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Quantum probes of spacetime singularities
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It is shown that there are static spacetimes with timelike curvature singularities which appear
completely nonsingular when probed with quantum test particles. Examples include extreme dila-
tonic black holes and the fundamental string solution. In these spacetimes, the dynamics of quantum
particles is well defined and uniquely determined.
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I. INTRODUCTION

In general relativity, a spacetime is considered singular
if it is geodesically incomplete. This is intuitively reason-
able since geodesics describe the motion of test particles.
Thus, if a spacetime is (timelike) geodesically incomplete,
then the evolution of some test particle is not defined af-
ter a finite proper time. The use of geodesic incomplete-
ness is not only intuitively appealing, it has also been
quite useful in establishing that large classes of solutions
to Einstein's equations are singular.

There has been extensive debate over whether these
singularities in general relativity will be "smoothed out'
in quantum gravity. Various model systems have been
quantized with inconclusive results (see [1,2] for some
classic treatments). As a first step toward understand-
ing the relation between quantum theory and singulari-
ties, we consider the motion of a quantum test particle
in a classical singular spacetime. We will see that there
are static spacetimes with timelike singularities in which
a quantum test particle is completely well behaved for
all time. Even more significantly, these singularities do
not introduce any new ambiguities or require additional
boundary conditions in the definition of the quantum par-
ticle. The dynamics is uniquely defined by the 8pacetime,
just as on a nonsingular background.

Thus, even though these spacetimes appear singular
when probed with classical test particles, they are non-
singular when the test particles are treated quantum me-
chanically. Roughly speaking, the reason for the difFer-
ence is that these spacetimes produce an efFective repul-
sive barrier which shields their classical singularity, and
quantum wave packets simply bounce oK this barrier.
From this viewpoint, geodesics correspond to the geo-
metric optics limit of infinite frequency waves. Only in
this unphysical limit is the singularity reached.

Another motivation for studying the motion of quan-
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turn test particles in a classical spacetime comes from
string theory. Classical solutions to string theory are
associated with two-dimensional conformal field theo-
ries. These theories describe the motion of quantum test
strings in a background classical geometry. A solution
to string theory is singular if there does not exist a well
d fined evolution for these quantum test strings. Since
a string consists of an infinite number of modes which
represent particles of increasing mass and spin, studying
the behavior of a single quantum test particle will give
a preliminary indication of the behavior of a test string.
(Unfortunately, these results will not be conclusive since
even if the quantum particle is singular, there may exist
an equivalent "dual" description of the solution in string
theory which is nonsingular [3].)

If one wants to investigate quantum probes of singular-
ities, one needs a condition in the quantum theory of the
test particle which determines whether or not it is singu-
lar. The general definition of a singularity in a quantum
theory is still controversial. Some people have suggested
looking at the expectation value of certain "physical op-
erators" to see whether they diverge. The notion of a
singularity that we will study is somewhat difFerent. We
will be interested in particular in the analogue of a time-
like singularity. As such, we will say that a system is
nonsingular when the evolution of any state is uniquely
defined for all time. If this is not the case, then there
is some loss of predictability and we will say that the
system is singular.

To illustrate this, consider nonrelativistic quantum
mechanics on a bounded interval. Note that this sys-
tem is classically singular as the associated 'spacetime'
is geodesically incomplete. One can initially define the
Hamiltonian H to be the Laplacian acting on wave func-
tions that vanish smoothly at the boundary. This oper-
ator is symmetric, but not yet self-adjoint. There are in
fact many so-called extensions of this operator (given by
defining H to act as the Laplacian on a slightly larger do-
main) which are self-adjoint and which correspond to the
difFerent boundary conditions which might be imposed at
the edges. One of these extensions must be chosen in or-
der to evolve quantum states. This is directly analogous
to a typical timelike singularity in classical general rela-
tivity, as in this case one must make a choice of boundary
conditions at the singularity. In both cases, the evolution
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is not unique until extra information is specified. One
can imagine another type of singularity in nonrelativistic
quantum mechanics which is more analogous to a space-
like singularity than a timelike one. This occurs if H is
time dependent and is self-adjoint for t ( to but fails to
be self-adjoint (or eveii fails to exist) at t = to H. ere,
however, we will concentrate on the case of timelike sin-
gularities.

