence of a family of local algebras

As in the previous section, we will define local algebras
of observables in a neighborhood of each point, show that
the algebras on overlapping regions are isomorphic, and
define global states as positive linear functions on each
local algebra that respect the overlap isomorphisms. The
construction uses the fact that there is a well-defined ini-
tial value problem on the spacetimes M, g that we con-
sider and that one can find an atlas of globally hyperbolic
neighborhoods which inherit their causal structure from
M.

Definition. A spacelike hypersurface Z of a spacetime
M, g is an initial value surface (for the Klein-Gordon
equation) if, for any smooth choice of P and its nor-
mal derivative on Z, there is a unique P on M satisfying
Kg=0.

We are concerned with time-nonorientable spacetimes
M, g which have no closed timelike curves and whose
double-covering M, g is globally hyperbolic; as noted in
Sec. I, any hypersurface Z C M is an initial value surface
if its lift to M is a Cauchy surface.

A local algebra of observables can be defined on any
neighborhood U c M for which (i) U, g~~, regarded as a
spacetime, is globally hyperbolic, and (ii) U is connected
and causally convex [15].

An open set U is causally convex if no causal curve
in M intersects U in a disconnected set. If U is not
causally convex, then some points that are spacelike sep-

arated in the spacetime U, g~ri are joined by a null or
timelike curve in M, and the commutation relations for
field operators cannot be deduced by the causal structure
of U. A causally convex neighborhood inherits its causal
structure &om M.

Let C = (Uj be an atlas for M, a collection of open
sets that cover M, for which (i) and (ii) above hold for
each set U E C, and (iii) each U C C has a Cauchy
surface that can be completed to an initial value surface
of M.

One would like to define a collection of local algebras
and states on all oriented subspacetimes U, g~U, satis-
fying (i)—(iii), where algebras on overlapping neighbor-
hoods are related by linear or antilinear isomorphisms 2
and states on overlapping neighborhoods are related by
Eq. (2.28). Although a consistent definition of a collec-
tion of states will require an additional unwanted restric-
tion on the size of neighborhoods, the structure of local
algebras coincides with that of the globally hyperbolic
spacetime.

Let C = ((U, 0), (U, O), . . .) be the collection of all
pairs with U E C and 0 a choice of orientation for U.
Given a neighborhood U F C, we associate with ori-
entations 0 and 0 algebras of observables, A(& &) and

A(~ ci), using the fact that U, g~U is globally hyperbolic to
construct the Green functions Gret& Gadvq +ret —+adv&

+adv —+ret ~

Definition. The algebras A(~ci) and A(&&) are the

Bee complex algebras generated by fP(F), I' C Co (U))
and (P(E),E C Co (U)) modulo the canonical commu-
tation relations (2.23).

The algebras are related by an antilinear isomorphism,
Z': A(U ci) ,'A(&&)& given by

&&(+) = &(+)
Zi = —i .

Writing m(I"):= —P(V' (n E)), with n the future
pointing normal with respect to orientation 0, we have

2'fr(E) = ~(I') . — (3.2)

Although conditions (i) and (ii) above resemble what is
called the local causality property [15I, the latter is much more
restrictive: the closure of a local causality neighborhood is
required to lie in a geodesically convex normal neighborhood.

We thus have a collection of pairs (AU, 0), related on
each overlap U g U' by the linear or antilinear isomor-
phism given in Eq. (2.24). Thus one can consistently de-
fine a pair of oppositely oriented algebras for every glob-
ally hyperbolic neighborhood U that inherits its causal
structure from M. By allowing a pair of algebras at each
point we evade Kay's "E-locality" condition [2].
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B. Nonexistence of states on the family of all local
algebras

cally equivalent observables in A and A' are related by
the antilinear map 2, with

