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The thermodynamic behavior of a relativistic perfect simple Quid obeying the equation of state
p = (p —1)p, where 0 ( p ( 2 is a constant, is investigated. Particular cases include a vacuum

(p = —p, p = 0), a randomly oriented distribution of cosmic strings (p = ——p, p = 2/3), blackbody
radiation (p = —p, p = 4/3), and stiff matter (p = p, p = 2). Fluids with p ( 1 become hotter when
they expand adiabatically (T oc V ~). By assuming that such fluids may be regarded as a kind of
generalized radiation, the general Planck-type form of the spectrum is deduced. As a limiting case,
a new Lorentz-invariant spectrum of the vacuum which is compatible with the equation of state and
other thermodynamic constraints is proposed. Some possible consequences to early universe physics
are also discussed.

PACS number(s): 98.80.Hw, 95.30.Tg

I. INTRODUCTION

The concept of vacuum has pervaded the development
of our understanding about space, matter, and forces
in the universe since the ancient Greek philosophers [1].
In the same way that quantum mechanics was a major
breakthrough for the theories of ordinary matter, so it
was for modern physical models of vacuum. The first
advance arose already in the years of the old quantum
theory. It is closely related to the possible existence of
a zero point energy for blackbody radiation. In fact, the
random background radiation corresponding to the zero-
point Geld is, presently, the key ingredient of so called
stochastic electrodynamics (SED) [2,3]. With the devel-
opment of quantum electrodynamics (@ED) and other
quantum field theories a new concept arose; namely, the
physical vacuum is the ground state of a system of quan-
tum fields on the space-time manifold. But now, we have
to address at least two problems: Grst, how do we sin-
gle out the vacuum state? Secondly, what is an intuitive
picture of the physical vacuum?

The answer to the Grst question depends on the quan-
tization method used, as well as on the observer. For
instance, in canonical quantization the vacuum state is
deGned as that which contains no quanta. Technically,
this means that the effect of the annihilation operator
acting on the state gives zero. On the other hand, when
using functional methods in quantum Geld theory, the
vacuum. state is deGned as the state which realized the
minimum of the effective potential [4]. Recently, some
authors addressed the issue that both of the above deG-
nitions could give different answers for the vacuum energy
density [5]. Such drawbacks are present even for quan-
tum field theories (QFT's) formulated in the Minkowski
spacetime when a particle detector is uniformly acceler-
ated [6].

where p is the energy density and g~„ is the Minkowski
tensor. Therefore, the EMT of the vacuum describes a
particular relativistic perfect simple Quid. for which the
equation of state is p = —p [see Eq. (3) below]. Since
the energy-momentum tensor (1) is divergenceless, the
vacuum energy density is constant in space-time. In ad-
dition, performing a change of inertial frame, the energy
density of a fluid transforms as [8]

2

I p+P 2

p
1 v

c2
(2)

where v is the relative velocity between the frames. Thus
it follows from the equation of state that the energy den-
sity of the vacuum is a Lorentz-invariant quantity, re-
gardless of the form of its frequency spectrum. In other
words, all inertial observers are comoving with the vac-
uum background.

In this work we are mainly interested in the above
macroscopic point of view. It will be assumed that the
vacuum state of any bosonic or fermionic field is the less

For the second question, two different approaches may
be found in the literature. Stochastic electrodynam-
ics postulates the vacuum as a random background of
real electromagnetic fields endowed with a well-deGned
frequency spectrum [p(v) oc v ], whereas for @ED the
vacuum is Glled with so called virtual pairs of particles
(electron-positron pair) whose direct detection is not pos-
sible. Usually, as a kind of paradigm, QFT takes this last
picture for granted.

In the 1960s, it was remarked that Lorentz invari-
ance of the vacuum requires an energy-momentum tensor
(EMT) of the form [7]
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rigid state of matter compatible with the relativity the-
ory [9]. As we will see, regarding the vacuum as an un-
usual substance described by the equation p = —p, the
overall thermodynamic properties of it can be easily de-
duced. As in the case of blackbody radiation, such prop-
erties shed light on the underlying nature of the quantum
vacuum, determining, for instance, the general form of
its &equency spectrum. For the sake of generality and
also to simplify the comparison between the vacuum and
the blackbody radiation properties, we will consider a
monoparametric class of p fluids for which radiation and
vacuum are two important particular cases.