The hydrogen atom is the prime example of a singular
classical theory which is nonsingular quantum mechani-
cally. There is a direct analog of this for singular geome-
tries. Consider the (nonrelativistic) quantum mechan-
ics of a free particle moving on an (n + 1)-dimensional
Reimannian manifold M, g. The Hilbert space consists
of square integrable functions on M with the measure
given by the proper volume element. The Hamiltonian
is proportional to the Laplacian on the manifold. It is
known that if the metric g is geodesically complete, then
the Laplacian has a unique self-adjoint extension [4] (op-
erators for which this is the case are called essentially
self-adjoint). This means that if the space is classically
nonsingular, then it is nonsingular quantum mechanically
as well. We are interested in determining whether the
metric can be geodesically incomplete and still have a
unique self-adjoint Laplacian.

It is easy to see that the answer is yes. Consider a
spherically symmetric metric

II. STATIC SPACETIMES

A. General condition for quantum regularity

For a static, globally hyperbolic spacetime, there is a
well defined quantum theory for a single relativistic par-
ticle (see, for example, [6]). We will show that for certain
static spacetimes with timelike singularities, this is still
the case. We will consider a relativistic particle with
mass m & 0, which is described quantum mechanically
by a positive frequency solution to the wave equation of
mass m. Some time ago, Wald discussed solutions to the
(massless) wave equation in the presence of singularities
[7]. Our discussion will be based on his approach.

Consider a static spacetime with timelike Killing field
Let t denote the Killing parameter, and Z denote a

static slice. -The wave equation (7'"V„—m )@ = 0 can
be rewritten in the form

= VD*(VD;Q) —V m g,Ot2
(2.1)

geodesically incomplete unless p = 1. So there is a large
class of geometries which are singular classically, but not
quantum mechanically. They are geometric analogues of
the hydrogen atom.

d8 = dr + R (r)dO

where dO is the standard metric on the n sphere. We
first take the domain of the Laplacian to consist of
smooth functions with compact support away from the
origin. The key question is whether the resulting oper-
ator is essentially self-adjoint. A sufhcient condition for
this to be the case is to consider solutions to D /+i@ = 0
and show that such solutions are not square integrable
[5]. Using separation of variables, g = f (r)Y(angles), we
obtain the radial equation

(1.2)

where a prime denotes the derivative with respect to r
and c & 0 is an eigenvalue of (minus) the Laplacian on the
n sphere. Essential self-adjointness is in fact equivalent
[5] to the statement that, for each c and each choice of
+i, there is one solution to (1.2) which fails to be square
integrable near the origin. It sufBces to consider the case
c = 0 since increasing c increases the divergence of one
solution at r = 0. Near the origin, if B = r&, then the
two solutions are f = r where n = 0 or n = 1 —np (note
that the +if term is negligible near r = 0). If p & 3/n,
the latter solution fails to be square integrable with re-
spect to the proper volume element r+ drdp, where dp
is the volume element on the unit n sphere. We con-
clude that any metric of the form (1.1) which behaves
like R(r) = r" with p & 3/n near the origin is nonsingu-
lar in quantum mechanics. Of course, the metric (1.1) is

where V = —("(&, and D is the spatial covariant
derivative on Z. Let A denote (minus) the operator on
the right-hand side:

A = VD'(VD, ) +—V2m2. (2.2)

(2.3)

This argument seems to imply that the Laplacian in three-
dimensional Euclidean space is not essentially self-adjoint.
This is indeed the case if one initially de6nes the operator
only away from the origin and is consistent with the fact that
R, —{0)is geodesically incomplete. However when the space
is regular at the origin (and only in this case) one can re-
quire D Q + iQ = 0 at the origin as well. This removes the
ambiguity.

