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We consider two quantum cosmological models with a massive scalar field: an ordinary Friedmann
universe and a universe containing primordial black holes. For both models we discuss the complex
solutions to the Euclidean Einstein equations. Using the probability measure obtained from the
Hartle-Hawking no-boundary proposal we find that the only unsuppressed black holes start at the
Planck size but can grow with the horizon scale during the roll down of the scalar field to the
minimum.
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I. INTRODUCTION

In this paper we ask how likely it is for the universe to
have contained primordial black holes. We investigate
universes which undergo a period of inflation in their
earliest stage, driven by a scalar field P with a poten-
tial V(P) with a minimum V(0) = 0. The results do not
depend qualitatively on the exact form of the potential,
so for simplicity we consider a massive minimally cou-
pled scalar V(P) = zm2$2. The scalar field starts out at
a large initial value Po and acts as a cosmological con-
stant for some time until it reaches the minimum of its
potential and inflation ends. We consider two difFerent
types of spacetimes: in the first, the spacelike sections
are simply three-spheres and no black holes are present;
in the second, they have the topology S x S, which is
the topology of the spatial section of the Schwarzschild-
de Sitter solution. Thus these spaces can be interpreted
as inflationary universes with a pair of black holes. In
the inflationary period, the first type will be similar to
a de Sitter universe, the second to a Nariai universe [1].
To find the likelihood for primordial black holes, we as-
sign probabilities to both types of spacetimes using the
Hartle-Hawking no-boundary proposal (NBP) [2]. This
is the only proposal for the boundary conditions of the
universe that seems to give a well-defined answer in this
situation. It is not clear how to apply the so-called "tun-
neling proposal" in the S x S case. If one takes the
action to appear with the opposite sign as is done in the
S case, one would reach the conclusion that a universe
with a pair of black holes was more likely than a universe
without, and that the probability would increase with the
size of the black holes. This is clearly absurd.

The NBP framework is summarized in Sec. II. In
Secs. III and IV we review its implementation for cases
with a fixed cosmological constant. In Sec. V we intro-
duce a massive scalar field and discuss the solutions of

II. THE WAVE FUNCTION OF THE UNIVERSE

The Hartle-Hawking no-boundary proposal states that
the wave function of the universe is given by

@o(h;, , o&M] = fo(g„,o) exp( I(g„,4)], (2.1)—

where (h;s, CpsM) are the three-metric and matter field on
a spacelike boundary OM and the path integral is taken
over all compact Euclidean four geometries g„ that have
BM as their only boundary and matter field configura-
tions 4 that are regular on them; I(g„„,4) is their action.

The gravitational part of the action is given by

d x g'~'(R —2A)16'
d'~ h. '~'K,

aM
(2.2)

where B is the Ricci-scalar, A is the cosmological con-
stant, and K is the trace of K,~, the second fundamental
form of the boundary BM in the metric g. For the origin
of the boundary term, see, e.g. , Ref. [3].

In the standard 3+1 decomposition [4], the metric is
written as

the Euclidean Einstein equations for the S case. They
will be slightly complex due to the time dependence of
the effective cosmological constant (mP) 2. We obtain
the Euclidean action for those solutions. In Sec. VI we

go through a similar procedure for the S x S case. We
find that the black hole grows during the inflationary pe-
riod, a noteworthy difI'erence to the Nariai case with a
fixed cosmological constant. In Sec. VII we use the ac-
tion to estimate the relative probability of the two types
of universes. We find that black holes are suppressed for
all but very large initial values of Po.

'Electronic address: R.Boussoodamtp. cam. ac.uk
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dsz = N dr + h;;(dx'+ N'dr)(dz~ + Nsdr) (2.3).
Assuming that the NBP is satisfied at w = 0, the Eu-
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clidean action then takes the form

TBM

Sd d h~
16m 0

x (—K .K'' + K + R —2A)

d~g/ ~
8m 0

(2 4)

Here 3B is the scalar curvature of the surface, and tensor
operations are carried out with respect to the surface
metric 6;~. In the first term the boundary terms are
implicitly subtracted out at v = 0 and 7 = 7gM. But
it is an essential prescription of the NBP that there i8
no boundary at 7 = 0. So the second term explicitly
adds the contribution f'rom v = 0 back in. It vanishes for
universes with spacelike sections of topology S, but can
be nonzero for the topology S x S2.