The paper is organized as follows. In Sec. II we present
the general thermodynamical properties of a p fluid. In
Sec. III we deduce the spectrum of a p fluid assuming as
a natural ansatz that such spectrum is a Wien's type. In
Sec. IV we present a formal deduction of such spectrum
without assuming any ansatz while, in Sec. V, we special-
ize to the case (p = 0) and some striking consequences
are found for the vacuum case, which are opposite to
what happens for ordinary matter. In Sec. VI, Einstein's
derivation of the blackbody radiation spectrum is gen-
eralized in order to include the family of p fluids. In
Sec. VII, some consequences of our approach to early
universe physics are discussed. Finally, in Sec. VIII we
conclude with some comments.

p+ (p+s)~ = o

n+ng = 0,
(10)

where an overdot means a comoving time derivative (for
instance, p = u p. ) and 0 = u. is the scalar of expan-
sion. Further, using (11) and taking n and T as indepen-
dent thermodynamic variables, Eq. (10) can be rewritten
as

(12)

and since do is an exact difFerential, the Gibbs law (6)
yields the well known thermodynamic identity

(op) f&p)

Finally, replacing (13) into (12) and using (11) again
one has

whereas (9) is the thermodynamic second law restricted
to an adiabatic flow ("equation of continuity" for en-
tropy).

Bearing in mind the applications discussed ahead, first,
the temperature evolution equation will be obtained.
From (7) and (8) it follows that

II. THERMODYNAMICS OF A p FLUID T (Bpb n
T (Bp) n

(14)

The thermodynamic states of a relativistic simple fluid
are characterized by an energy-momentum tensor T ~, a
particle current N, and an entropy current S . For a
perfect fluid such quantities are defined by [10]

In what follows, we consider the class of fluids de-
scribed by the "p law" equation of state:

I = (V —1)p,

= nu

S = ncru

nTdcr = dp — dn .P+P
n (6)

The basic quantities are constrained by the relations

where p is the energy density, p is the pressure, n is the
particle number density, and o is the specific entropy (per
particle). The quantities p, p, n, and o are related with
the temperature by the Gibbs law

Tn ~ = const, (16)

and since n scales with V, where V is the volume of the
considered portion within the fluid, Eq. (16) assumes the
form (from now on only the case p g 1 will be considered)

where the "adiabatic index" p lies on the interval [0,2].
This generalized equation of state accounts for a one-
parametric family of fluid systems, including a subclass
with negative pressure. The limit cases of vacuum (p =
0) and stiff matter (p = 2) are determined &om causal-
ity requirements [9], whereas p = s describe the photon
fluid. With this choice, a straightforward integration of
(14) furnishes

T ~p ——0
T ~~~ V = const, (17)

1V; =0,

S; =0,

(8)

which is the usual adiabatic law for fluids with conserved
net number of particles [11].

One additional thermodynamic constraint obeyed by
the p fluid is the generalized Stefan-Boltzmann law:
namely,

where a semicolon denotes a covariant derivative.
Equations (7) and (8) express, respectively, the energy

momentum and the number of particle conservation laws

p(T) =&T ~~ (18)

where q is a p-dependent constant. As shown in Ref. [12],
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the above expression may be derived by at least three dif-
ferent methods, among them that one applied by Boltz-
mann (Carnot cycle). It also follows naturally from the
adiabatic condition (dS = 0) when one considers the p-
law equation of state. Note that for p = 3 it reduces
to p = gT4 and for the vacuum case (p = 0) it reduces
to p = const as one should expect. As we shall see, the
interesting point here is that the relation (18) together
with Eq. (16), rewritten as

n(T) = const x T ~l~

are the thermodynamic constraints fixing the general
form of the spectrum for a p fluid, including, of course,
the vacuum spectrum itself.