Consider the Hilbert space 'R of square integrable func-
tions on Z with the inner product V times the proper
volume element. If we initially define the domain of A to
be smooth functions of compact support on Z, then since
V2m2 & 0, A is a positive symmetric operator. (Recall
that in general relativity, the "singular points" are not
included as part of E.) We note that A of 2.2 is also a
real differential operator so that its deficiency indices [5]
are always equal and self-adjoint extensions always exist.
The key question is whether such an extension is unique.
If it is, then this extension A~ is always positive definite
and we may define its positive self-adjoint square root.
Then the wave function for a free relativistic particle sat-
isfies
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with solution

@(t) = exp [
—it(A@) ~ ]g(0). (2.4)

B. Examples

In this section we will consider some examples of static
solutions that have recently been discussed in the litera-
ture. All of these solutions are geodesically incomplete,
and we wish to determine whether they are singular when
probed by quantum test particles. We first consider a
general static, spherically symmetric metric in n+ 2 di-
mensions,

The right-hand side is well defined using standard prop-
erties of self-adjoint operators. If there is more than one
self-adjoint extension of A, then (2.3) and (2.4) are am-
biguous. This is our criterion for calling the quantum
theory singular.

Wald [7] considered the second order wave equation.
He did not require the operator A to be essentially self-
adjoint, but instead picked an arbitrary positive definite
self-adjoint extension and studied the resulting solution.
He showed that it agreed with the usual Cauchy-evolution
inside the domain of dependence of the initial surface.

is globally hyperbolic. It follows immediately that the
operator A must be essentially self-adjoint. This is be-
cause, if there were more than one self-adjoint extension,
there would be two distinct evolutions of initial data to
the wave equation, of the form described by Wald [7]. But
these solutions must agree with ordinary Cauchy evolu-
tion (which is unique), so all self-adjoint extensions of A
must agree. We will therefore consider only spacetimes
with timelike singularities.

Consider first the (four-dimensional) negative mass
Schwarzschild solution. It is easy to verify that both
solutions to (2.6) are locally normalizable near r = 0.
Thus, it remains singular even when probed with quan-
tum test particles. This is fortunate, since if the negative
mass Schwarzschild solution was nonsingular in some the-
ory, then that theory would probably not have a stable
ground state [8]. One can also verify that the Reissner-
Nordstrom solution remains singular for all values of the
charge to mass ratio Q/M. It is interesting to note that
the M ( 0 Schwarzschild solution is timelike geodesi-
cally complete. As a result, a massive relativistic clas-
sical particle in this spacetime is nonsingular while the
corresponding quantum theory is singular. We thus have
a counterexample to Wheeler's "rule of unanimity" [9].

We now consider four-dimensional, charged dilatonic
black holes. They are extrema of the action

ds V dt + V dr + B dB~ (2 5) d 2:g—g R —2(V'p) —e ~E (2.7)
where V and B are functions of r only. As discussed
above, the crucial question is whether the spatial op-
erator A (2.2) is essentially self-adjoint. Consider the
equation AvP + i@ = 0. Separating variables
f (r)Y(angles) leads to the following radial equation for

where P is the dilaton, I" is the Maxwell field, and a
is a constant which governs the strength of the dilaton
coupling. For a = ~3, this action is equivalent to Kaluza-
Klein theory. In other words, given an extremum of (2.7)
with this value of a, one can reconstruct a solution of the
five-dimensional vacuum Einstein equation. The charged
black hole solution to this theory (for general a) is given
by a metric of the form (2.5) with [11]

The operator A will be essentially self-adjoint if one of
the two solutions to this equation (for each c and each
sign of the imaginary term) fails to be square integrable
with respect to the measure B V near r = 0.

Suppose that, for m = 0, one solution of (2.6) fails to
be square integrable near the origin. Then, because m

2
0 and V & 0, the addition of the term —

&2 acts like a
repulsive potential in quantum mechanics. That is, it will
increase the rate at which the larger solution diverges at
the origin while driving the other more quickly to zero.
It follows that if A is essentially self-adjoint for m = 0,
it is essentially self-adjoint for all m & 0 as well. Thus,
we need only consider the massless case below.