There are unresolved questions on how to choose the
integration contour and make the integral converge [5],
but we shall not discuss them here. Instead, we will use
the semiclassical approximation

q (~sM) =qsM. (2.11)

(iii) The q must remain nearly real in the Lorentzian
vicinity of the end point:

This allows us to reintroduce a concept of Lorentzian
time in such regions: We find the integral curves of
V'I in minisuperspace and define the Lorentzian time
t as the parameter naturally associated with them. Re-
versely, if we demand that the NBP should predict clas-
sical Lorentzian universes at suFiciently late Lorentzian
time, condition (2.10) must be satisfied. This means that
there must be saddle-point solutions for which the path
in the v plane can be deformed such that it is eventually
almost parallel to the imaginary w axis and that all the
q should be virtually real at late Lorentzian times. In
summary, the following conditions must be met.

(i) The NBP must be satisfied at w = 0.
(ii) At the end point 7sM of the path, the q must

take on the real values qM of the arguments of the wave
function:

CJO[h;, , @sM] = ) A„e '", (2 5)
& dq-

Re
~de )

—0. (2.12)

)@0[h;„C'aM](' = e ' (2 6)

where the sum is over the saddle points of the path in-
tegral, i.e., the solutions of the Euclidean Einstein equa-
tions. In this paper, we neglect the prefactors A and
take only one saddle point into account for a given argu-
ment of the wave function. So the probability measure
will be

III. THE de SITTER SPACETIME

In this and the next section we review vacuum solu-
tions of the Euclidean Einstein equations with a cosmo-
logical constant A. First we look for a solution with
spacelike sections S . Therefore we choose the metric
ansatz

where I ' is the real part of the Euclidean saddle-point
action.

By considering only spaces of high symmetry (homo-
geneous Ss or S x S spacelike sections) we restrict the
degrees of &eedom in the metric to a finite number q
The Euclidean action for such a minisuperspace model
with bosonic matter will typically have the form

dq dq~I= — N& —
p +U q

2 d7- d7-
(2.7)

The saddle points will in general be complex solutions
q (w) in the v plane. In the semiclassical approximation
the following relations for the real and imaginary parts
of the saddle-point actions hold:

ds = N(7)d~ + a(~) . dOs. (3.1)

The Euclidean action is

3~ f a' A ,)I = —— Nd~a~ +1 ——a
4 qN' 3

(3.2)

(3.3)

Variation of a and N yields the equation of motion

~ ~a—+H =0
a

(3.4)

An overdot denotes difFerentiation with respect to v. . We
define

——(V'I ') + —(V'I ) + U(q ) = 0, (2.8)
and the Hamiltonian constraint

~g Re ~yIm 0 (2.9)
a 1———+H2 =0
a2 a2 (3.5)

where the gradient and the dot product are both with
respect to f ~ Therefore Ii. will be a solution of
the Lorentzian Hamilton-Jacobi equation in regions of
minisuperspace where 4' has the property that a(~) = II 'sinII~ (3.6)

in the gauge N = 1. A solution of Eqs. (3.4) and (3.5) is
given by

(VI ) «(VI'-) . (2.10) It is called the de Sitter spacetime. The NBP is satisfied
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a(r ) „. = H coshHr
2H

(3.7)

This describes half of an ordinary Lorentzian de Sitter
universe.

So with the above choice of path, Eq. (3.6) corre-
sponds to half of a real Euclidean 4-sphere joined to a
real Lorentzian hyperboloid of topology R x S . It can
be matched to any agM ) 0 by choosing the end point
appropriately, and for ay~ ) H the wave function os-
cillates and a classical Lorentzian universe is predicted.

The real part of the action for this saddle point is

I~,'»«« ——— dr 'a (H a —1) = — . (3.8)
0

The Lorentzian segment of the path only contributes to
IIm

IV. THE NARIAI SPACETIME

We still consider vacuum solutions of the Euclidean
Einstein equations with a cosmological constant, but we
now look for solutions with spacelike sections S x S .
The corresponding ansatz is the Kantowski-Sachs metric

ds = N(r) dr ~ a(r) dx + b(r) dO,'. (4.1)

The Euclidean action is

(b~ b abI = —7r Nd~a
~

+2—
~ +1 —Ab(¹aN~

+7r —ab —2abb
7=0

(4.2)

at w = 0, where a = 0 and
&

——1. If we choose a path
along the v

' axis to v. = z~, the solution will describe
half of the Euclidean de Sitter instanton S . Choosing
the path to continue parallel to the r axis, a(r) remains
real and the conditions (i) to (iii) of the previous section
will be satisfied:

w = 0, where

a=0, a=1, b=bo, andb=0. (4.8)