Suppose now that one tries to define a state p as an
assignment of a PLF p(U ci) to the algebra A(~ ci) of each
oriented neighborhood (U, 0), satisfying overlap condi-
tions on intersections of neighborhoods. That is, in or-
der that the state p looks locally like a state on a globally
hyperbolic spacetime, deGned in Sec. II, it must obey the
same conditions on intersections of neighborhoods: For
any A in the subalgebra generated by P(F) 6 AU with
F c C, (UgV),

p(Uci)(A) = p(~ ci)(A) if 0 = 0,
p(/ci)(A) = p(UI ci~)(A') = p($7~ cubi)(A' t) if 0 g 0')

(3.3)

~ (F) = Z~(F) i = zi. (3.4)

Similarly, denote by P(F) and P'(F) the smeared fields
generating A:= A(& &~&) and A':= A(U &, ~&). Be-
cause the orientations C7 and Q' disagree on U, physi-

where A' = Z'A, with Z' given by Eq. (3.1). We show that
one cannot extend a generic state p~U ~~ to a collection
of states on all neighborhoods satisfying (i)—(iii).

The difIiculty is associated with pairs of neighborhoods
whose union is time nonorientable. Consider such a pair
(V, 0), (V', 0') C C. Because V U V' is time nonori-
entable, the intersection V g V' includes disjoint regions
U and U, such that the inherited time orientations agree
on U and disagree on U. The restrictions of the states
to U U are required to yield pairs of physically equiv-
alent states, seen by observers whose orientations agree
on U and disagree on U [see (3.8) and (3.9) below for the
precise definition]. Without loss of generality, we may

(by choosing open subsets of U and U, if necessary) as-
sume that U and U are globally hyperbolic and causally
convex. .

Each choice of orientation 0 and 0' gives a well-
defined quantum field theory on the globally hyperbolic
spacetime U:= ULIU, g~U. The difficulty arises &om the
relation between the two Geld theories, the requirement
that for each state p, there exists a physically equivalent
state p'. That is, corresponding to each orientation of U
is an algebra, A or A', generated by commuting subalge-
bras on U and U; and for each PLF p on the algebra A'
there must be a PLF p' on A' whose values on observable
quantities agree with those of p on the observables in A
having the same physical meaning.

We assume that any symmetric element of A (or A') is
an observable. Let A:= A(U &~&),

A':= A', , and
)

denote by P(F) and P'(F) the smeared field operators
that generate A and A'. Then, because the orientations
agree, physically equivalent observables are related by
the isomorphism X given by

—i =zi. (3 5)

For any PLF p on A, the corresponding PLF p' on A'
must satisfy

p'(ZA) = p(A), p'(2'A) = p(A), (3.6)

p'(2'A) = p(A), VA E A,
p'[(2'A)t] = p(A), VA E A. (3.7)

A

Now the product AA of two symmetric elements A E
A, A C A is again symmetric and corresponds to the
observable Z'A ZA c A'. Thus, we require

p'(ZA ZA) = p(AA). (3.8)

This final requirement uniquely determines p', because
any element of A can be written as a linear combination
of terms of the form AA with A and A symmetric. The
resulting p' satisfies

p'[ZA (Z'A) t] = p(AA), VA c A, A E A.

[This equation makes sense, because the factorization is
unique up to a complex number c—one can represent the
same algebra element as the product (cA)(c A)—and
the maps A ~ Z'A and A ~ (ZA)t are both linear. ]

We claim that the linear function p' deGned
by Eqs. (3.7) and (3.8) is not in general positive. Let
A E A, B C A, and a state pp satisfy

[A, At] = 1, (3.10)

and

pp(AtA) = pp(BtB) = 0. (3.11)

Using the Schwarz inequality, [pp(XA)
~

pp (XX t) pp (At A), for any operator X, one finds

pp(XA) = 0, and similarly, pp(X B) = 0. For the 'special
case where A = P(F) and B = P(G) for some (complex)
functions E and G with support in U and U, respectively,
and where pp ——]g)(@~ for a state ~Q) in a Hilbert space,
assumption (3.11) implies A~@) = B~g) = 0.