The metric (2.5) can have a null singularity instead of
a timelike one. The difference is seen as follows. Define
a new radial coordinate dr, = dr/V, so that radial null
geodesics follow curves of constant t+ r, . If the singular-
ity is at a finite value of r„then it is timelike. But if it
is at r, = —oo, then it is null. (A Penrose diagram of the
resulting spacetime would resemble the region r ) 2M of
the Schwarzschild solution, with a singularity along the
horizon r = 2M. ) If the singularity is null, the spacetime

2&2
(1+& )B = r 1— (2.8)

Notice the product of these two quantities is independent
of a and is simply

V R = (r —r+)(r —r ). (2.9)

For r+ ) r and a g 0, this metric describes a black
hole with an event horizon at r = r+ and a singularity
at r = r . (For the special case a = 0, r = r denotes
the inner Cauchy horizon of the Reissner-Nordstrom so-
lution which is nonsingular. ) The extremal limit r+ ——r

A similar, but simpler, counterexample is given by the
Hamiltonian p + 1/z for a nonrelativistic particle on the half
line x ) 0.
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describes a globally static spacetime with a curvature sin-
gularity at r = r+. This singularity is null for a & 1, but
is timelike for a ) 1.

The operator A (2.2) must be essentially self-adjoint
for r+ ——r and a & 1 since the singularity is null. We
wish to investigate whether this continues to be the case
fora) 1. Tobegin, let p=r —r+, so VB = p.
Since a ) 1, V ) p so that the imaginary term in (2.6)
may be ignored. Then one solution to (2.6) behaves like

f = p with n ( —1 near the singularity p = 0. The
least divergent solution, o. = —1, corresponds to the S
wave, c = 0. From (2.8) we see that this solution has
norm

which is a curvature singularity. This singularity is null
for D & 6 but is timelike for D = 5. Thus, A must be
essentially self-adjoint for D & 6. By performing an anal-
ysis similar to that above, one can show that A remains
essentially self-adjoint when D = 5. So this provides an-
other example of a classically singular spacetime which
is nonsingular quantum mechanically.

However, this result is not directly applicable to sin-
gularities in string theory since we have not included the
eÃect of the dilaton on the test particle. Recall that the
lowest mode of a (bosonic) string is the tachyon which is
coupled to the dilaton via

(2.10)
S= d x —ge V' +m (2.i4)

which diverges near p = 0 for a & 3. Thus, extremal
dilaton black holes with 1 ( a & 3 are examples of static
spacetimes with timelike singularities for which quantum
test particles are well behaved. The fact that the solu-
tions (2.8) have infinite repulsive barriers when az ) 1
was noticed earlier by Holzhey and Wilczek [10]. How-
ever, their analysis did not distinguish between a greater
than three and less than three. We now see that for
a & 3 quantum mechanics does not exclude the solution
that grows near p = 0.

Notice that extreme Kaluza-Klein black holes are in-
cluded in the class of solutions which are quantum me-
chanically nonsingular. One might wonder if this is re-
lated to the fact that the Pve-dimensional metric for an
extreme magnetically charged black hole does not have a
curvature singularity. The answer is clearly no. First, our
analysis applies to both electric and magnetically charged
solutions [since the metric (2.8) is the same] and the elec-
trically charged solution remains singular in five dimen-
sions. Second, if one dimensionally reduces the (4 + m)-
dimensional Einstein action to four dimensions one can
obtain the action (2.7) with a = g(m+ 2)/m [11). So
all of these extremal Kaluza-Klein black holes are non-
singular quantum mechanically, even though most have
curvature singularities in 4 + m (as well as four) dimen-
sions;

As another example, we consider the fundamental
string solution discovered by Dabholkar et al. [12]. This
was originally found as a solution to the low energy string
action

For a static spacetime, the wave functions of the tachyon
modes satisfy the equation of motion

Ot2
(2.15)

where

A = Ve ~D; —[Ve ~D'@] + m V (2.16)

and the notation is the same as in (2.2). Since m2 ( 0 for
the tachyon, we must keep the mass term for now. This
operator is symmetric with respect to an L 2 inner prod-
uct with measure equal to the proper volume element
divided by Ve @.