III. THE p-FLUID SPECTRUM

pz (v) = const x vPP(v~T"), (20)

where P is an arbitrary function and P and A are con-
stants to be determined by using the constraint equations
(18) and (19): namely,

p(T) = pz (v)dv = const x T~~l~
0

(21)

and

In order to see how the thermodynamic constraints
work to fix the general form of the spectrum, we make,
initially, a simple and natural ansatz, which is nothing
more than a generalization of Wien's law obeyed by the
radiation fluid. In fact, the approach used below was
earlier applied to the case p = 0 in Ref. [13]. In the next
section a formal deduction of such a spectrum will be
presented.

First, it will be assumed that the p fluid is a kind of
radiation (such as blackbody radiation), whose spectrum
is a Wien's-type one; that is,

Further, replacing (25) into (20) we obtain the spectral
function for the p Quid:

/( —)y
~

(T)
&vi

(26)

where o. is a dimensional constant and P(T/v) an arbi-
trary function of its argument. As expected, if p = 3,
Eq. (26) reduces to the well known Wien's law for black-
body radiation. Note also that, although assuming a
Wien-type spectrum [Eq. (20)] for the p fluid, this is not
a completely arbitrary assumption. We have simply as-
sumed a more general law, in analogy with Wien's, which
satisfies the constraints (18) and (19) for p = s.

IV. WIEN-TYPE LAW FOR p FLUIDS:
A FORMAL DEDUCTION

As a preliminary point of principle, we recall that if a
hollow cavity containing blackbody radiation changes its
volume, adiabatically, the ratio between the energy and
the corresponding frequency of each component remains
constant: namely,

= const, (27)

for any "proper oscillation. "
This result, usually called the theorem of adiabatic in-

variance, hold. s indeed for an arbitrary oscillating system
when one of its parameters is slowly modified by some
external effect. For blackbody radiation the constancy
of the above quantity also means that for each band the
mean number of quanta is unaltered by reflection from
the moving walls. In what follows, since the overall exis-
tence of this adiabatic invariant can be proved regardless
of the nature of the oscillating system (see, for instance,
Ref. [14]), its validity will be assumed for the whole fam-
ily of radiative p fluid with p g 1.

Now, if pz (v) is the spectral energy density inside an
enclosure with volume V, Eq. (27) may be rewritten as

n(T) = dv = const x Tpr(v) —1 1—

0 hv
(22) pz (v)dv V = const . (28)

Substituting the spectrum (20) into the constraint
equations and defining a new variable u = v~T, we can
write

t (r) = r tt'+t'»t' j f(o)dn = const x T-s~ts tt (23)-
Note also that due to the thermal equilibrium state,

the energy density in the band dv varies with the tem-
perature in the same manner as the total energy density
(in principle, only this band could be present in the cav-
ity). Hence from the generalized Stefan-Boltzmann law,
the above adiabatic invariant takes the form

n(T) = T " g(u)du = const x T'~(~
0

(24)

T~/(~ —i)~ = const, (29)

where f (u) and g(u) are functions related with the orig-
inal arbitrary function t))t(u).

Comparing the powers of T in Eqs. (23) and (24) we
get

and since T~~(") ~)V = const [see Eq. (17)], it follows
that T/v is invariant. Thus, whether one compresses or
expands adiabatically a hollow cavity containing a radi-
ation p Quid, then

AT = const . (30)

(25)
The above result means that the displacement Wien law,
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which is valid for photons (p = s), holds in fact for the
entire one-parametric family of p fluids.

Before discussing the remarkable physical conse-
quences of Eq. (30) on the vacuum state, we proceed to
determine its eKects on the general form of the spectral
distribution. To that end, we consider an enclosure con-
taining p Quid at temperature Tq and focus our attention
on the band LAq centered on the wavelength Aq whose
energy density is pz; (Aq)AAq.