Now deGne a PLF pq by

pi(X):= pp[(l + cAB)X(1+cAtBt)], (3.12)

where c ) 0. We will show that the corresponding state
pi satisfying (3.9) is not positive. Consider the positive
operator ZO E A' defined by

for all syminetric A 6 A, A 6 A. Any element of A (or of
A) can be written as a linear combination, A = Ai+i Az,
of symmetric elements, Ai ——

2 (A+At), A2 ——z. (A —At).
Linearity of p and p' and Eq. (3.6) then imply

We will need to generalize (3.3) for this. ZO:= [(ZA)t —(ZB)t](ZA —Z'B) . (3.13)
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According to (3.9), we have

pi(XO) = pi(A A) + pi(B B) —2Re[pi(AB)]
2c(c —1)
1+c (3.14)

Thus, pi is nonpositive if c ( 1.
The state po satisfying (3.11) is not likely to be phys-

ically realistic, considering the fact that no annihilation
operator for the vacuum state in Minkowski space can be
localized. However, by choosing A and B to be approx-
imate annihilation operators for high-&equency modes,
one should be able to satisfy condition (3.11) approxi-
mately for a physically realistic state. Moreover, one can
show a similar nonpositivity with a weaker and physically
realistic condition

S[(A'A)'] ~KB'B)'] & (3.i5)

C. Collections of local states associated with
restricted atlases

We have argued that one cannot consistently define
a collection of local states p~U ~~ on an atlas that in-
cludes pairs of neighborhoods whose union is time nonori-
entable. We now consider restricted. atlases of neigh-
borhoods satisfying (i)—(iii) together with the follow-

ing additional condition: (iv) The closure of UU V is
time orientable for each U, V E C. One maximizes
the information available in such a collection of states
by considering a maximal collection C of neighborhoods
(i)—(iv) and covering M. Again we denote by C the
corresponding collection of all oriented neighborhoods,
C = ((U, O)iU c I.).

Condition (iv) is necessary to extend a local state to a
collection of states on neighborhoods of the atlas C. We
now show that it is sufIicient. We first consider the prob-
lem in the globally hyperbolic context and then return
to our time-nonorientable spacetimes.

as demonstrated in the Appendix.
In fact it is likely that a linear function in a large glob-

ally hyperbolic neighborhood UL, which contains an ini-
tial surface Z except for a measure-zero boundary cannot
be positive under the assumption of reasonable short-
distance behavior. The argument is as follows. Con-
sider a small neighborhood Us which contains part of
the above-mentioned boundary. The set Us P UL, can be
approximated near the measure-zero boundary by the left
and right Rindler wedges in Minkowski space. Now, any
physically realistic state on A~U ci~~ l should behave like
the Minkowski vacuum for high-frequency modes. The
Minkowski vacuum can be expressed as a linear combi-
nation of products of left and right Rindler states [16].
On the other hand, in UL, the approximate left and right
Rindler wedges have opposite time directions. Then, a
construction similar to that given above, with the left
and right Rindler wedges playing the role of U and U, is
likely to show that there is a nonpositive linear function
on A~U~ ci~~ l whose restriction to Us n UL, corresponds
to a PLF on A(~~ ci~~ ).

In a globally hyperbolic spacetime, one is &ee to
choose a state pU on the algebra of any globally hyper-
bolic subspacetime U, g~~ that satisfies conditions (i)—
(iii). One can then construct a global state of which

pU is the restriction to U. Elements of the * al-
gebra A~~~ l are linear combinations of products of
Klein-Gordon inner products uU (P, f) that involve only
data for f on a Cauchy surface Z~. A state is speci-
fied by the expectation values, p~[ur~(P, f) . .u~(P, g)],
or, equivalently, by n-point d.istributions,
~[&(*)."&(~)] ~[&(*). . &(~)~(~)] . ~[~(*) "~(g)]
where x, y, . . . , z g ZU. A state pU can be extended
to a state on the larger spacetime by adjoining values of

p[u(P, f) .~~(P, g)], where at least one of f, . . . , g has
support on the part of the full Cauchy surface Z that lies
outside of U.