We now show that A is essentially self-adjoint for the
D = 5 fundamental string (2.12). The dilaton for this
solution is given by e~ = V. After separating variables
@ = f (r)e'"'Y(angles), the equation A@ + i@ = 0 yields
the following radial equation for f:

2, t'k c ) 2 ff"+ f' —
~

—+ —
~
f —m f +i = 0, (2.17)r lV2 r2) V2

where c ) 0 is again an eigenvalue of (minus) the Lapla-
cian on the sphere. Since V = r/M near r = 0, we see
that the k term, the mass term, and the imaginary term
are all negligible near the origin. Thus, one solution in
this region is f = r where a ( —1. This solution always
has infinite norm near r = 0 since the appropriate inner
product is

dD~ ge
—2@ Q+ 4 Q 2 ~2

12
(2.ii) (flf) = f ~~

——J lf(2Mrdr (2.is)

ds =V ( dt +dz )+d2:;d—x', (2.i2)

V =1+
r (2.i3)

where r = x;x'. This solution describes the field out-
side of a straight fundamental string located at r = 0,

(where D is the spacetime dimension and H is the three-
form) but was later shown to be an exact solution to
string theory [13]. The metric is given by

Therefore, even when the coupling to the dilaton is in-
cluded, the singularity in the fundamental string does not
prevent unique evolution of the tachyon. This suggests
that other modes of the string will similarly have unique
evolution, but the e6'ect of spin needs to be investigated.

Another exact solution to string theory is an orbifold,
which is constructed by starting with Hat Euclidean space
and identifying points under the action of a discrete
group. If the group has fixed points, then the quotient
is,geodesically incomplete. Nevertheless, it is believed
that string theory is well behaved on these backgrounds
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[14]. From our discussion in the introduction, it is clear
that for a two-dimensional orbifold (which is a cone),
the operator governing evolution of a scalar test particle
(or the tachyon) is not essentially self-adjoint. This sug-
gests that the propagation of test strings is also not well
defined without further specification of boundary condi-
tions at the singularity. This is not a problem in dimen-
sions greater than three, so the most commonly discussed
case of a six-dimensional orbifold is nonsingular for quan-
tum test particles.

C. Scattering

The evolution defined by A& has all of the nice prop-s/2

erties of familiar quantum mechanical systems. By con-

struction, the evolution is unitary and the energy A&
is conserved. However, we have not yet ruled out the
possibility that an incoming wave packet might remain
localized near the singularity, resulting in a nonunitary S
matrix. Indeed, we expect this will happen whenever the
singularity is null, since the wave then takes an infinite
(coordinate) time to reach the singularity. However, we
now show that, at least for highly symmetric cases, this
cannot occur for timelike singularities. For such cases,
the S matrix is unitary.

Consider a spherically symmetric metric of the form
(2.5) with a timelike singularity at the origin. As usual,
spherical symmetry and time independence imply that
energy and angular momentum are conserved in the scat-
tering so that we can confine our attention to the radial
eigenfunction equation. Since any eigenstate of A& is
also an eigenstate of A~, it is in fact sufficient to study
wave functions f that solve

III. EXTENSIONS

(3.1)

with A a symmetric operator on the Hilbert space 'R of
Sec. IIA and any self-adjoint extension A~ of A, the
field

P(t) = cos[A& t]g(0) + A& sin[A& t]P(0) (3.2)

82
is the unique solution of &~, P = —A@/ [which takes the
value P(0) at t = 0 and has time derivative P(0) at t = 0]
and also satisfies (3.1) in any hyperbolic domain. Thus,
when A is essentially self-adjoint, there is a unique so-
lution of this form and no boundary conditions need be
imposed.