(There is a second way of satisfying the NBP for the
Kantowski-Sachs metric [6], but it will not lead to a
universe containing black holes. ) The path along the

axis describes half of the Euclidean Nariai instan-
ton S x S . Both two-spheres have the radius H
Continuing parallel to the w axis, the solution remains
real:

a(r' ) „. . = H ' cosh Hr'
2H

b(r™)„. = H

(4.9)

(4.10)

This describes half of a Lorentzian Nariai universe. Its
spacelike sections can be visualized as three-spheres of
radius a with a "hole" of radius b punched through the
North and South pole. This gives them the topology of
S x S . Their physical interpretation is that of three-
spheres containing two black holes at opposite ends. The
black holes have the radius b and accelerate away Rom
each other as a grows. The Nariai universe is a degener-
ate case of the Schwarzschild —de Sitter spacetime, with
the black hole horizon and the cosmological horizon hav-
ing equal radius [7].

The above path corresponds to half of a two-sphere
joined to a two-dimensional hyperboloid at its minimum
radius H, cross a two-sphere of constant radius H
It can be matched to any agM ) 0 but only to bg~ ——

H so the wave function will be highly peaked around
that value of b.

The first term of Eq. (4.2) vanishes and so the real part
of the action for the Nariai solution comes entirely from
the second term:

(4.11)

Now we compare the probability measures correspond-
ing to the de Sitter and Nariai solutions. We find that
in these models with a fixed cosmological constant pri-
mordial black holes are strongly suppressed, unless A is
at least of order 1 in Planck units:

(4.3)

Variation of a, b, and N gives the equations of motion
and the Hamiltonian constraint:

b

b

b ab a
b ab a

ab b 1
2—+ ———

ab b~ b~

A solution is given by

ab——=0
ab

+H' =0,

= 0.

(4.4)

(4.5)

(4.6)

a(r) = H sinHr, b(7) = H = const. (4.7)

It is called the Nariai spacetime. The NBP is satisfied at

where the second term is the surface term of equation
(2.4). We define

exp (—2IN'„;) = exp
i

R.

f 37ri(( exp
~ & ~

= exp (—2I&,'s;«„j .

(4.12)

V. AN INFLATIONARY MODEL %WITHOUT
BLACK HOLES

Of course, we know that A —0, and therefore the mod-
els of the previous section are rather unrealistic. How-
ever, in inQationary cosmology it is assumed that the very
early universe underwent a period of exponential expan-
sion. It has proven very successful to model this behavior
by introducing a massive scalar field 4 with a potential
&m 4 . If this field is suKciently far from equilibrium at
the beginning of the universe, the corresponding energy
density acts like a cosmological constant until the field
has reached its minimum and starts oscillating. During
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this time the universe behaves much like the I orentzian
de Sitter or Nariai universes described above.

But there are two important differences due to the time
dependence of the effective cosmological constant A g.
Firstly, for the solutions of the Euclidean Einstein equa-
tions in the complex w plane one can no longer find a
path on which the minisuperspace variables are always
real. However, we shall see that it is possible to satisfy
conditions (i) to (iii) of Sec. II by choosing appropriate
complex initial values. Secondly, it will be found in the
next section that the black hole radius 6 is no longer con-
stant during inQation.

In this section, we introduce the massive scalar field for
the model corresponding to de Sitter spacetime, where
the spacelike slices are three-spheres containing no black
holes. This model was first put forward by Hawking
[8]. From the Buctuations in the cosmic microwave back-
ground as measured by the Cosmic Background Explorer
(COBE) [9] it follows that m is small compared to the
Planck mass [10]:

m 10 (5.1)

We will find complex solutions and the complex initial
value of the scalar Geld, and we calculate the real part of
the action. This has been done before by Lyons [11],but
his paper contains a logical error to which we will come
back later.