The simplest way to extend pU to a global state is
as follows. First, one specifies a state in the interior of
the domain of dependence of Z(Z~. Call this state pU.
Then, we define the global state p:= pU pU. That is

c ~(4, fi) . ~(4, f-. )~(4, gi) . .~(4, g-)

: = cv ~U(4, fi) . .~v(4' f )

x pe ~u(y gi) "~g(y g-) (3.16)

M= (Rx Z)/Q, (3.17)

with

Q=TxI, (3.1S)

where T(t) = t, for t E R, —and I is an involution of
Z with no fixed points. We will denote the orientable
double cover by p: M —+ M, where M = R x Z. We
will write Z = Z/I, and, for simplicity, we will denote

by Z and Z the particular copies Z x (0) and p(Z x (0))
of these three-manifolds in M and M. The metric g is

where fi, . . . , f involve only data on Z~, whereas

gi, . . . , g involve only data on Z$Z~. The function p is
positive if pU and. pU are.

The global state p is rather unphysical in the sense
that there is no correlation between the field operators
on Z~ and those on Z$ZU. It is also likely that the
(renormalized) stress-energy tensor will be singular on
the light cone of the boundary of ZU, since the state p
is analogous to the direct product of the left and right
Rindler vacua in Minkowski space, which is known to
possess such singularities [17]. It will be interesting to
establish "extendibility" of states under some physical
requirements, such as the absence of singularity in the
stress-energy tensor. However, not much is known about
these issues, as far as we are aware. We suspect, but
have not verified. , that if one restricts consideration to
Hadamard states, then one can extend such a state on
U with suitable behavior at OV to a Hadamard state on
the full spacetime.

Now, consider a Lorentzian universe &om nothing, a
time-nonorientable spacetime M, g of the form (1.1),
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chosen to make M, g = p, g globally hyperbolic, with
Cauchy surface Z. Then Z is an initial value surface of
M, g.

Let C be an atlas for M satisfying conditions (i)—(iv).
On any oriented neighborhood (U, O) in the atlas, one
can &eely specify a state p~U ~~. We are to extend the
state to a collection of states on the algebras associated
with C, satisfying Eq. (3.3). To do this, we first lift the
local state to the globally hyperbolic covering spacetime
M, g, extend that lifted state to an antipodally symmet-
ric state on M, and then use the antipodally symmetric
state on M to provide a collection of states on the atlas
C.

Given an orientation OM on M, there is a 1-1 corre-
spondence between oriented neighborhoods (U, O~) and
neighborhoods U of M. IBecause the two lifts of (U, O~)
to M have opposite time orientation, there is a unique
lift of (U, O) to an oriented neighborhood (U, OU) for
which the orientations induced by O~ and O~ agree. ]
The atlas C on M is thus mapped to an atlas C of ori-
ented neighborhoods that cover M, all with orientation

M
The isomorphisms pI& . U —+ U induce algebra isomor-

phisms A~& &) a Alp ci), given by

&(+) ~ &(+o&IC). (3.19)

Thus the family of algebras (including both orientatioiis)
associated with the atlas C of M is identical to the fam-
ily of algebras (all with the same orientation) associated
with the oriented atlas C of M. Because M is globally hy-
perbolic, one can regard all local algebras as subalgebras
of a global algebra AM associated with the orientation

The family of algebras on M, however, has an addi-
tional structure that plays no role in quantum field the-
ory on the covering space itself, namely, the collection
of antilinear isomorphisms between oppositely oriented
neighborhoods (U, O) and (U, O). On M, these can be
regarded as antilinear isomorphisms between the alge-
bras associated with antipodally related neighborhoods,
or, equivalently, as an antilinear isomorphism Q of the
global algebra AM given by

Q4(+) = 4(+ o Q),
Qi = —i. (3.20)

A collection of states associated with an atlas C of M, g
that satisfies the overlap conditions (3.3) can then be re-
garded as a collection of states associated with the atlas
C on M; it must satisfy the usual overlap condition for a
collection of states on the oriented atlas C and the addi-
tional condition

pc (&) = pg(U) (Q&) . (3.21)

If the collection of states corresponds to a single state
on A~, the additional condition is simply the statement
that it is antipodally Symmet&, c.