If the temperature Tq changes to T2 due to an adiabatic
expansion (note that Tq does not necessarily decrease),
the energy of the band changes to p~, (A2)AA2 and ac-
cording to Eq. (30) AAq and AA2 are related by

LA2 Tg

LAg Tg

Now, since one can assume that distinct bands do not
interact, it follows that

pz; (A2) AA2 f T2 3

pz; (Ag) EAg (Tg )
By combining the above result with (31) we conclude

that

(A ) (T ) (2w —1)/(& —1)

p~, (A~) &&~ )
and using again the displacement law given by (30), we
obtain for an arbitrary component

constn—
T (38)

Hence we see that for the vacuum state, the average
density of particles decreases with increasing T. In the
limit T —+ oo, n goes to zero, being infinite in the opposite
extremum (T = 0). It should be noticed that both results
are consistent with Eq. (37).

Let us now consider the vacuum spectrum itself. From
the above results we can say that the energy spectrum
pz (v) must satisfy two thermodynamic constraints:

p = pz (v)dv = const,
0

(39)

and

the usual theory of fluids for which p ) 1 (p ) 0).
It should be emphasized that in the derivation of (17)

the conservation of the number of particles was explicitly
used. However, the meaning of such an assumption needs
to be clarified. For p = s p we see Rom (16) that n scales
with T . As we know, since the chemical potential of
photons is zero its total number is indefinite so that n
must be interpreted as the average number density of
photons. As is well known, such an interpretation is in
agreement with the Planck distribution which furnishes
n = f ~&~ ~ dv = bTs, where b is a constant [15].

In what follows we assume that similar considerations
hold for the vacuum state (p = 0), for which Eq. (16)
yields

pz (A)A~ ~ l~~~ l = const . (34)
pz'(v) constn— dv = )6 T (40)

pz (A) = const x A~ ~l~~~ lg(AT), (35)

where P is an arbitrary function of its arguments. Now
in terms of the frequency, since pz (v)dv = pz (A)

~ &z ~dA

it is easy to see that (35) can be rewritten as

p ()= (36)

as obtained in the previous section [see Eq. (26)] .

V. THERMODYNAMICS AND THE VACUUM
SPECTRUM

In the case of blackbody radiation (p = —) Eq. (17)
reduces to T V = const, a well known result, while for
the vacuum state (p = 0) we obtain

T = const x V . (37)

We have therefore reached the conclusion that the vac-
uum becomes hotter if it undergoes an adiabatic expan-
sion. Such a result may be compared with those ones of

Note that in the case of blackbody radiation the above
expression reduces to p~(A)A = const, as it should. Of
course, due to Eq. (30) the above result takes the form

which are just the constraints (18) and (19) for p = 0.
Taking p = 0 in Eq. (36), instead of the result pz (v) =

constxv, claimed by the proponents of SED, we find
that the only Wien-type spectrum for the vacuum state
compatible with the thermodynamic constraints is given
by

(Ti
p~(v) = const x v

&v)
(41)

a result obtained earlier in Ref. [13].
It should be noticed that even in the limit T + 0,

p~(v) scales with v instead of v, as usually inferred
from the blackbody radiation spectrum [2,3]. In fact,
the later results follows from our Eq. (36) by choosing
T = 0 and p = 3, since zeropoint radiation in the con-
text of SED satisfies p = 3. Of course, this kind of
vacuum is rather diferent &om the one considered here.
In the present case, we remark that the existence of a
temperature-dependent spectrum for the vacuum state
is not forbidden by the relativity principle, as long as
the vacuum Quid is described by the equation of state
P= P.

Finally, we would like to stress some physical conse-
quences of the displacement Wien's law to the case of
the vacuum state or, in general, for p-radiation Quids
with p ( 1.

First, it should be recalled that if a blackbod. y radia-
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tion fluid expands adiabatically its temperature is low-
ered (T oc V ~~

) and since AT = const, the wavelength
of each band increases, thereby lowering the total energy
density in accordance with the Stefan-Boltzmann law.
This is the typical behavior for fluids with p & 1. For
p ( 1, however, the temperature grows if the fluid under-
goes an adiabatic expansion (T ~&~ lV = const). The
vacuum state behaves like a limiting case of this subclass,
the one for which the energy density remains constant in
the course of expansion.