The ansatz for the Euclidean metric is again

imation we must Gnd solutions in the complex v plane
that meet conditions (i) to (iii) of Sec. II. In particular,
the NBP must be satisfied:

a=O, a=1, P=Pp, and/=0 for7. =0. (5.10)

Assume that the initial value of the scalar field is large
and nearly real:

Pp' )) 1 )) Qp (5.11)

An approximate solution near the origin is given by

1 ~ Reaz(r) =
R sin Hp (5.12)

. 1
4r(r) = 0o+ ). , V r"— (5.13)

p2„+j ——0 for all n. (5.14)

We call Eqs. (5.12) and (5.13) the inner approximation.
Writing down the Taylor expansion explicitly to lowest
nontrivial order,

for ~r~ ( 0 (1/Hp '), where the Taylor series is obtained

by solving Eq. (5.8) iteratively for P, using the NBP con-
ditions (5.10) and the approximation (5.12) for a. It has
the property that

ds = N(r) dr + a(r) dOs2.

Using the rescaled Geld

= 4vr4,

we obtain the Euclidean action

(5.2)

(5.3)

so that the effective cosmological constant is

3~I= —— Ndra~ +1 ——a ——a m P4 (¹ 3 ¹ 3

(5 4)

&(r) = &p 1+ (H«) +O(r')
8g2p

shows that P is almost constant near the origin.
As an outer approximation we use

zm
P~ (r) = @p + r + yp exp(3iHpr),

3
zm

aci (r) = ap exp — P(r') dr'
3 p

zm
+cp exp P(r')dr'

0

(5.15)

(5.16)

(5.17)

A,g( )=rm P(r)2.

In analogy to Eq. (3.3) we define

A,rr(r) mP(r)
3

(5 5)

(5.6)

for 0 ( ri (( ~3@'/m. While this solution does not
satisfy the NBP, it will be good outside the validity of
the inner approximation. Both the yp term and the cp
term can be neglected for ri )) 1/Ho ', but they are
useful for matching aci and Pci to a~ and P~ at some

1/Hp ' Compariso. n with Eq. (5.15) shows that

Variation with respect to a, P, and N gives the Euclidean
equations of motion and the Hamiltonian constraint:

~3
Xo ™(Xo)= 0.

yRe ' (5.18)

a 2.2 1+ —mP =0,
a 3 3

P+3—P —m'P = 0,a

(5 7)

(5.8)

In the region of the inner approximation, a will be
nearly real on the Lorentzian line ~ ' = H„. . Matching

2 0
a~ to ag fixes

a 1 1 2 1————-y +-m y =0.
a2 a2 3 3

(5.9)
z

ap ) CpRe ' 2~Re0 0
(5.19)

To evaluate 4'p(aoM, Ps~) using a semiclassical approx- and ensures that a will remain nearly real on this line. To
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make P(r) roughly real on the same line, by Eqs. (5.16)
and (5.18) we have to choose

proximate solutions for this regime have been given by
Hawking and Page [12].

„],Irn
gyRe (5.20)

)Im( Im) )Im (5.21)

in the outer approximation.
in turn is fixed by matching P~ to Pci. Since it

is very small, this requires evaluation of Eq. (5.13) to a
very high order n. However, we need not calculate any
coefficients since, by Eq. (5.14), P& is constant along the
imaginary axis to any order n:

VI. AN INFLATIONARY MODEL WITH BLACK
HOLES

We now introduce a massive scalar field on a universe
with spacelike sections S x S . Thus we will obtain
a cosmological model similar to the Nariai universe of
Sec. IV. We find the complex solutions, initial conditions
and the action in analogy to the previous section, but
point out a few differences.

Again we use the Kantowski-Sachs metric
Therefore it is convenient to choose a matching point 'TM

on the imaginary axis: ds = N(r) d~ + a(r) dz + b(~) d02 (6.1)

=0, ~'-=o(1r'H, ).
By Eqs. (5.16) and (5.18) P~g is also constant along this
axis,

and the rescaled field

= 4vrcr .

The Euclidean action is

(6.2)

)Im( Im) @Im (5.'-3)

so the result of the matching analysis will be independent
of the precise choice of 7M on the axis, as it should be.
The matching condition is (6.3)

7=p

(b2I = —vr Nd7. a +2— +1 —b —b m
(N2 a N2 N2

r

+sr —ab —2abb

4'z (~~) = Pc (rM)

and by Eqs. (5.20), (5.21), and (5.23) we obtain

(5.24) and like in the previous section the effective cosmological
constant is given by

yIm yIm
2/0 '

A,II(~) = m'P(~)'.
(5.25)

In analogy to Eq. (4.3) we define

(6.4)

R. &~ ' R. t1 2Ise = d7 az
I

—a&m Pr —1
2 p

37r

2ni2 (QRe) 2 (5.26)

The outer approximation is not valid after inflation
ends, when P 0. However, at this point we are already
well inside the classical regime. A dust phase will ensue
where P oscillates; a and P will both remain real. Ap-

This result is nontrivial (e.g. , PRQ' g vj'). We now see
why the correct value for Po is obtained in Ref. [11],
although actually only @Oi is calculated there.