Given a PLF p~ on the algebra Al~ ci ) associated
with an oriented neighborhood (U, OU) 6 C, one can ex-
tend it as follows to a collection of states on all algebras
associated with C. Again denote by Z an initial value

surface of M shared by U for which ZU is a Cauchy
surface for U, gI~ and denote by K the corresponding
Cauchy surface of M. Then pU can be regarded as a
PLF p& on A&, and p&&&) given by Eq. (3.21) can be

regarded as a PLF on the disjoint neighborhood Q(U).
We can now use the construction given above for globally
hyperbolic spacetiines to extend it to a PLF po on AM.
The PLF po will not in general be antipodally symmet-
ric, but we can obtain a PLF that is both antipodally
symmetric and positive by writing

p = -'(po+ po Q) . (3.22)

Then the restrictions of P to the subalgebras A& (and the
identification of the subalgebras with algebras associated
with C) yield a collection of states p~~ ci) satisfying the
overlap conditions (3.3) as required.

What are the implications of condition (iv), restrict-
ing possible atlases to neighborhoods small enough that
no two neighborhoods contain an orientation-reversing
curve? If our Universe has the topology of antipodally
identified de Sitter space and a volume larger than the
currently visible universe, one can choose an atlas that
includes open sets with spatial extent as large as the vis-
ible universe. This is enough to allow one mechanically
to replicate the observable part of quantum field theory
with a collection of states and algebras associated with
an atlas restricted by condition (iv).

From a more fundamental point of view, however, the
theory is not satisfactory. Let us reiterate, in hindsight,
the objections mentioned earlier. Because the correla-
tions that are allowed depend on the atlas, one obtains
a difFerent theory for every choice of atlas. There is no
unique way to pick a largest atlas satisfying conditions
(i)—(iv), and thus no unique theory. The missing correla-
tions mean that the information contained in a collection
of states associated with neighborhoods that cover an ini-
tial value surface of M is incomplete. One is not enti-

One can extend a collection of states given on an atlas C

in more than one way to an antipodally symmetric state on
M, because there are sets of points (and small neighborhoods
about them) among which no correlations are defined. Here
is an example of two antipodally symmetric algebraic states
on de Sitter space that are extensions of the same collection
of states on an atlas C. Let f and g be complex solutions
to the scalar wave equation on M (antipodally identified de
Sitter), whose initial data on an initial value surface Z have
support on disjoint neighborhoods U and V of Z that do
not both belong to a single neighborhood in C. Then no
correlations between points of U and V are de6ned by the
collection of states on M. Let also iur(f, f), i~(g, g) ) 0
with respect to a chosen time direction. Then let f and g
be the (normalized) antipodally symmetric lifts of f and g to
M. (Thus, f and g are mapped to their complex conjugates
under the antipodal map. ) Pick as a Hilbert space 'R on M a
Pock space associated with a state IO) that is annihilated by
the annihilation operators u(P, f) and u(P, g) corresponding
to f and g. Define an antipodally symmetric state by I@)
w(P f) cu(P, g) IO). Let p = 1/2(IO)(OI + Ig)(vPI). Then, for
small e, p' = 1/2(lo) (01+IV) (Ol)+.e(I0) (@I+ I@)(0I) is positive,
and p and p' give the same family of states on M.
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tied to regard a state as an assignment of local states to
a collection of local algebras restricted by condition (iv),
because a "state" so defined has no unique time evolu-
tion. Finally, in order to extend a local state to a family
of states on an atlas C, we used an antipodally symmetric
state on M. This suggests that by artificially restricting
the collection of neighborhoods, we are simply providing
a way to interpret an antipodally symmetric state: one
can make such a state consistent if one chooses neigh-
borhoods small enough. But if one includes all globally
hyperbolic neighborhoods that inherit their causal struc-
ture &om the spacetime M, g, an antipodally symmetric
state on the covering space does not yield a consistent
collection of local states on M, g.