W „=A" +B"pz(v) . (46)

Hence, from Eq. (42) the equilibrium condition can be
written as

p e " " B pz (v) = p e " [B pz (v) + A ],
(47)

sion characterized by B . For these processes the net
transition probability per unit time is

VI. PLANCK- TYPK SPKCTRUM
OF p RADIATION

—E /kT
) (42)

In this section we will derive, up to a constant, a for-
mula giving the spectral distribution for generalized p
radiation. As a limiting case, a new Lorentz invariant
spectrum for the vacuum state will be presented. Our
derivation will be carried out through a slight modifica-
tion of the arguments used by Einstein [16] in his orig-
inal deduction of the Planck radiation spectrum which
was based on Mien's law plus some additional hypotheses
concerning the interaction between radiation and matter.

Let us consider an atomic or molecular gas, the par-
ticles of which can exist in a number of discrete energy
levels E = 1, 2, . . ., in thermal equilibrium with the p ra-
diation at temperature T. The probability that an atom
is in the energy level E is given by the Boltzmann factor

and solving for the energy density one obtains

p~(v) =
p
p B

~(R —R„)/kT P~ +~
p B

(48)

JB =J
and using H2, Eq. (48) can be recast in the form

(49)

A" /B"
(50)

Finally, comparing (50) and (43) it follows that

A"m x/(~ —x)
B

Now, at very high temperatures, it will be assumed
that stimulated emission is much more probable than
spontaneous emission so that (47) leads to

p~(v) —~v li~ — l (Tb
v) (43)

where p, the statistical weight of the nth quantum state,
is independent of the temperature.

Of course, transitions happen by emission or absorp-
tion of quanta of the p radiation which satisfies the fol-
lowing hypotheses.

(Hl) The p-radiation spectrum is Wien's type, as de-
duced earlier: namely,

v ) ehll/kT 1

with (50) taking the form

~/(~-~)

eh' par

(52)

(53)

E —E„=hv. (44)

where o. is a dimensional p-dependent constant.
(H2) Bohr's postulate for atomic emission or absorp-

tion remains valid for quanta of p radiation: that is,

This is the most natural generalization of Planck's radia-
tion formula for p radiation [17]. Einstein's result follows
for p = —. However, more interesting for fundamen-3'
tal physics is that the spectrum for the "hot vacuum"

(p = 0) is given by

Following Einstein, in such a system there exist three
types of transition processes by which equilibrium is es-
tablished. The erst one is due to absorption of p radi-
ation, with the atom making an upward transition from
E to the level E according to the probability, per unit
time,

W„=B„p7(v),

where B is a constant characterizing the specific tran-
sition.

The second one is spontaneous emission, which hap-
pens in the absence of any p radiation and is determined
by the coeKcient A, and, finally, the stimulated emis-

(54)

From Eq. (21) or by straightforward integration of the
above equation, it is easy to see that

p" ' = pP'(v)dv = const,
0

(55)

as it should be.
It is worth mentioning that, in the framework of QFT,

several attempts have been made to assign a definite
spectrum to the vacuum state in connection with the
so-called Casimir effect [18]. As we know, this effect is
a response of the vacuum structure to constraints im-
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posed by spatial boundaries or a nontrivial topology. As
a matter of fact, the Casimir spectrum and that one given
above are quite different, even considering that both do
not have a Planckian form. However, aside &om some
inevitable ambiguities present in the former (a fact ex-
plicitly recognized in the quoted papers), we notice that
(54) has been deduced as a direct consequence of the
equation of state p = —p. In particular, this means that
such a spectrum describes bulk properties of the vacuum
fluid instead of "distortions" effects produced by spatial
boundaries as occur, for instance, with blackbody radi-
ation in microcavities or more generally, with conGned
quantum gases [19]. Naturally, since far from the bound-
aries the vacuum properties must be the same as what it
would present in &ee space, one may expect to recover
(54) as a limiting case of a proper Casimir spectrum.
This issue is presently under investigation.