We have thus satisfied condition (ii) of Sec. II. By the
continuity of the outer approximation, condition (iii) can
be satisfied by fine-tuning $0 . Condition (i) is satis-
fied by the construction of the inner approximation. The
only freedom left is the choice of $'. This variable
parametrizes the set of solutions.

To calculate the Euclidean action for the solutions
given above, we consider a path going along the real w

axis &om the origin to w = . and then parallel to
0

the imaginary w axis to 7sM. Both a and P are nearly real
on the Lorentzian segment of this path, so the real part of
the action can be approximated by an integral only over
the first segment, using the inner approximation [11]:

H(v) = QA, R(~) = mP(~). (6.5)

Variation with respect to a, b, P, and N gives the Eu-
clidean equations of motion and the Hamiltonian con-
straint:

b ab
P2 0

b ab
~ ~

b ab a
q P2+ m2$2 = 0,

b ab aa'
—+2- P —m2$=0,

b)
b2

(6.6)

(6.7)

(6 8)

(6.9)

a=O, a=1, b=bp, b=O,
and P = 0 for ~ = 0. (6.10)

With the new definition (6.5) of H the inner approzi
mation is given by

Rea~(r) = R Slil Hp '7)
p

(6.11)

The NBP conditions corresponding to an instanton of
topology S x S2 are
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. 1
~&(r) = A+ ) (6.12)

VII. THE PROBABILITY FOR PRIMORDIAL
BLACK HOLES

1
b~(r) = (6.i3)

In the previous two sections we have calculated the
action for two infIationary universes. We now compare
the corresponding probability measures

for [r[ ( 0 (1/Ho '). The outer approximation is

Pci (r) = 'leap + im7 + yp exp(iHpr),

T

aci(r) = ao exp im —P(r')dr
0

(6.i4)
and

3~
Pss (q o ') = exp i-'(~')')

( 2K
Ps s (Pp') = exp i-'(C.)'i

(7.1)

(7.2)

T

+co exp im P(r') dr'
0

(6.15)

1
hei(r) = (6.16)

Re
for 0 (7™((

A matching analysis completely analogous to that of
the previous section shows that a, b, and P will be nearly
real on the Lorentzian line w = „., if we choose the

0
initial values

2pn' '
mp

(6.i7)

yRe
&&growth =

m
(6.18)

Again the inner approximation is used to calculate the
real part of the Euclidean action. As in Sec. IV it comes
entirely &om the 7. = 0 term:

ReIs:.s =- (bo ) =—
m

(6.19)

Po
' is a free parameter.
An interesting feature of the outer approximation is

that the black hole radius grows with the horizon scale
during inflation. On the Lorentzian line w = „.the

0
field decreases linearly with time until it reaches zero and
inflation ends. By Eqs. (6.14) and (6.16) 6 becomes very
large on the time scale

The universe containing black holes is heavily suppressed,
if P' is not large enough to make the initial effective cos-
mological constant equal to the Planck value. Thus the
formation of black holes with initial sizes significantly
larger than the Planck scale is very unlikely. The semi-
classical approximation should be good in these situa-
tions, so one can have confidence in this conclusion.

The semiclassical approximation will break down for
solutions with initial cosmological constants of the Planck
value in a region where the curvature is on the Planck
scale. However, this region contributes an action less
than one in Planck units and one would not expect quan-
tum eKects to change this. Thus it seems clear that the
only primordial black holes with any significant proba-
bility start with no more than the Planck size:

)Re (1 (7.3)

This corresponds to a large initial value of the scalar field

yRe ) 105 (7.4)

The Nariai solution is unstable to quantum fIuctua-
tions [7]. At the beginning of inflation it becomes a non-
degenerate Schwarzschild —de Sitter spacetime. Once the
black hole horizon is inside the cosmological horizon the
black hole will start to lose mass due to Hawking radia-
tion. If the black hole horizon is somewhat smaller than
the cosmological horizon, the black hole will evaporate
and disappear. However, there is a significant probability
that the areas of the two horizons will be nearly enough
equal for them to increase together. The consequences of
this result for the global structure of the universe will be
presented in a forthcoming paper.
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