A "theory" in which the correlations that one can mea-
sure are limited and depend on the choice of atlas might
be more acceptable if one regards, say, a path-integral for-
mulation as fundamental and relegates the usual quan-
tum field theory to a subsidiary position. In a path-
integral interpretation where the measuring instrument
is included in the system, the measurements that can
be made depend on the state of the instrument. Differ-
ent states of the instrument will pick out different ob-
servables. Measuring a correlation between field opera-
tors at two spacetime points plausibly enforces a choice
of time orientation at each of the two points in such a
theory. This suggests that each state might carry with
it an implicit atlas (or partial atlas) of oriented neigh-
borhoods, covering at least regions of spacetime where
measurements are effectively made. But this is a much
weaker structure than the one we have considered, and
it suggests that, if there is to be a sensible quantum Beld
theory on time-nonorientable spacetimes, condition (3.9),
which presupposes a physical meaning of correlations ir-
respective of time orientations, may be too strong.

IV. A NOTE ON FERMION FIELDS

It is common in the general-relativity literature to re-
gard two-component spinors as fields built from the fun-
damental representation of SL(2, C) [18,19,21,20]. Chiral
fermions, however, are really acted on by a larger group
that includes time reversal. That is, a Weyl spinor be-
longs to an action of a covering group of that subgroup
L+ of the full Lorentz group comprising the component of
the identity and the component of time-reversing, space-
preserving Lorentz transformations. Readers of earlier
work [21—23] may have been left with the misimpres-
sion that one cannot define two-component spinors on
time-nonorientable spacetimes, and the present section
summarizing work from [24] (see also the sequel [25] by
Chamblin and Gibbons) is intended as a clarification.

The group L+ has two double covers, Sin+ and Sin
depending on the sign of 7, where 7 is either of the two
elements of the covering group that correspond to the
choice T of time reversal. Only Sin acts on the usual
two-component spinors associated with Weyl neutrinos in
Minkowski space. In an orientable spacetime, the differ-
ence between an SL(2, C)-spinor structure and a Sin
spinor structure is unimportant, unless one wishes ex-
plicitly to discuss time reversal. In a time-nonorientable

spacetime, however, the difference is essential. Because
one cannot pick a bundle of time-oriented &ames, time-
nonorientable spacetimes have no SL(2, C)-spinor struc-
ture, and two-component spinors rely for their defini-
tion on an action of the covering group Sin of L+.
Other authors have considered generalized spinor struc-
tures on generic-nonorientable spacetimes [26—30]. For
these generic spacetimes, the situation is somewhat dif-
ferent, because one must consider actions of the full
Lorentz group; and the usual action of parity requires
four-component spinors.

Every Lorentzian universe &om nothing, every space-
time of the form (1.1), has a Sin+-spinor structure, but
only a subclass has a Sin -spinor structure. Inequivalent
Sin+- and Sin -spinor structures correspond to mem-
bers of two classes of homomorphisms from vri(M) to Zq,
where M is the orientable double cover of the spacetime
manifold M.

A precise statement is as follows.
Proposition Let M., g be a spacetime of the form (1.1)

and let M be its orientable double cover. Then the
inequivalent Sin -spinor structures (Sin -spinor struc-
tures) are in 1-1 correspondence with homomorphisms
h E IIi(M) that respect the antipodal map A and for
which h[c2] = +1 (h[c2] = —1), for every time-reversing
curve c in M. In particular, every such spacetime has a
Sin+-spinor structure.