What about the general nonstatic case? It is not diffi-
cult to make the first steps. By reformulating the general
wave equation in the first order form

In the previous section, we considered only the prop-
agation of quantum test particles on a static (time-
independent) background. Any extension to more gen-
eral cases will clearly require a change of outlook, if not of
techniques. Indeed, for a general time-dependent back-
ground there is no consistent quantum theory of a single
free particle in the usual sense and the only appropriate
description is in terms of quantum field theory. Since
linear quantum field theory is defined by the solutions
of classical field theory, the essential step is to study the
evolution of classical test fields on a singular background.

This may not be as difficult as it sounds. As described
in [7], techniques similar to those applied here can be
used to define classical Geld evolution in static singular
spacetimes. Given a scalar field P satisfying a wave equa-
tion of the form

Let B = r" and V = r& near the origin, and consider
Grst the case c = m = 0. Since the singularity is timelike,
q ( 1/2. Thus, the term Ef/V is negligible near r = 0,
and the two solutions to (2.19) take the form f = r with
o. = 0, 1 —2q —np. By our previous discussion, the con-
dition that the classical singularity not afI'ect quantum
test particles is that the solution r ~ " must not be
square integrable near r = 0 with respect to the measure
B V dr. Since this measure is r " near the origin,
the condition that the singularity be timelike (q ( 1/2)
guarantees that the other solution r is always square
integrable. If c and m are nonzero, the above equa-
tion is modified by the addition of a repulsive potential
(assuming nontachyonic particles) which increases the di-
vergence of the more singular solution and forces the less
singular solution to vanish more quickly. Thus, for any
c & 0 and m & 0, there is exactly one allowable solution
of (2.19). It is real, with equal incoming and outgoing
flux. Thus, the S matrix is unitary. A similar argu-
ment establishes unitarity for nontachyonic particles in
any cylindrically symmetric spacetime. For the special
case of the D = 5 fundamental string solution (2.12),
one can verify that tachyon scattering is also unitary.

~(~)
Bt p(t)

0 1 P(&)
—A(t) iB(t) j(g)

(3 3)

it is clear that our task is to define the path ordered
exponential

&(t) t' ' o 1 & &( )= Pexp~
P(t) ~ 0 —AiB

~ j(0)
(3.4)

As before, we will need to work in certain Hilbert spaces,
and the choices

(3.5)

are natural. Note that in the static case v —gg d Kq
is V times the proper volume element on Eg, so that
this is a straightforward generalization of 'R &om Sec.
IIA. In the special case of a static spacetime, the path
ordered exponential is well defined and gives the solution
(3.2). The case in which the spacetime is stationary (so
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that 'R, A, and B are time independent) and [A, B] = 0
is also straightforward to exponentiate and yields

(P(t) = e" ~ cos
~

—QB2+4A [P(0)

2
sin

v'B2 + 4A

x
[ P(0) —i —$(0) [

.
f.
itB/2

(3.6)

While the general time-dependent case remains to be
investigated, we mention that the following two results
can be derived by elementary methods. First, by using an
'interaction picture, ' it is readily shown that if A(t) and
B(t) differ from the operators associated with either of
the solutions (3.2) or (3.6) by an appropriately bounded
perturbation, then there is a unique (and well defined)
solution of the form (3.4). Also, by assuming that a
solution of the form (3.4) is well defined, it is readily
shown (using much the same method as [7]) to agree with
the solution of the usual wave equation in any hyperbolic

domain. Such a solution also conserves the Klein-Gordon
inner product over the entire spacetime.

Whether such ideas can be developed further is an in-
teresting question for future research. Also of interest
would be a search for corresponding results for higher
spin fields. This would be an important step toward ex-
tending these results from test particles to test strings.
Since the (four-dimensional) Maxwell equations are con-
formally invariant, one can construct examples of singu-
lar spacetimes in which Maxwell fields are well behaved
but scalar fields are not. If it is found that a large class of
fields have nonsingular evolution on some singular back-
ground, then such a spacetime need not be seen as a
threat to cosmic censorship. Instead of being shielded
by a horizon, the timelike singularity would be shielded
by the effective repulsive barrier that it presents to wave

propagation.
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