Here c2 is a lift of c to M. A field of two-component
spinors is then a cross section of a bundle associated to a
Sin -spinor structure. Lorentzian universes &om nothing
for which E is a three-torus have both Sin+- and Sin
spinor structures, while antipodally identified de Sitter
space has only a Sin+-spinor structure and so does not
admit global fields of the usual kind of chiral fermions.
Even in a time-nonorientable spacetime that allows the
usual two-component spinors, however, one cannot con-
struct a global Lagrangian density that violates time-
reversal invariance.
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APPENDIX: NONPOSITIVITY OF p~ WITH
CONDITION (3.15)

In this appendix we prove that pi defined in Sec. III,
with a slight technical modification, is nonpositive under
condition (3.15). Let us first prove some general inequal-
ities. By noting

po[(& &)'] = po[&'&]+ po[(& )'(&)']
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and

pp[(A' A)'] = pp[(A'A)'l

+p [(At) A ] + p [(At) AAtA ], (A2)

pp(XtX)po(YtY) with X = AtAAt and Y = AtBBt,
we find s~ & sps2, where sp = 1+ 7e. In a similar man-
ner we find s2 & spsq. Then, &om these two inequalities
we have sqs2 & sp. Hence

we obtain (8] + s2) ( Bp(sy + 82) + 28o . (Alo)

pp[A A] & pp[(A A) ] & pp[(AtA) ] & e, (A3) Prom this we immediately obtain (A7), i.e. , sq+82 —2sp &
0.

where 0 & e & 1/~24. Using these inequalities, we find Now, given a PLP pp satisfying (3.15), we define a new
PI,F pi by

pp[(AA ) ] = pp[(A A+ 1) ] & 1+7e.

Then, using the Schwarz inequality, we have

~
po [At ABt B][

& po [(At A) ]po [(BtB)']

Hence

pp[AtABtB] & e.

(A4)

(A5)

(A6)

k = pp[(1+ ce' AB)(1+ ce ' AtBt)]
= p [(1+ce ' AtBt)(1+ ce' AB)]

+c pp([AB, AtBt]). (A12)

pq(X):= kpp[(1+ ce' AB)X(1+ce ' AtBt)], (Aj1)

where A: is the normalization factor given by

Next we will prove

pp[(AA ) BB ]+pp[AA (BB ) ] & 2(l+ 7e) . (A7)

Define
2'0:= [(2'A)t —e' (2'B)t](XA —e ' IB) . (A13)

The last term equals c2(AtA + BtB + 1). Hence k )
0 and pq is indeed a PLF. Next we consider a positive
operator ZO in the other neighborhood V' defined by

and

sg .——pp[(AA ) BB ]

82 .——pp[AAt(BBt)'].

(A8)

(A9)

Then, according to (3.8), the operator XO takes the value
for the state pz

p~ (ZO) = pq (At A) + pq (BtB) —2Re[e' pq (AB)] .

(A14)

By using the Schwarz inequality ~pp(XtY)~2 ( Hence, we have

k pz(XO) = pp[(l + ce' AB)(AtA+ BtB)(1+ce ' AtBt)] —2Re(e' pp[(l + ce' AB)AB(l + ce ' AtBt)]) .

(A15)

When we expand this expression, the sum of the terms proportional to e+' or e+ ' takes the form

A cos(ct' + hy) + Bcos(2cl + h2).

This can be made nonpositive by choosing o. appropriately. Hence, we may drop these terms and obtain

k p~(XO) & pp(AtA+ BtB) —2cpo(AAtBBt) + c (pp[(AAt) BBt]+pp[AAt(BBt) ]).
By using

pp(AAtBBt) pp[(AtA + 1)(BtB+ 1)]

(A16)

(A17)

we find

k py(XO) & (1 —2c)[pp(AtA) + pp(BtB)] —2c[1 + pp(AtABtB)] + c (pp[(AAt) BBt]+ pp[AAt(BBt) ]) . (A18)

Using inequalities (A3), (A6), and (A7) and assuming
c ( 1/2, we obtain

For the right-hand side to have a negative value for some
c, it is sufBcient to have

k pz (TO) & 2c (1 + 7e) —2c(1 + 2e) + 2e . (A19) (1+2e) —4(1 g 7e)e ) 0. (A2o)
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Hence, if

(A21)

1 + 2e —Ql —24e2 I
2(l + 7e) 2

' (A22)

and then pi(XO) ( 0 as claimed.
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