The above results show that, under very reasonable
hypotheses, the spectrum of the family of p fluids is
uniquely determined up to the constant scale factor o.. In
principle, the value of this constant could be determined
using the low &equencies limit (hv (( kT). However, un-
like the blackbody radiation case, an independent deriva-
tion of the Rayleigh-Jeans (RJ) limit for arbitrary values
of the p parameter does not exist presently. It should be
noticed that for hv much smaller than kT, (53) leads to
a R3-type form given by

(56)

PA(i —2~)/(~ —i)
ehe/kAT 1

(57)

where P is also a p-dependent constant. As is well known,
for blackbody radiation the wavelength A for which

pT(A) assumes its maximum value satisfies a displace-
ment law under the form [15]

T = 0.289 cm deg . (58)

It turns out that the above result can be easily gener-
alized for a p Huid using Eq. (57). In fact, since A is

determined by the condition &~
——0, it follows &om

(57) that

(59)

or still

x+be —b = 0, (60)

where x =
h&T and b = + . Hence, if p(p) denotes the

roots of the above equation, then

where the unknown 0 is a dimensional p-dependent func-
tion such that 0 (s) = —,. The question related with the
precise form of the RJ limit for a p fluid and its influence
on the fluctuations of energy will be discussed elsewhere.

In terms of the wavelength, Eq. (53) may be rewritten
as

hc 1.438

k» (~) p(~)
(61)

VII. SOME CONSEQUENCES IN COSMOLOGY

The above results may be interesting to early universe
physics, mainly to the so called inflationary models. The
essential feature of such models is the appearance of an
accelerated expansion of the universe driven by the vac-
uum stress arising, for instance, &om a scalar Geld with
a global minimum in its effective potential or some types
of phase transition. It turns out that negative pressure
is the key condition to generate either exponential or
"power law" inflation.

To the best of our knowledge the thermodynamic be-
havior of the Geld driving inflation has so far been ne-

glected. By assuming that it behaves like a perfect fluid
with p = (p —1)p, where p ( s for power law inHa-

tion, the results presented here can be easily adapted. In
fact, since our results are generally covariant, we can ap-

ply Eq. (17) for a Friedmann-Robertson-Walker metric

(V oc Rs) to obtain

) 3(p —i)
T =T. (62)

where R(t) is the universal scale function and T, = T(R, )
is the temperature when the scale factor takes on the
value B,. For p = 3 one Gnds T oc B as usual for
a radiation-dominated phase. Special results are (i) ex-
ponential inHation (p = 0, vacuum, T oc R ) and (ii)
power-law inflation (0 ( p ( s, T oc R ( ~)).

It should be noticed that the above result holds re-
gardless of the nature of the p fluid; that is, it does not
matter whether it is regarded as a generalized. radiation.
As a matter of fact, the temperature law given by (62)
is a consequence of the "p-law" equation of state. For
instance, it can be applied even for dust (p = 1) furnish-

ing T = T, = const in accordance with (16). Another
interesting example is provided by a randomly oriented
distribution of inGnitely thin straight strings averaged
over all directions. As shown by Vilenkin [20], such a
system behaves like a perfect fluid, with p = ——p (p = —)
and &om (62) we obtain T = constx R [12].

Note that x = 0, or equivalently p = 0, is a trivial solu-
tion of (60) regardless of the values of p. However, for

p & 0 there always exists another physically meaningful
solution. For instance, if p = s one has p(s) = 4.965
so that the result (58) is recovered. Another example is
provided by stifF matter (p = 2) for which p(2) = 2.821
(61), A T = 0.510 cmdeg. For the vacuum (p = 0)
case, however, it is easy to show that there only exists
the trivial solution. In other words, the graph of pT(A)
does not exhibit a Gnite maximum value characteristic of
the class of p fluids. It is inGnite for A = 0 and decreases
monotonically to zero when A goes to infinity. As the
reader may conclude by himself, in fact, this is the only
physical possibility allowed by the Lorentz invariance of
the vacuum spectrum.
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An additional point, supporting the present treat-
ment of the vacuum as a Quid endowed with a defi-
nite temperature-dependent spectrum, appears at the
interface of particle physics and cosmology in the so-
called cosmological constant problem. In fact, as is well
known, the vacuum energy density due to the zeropoint
energy of all normal modes of a field contributes to the
cosmological A term which behaves like a fluid with
p = —p. However, the cosmological estimates of such
a term (A/8mG & 10 GeV4) is smaller than the esti-
mates which follow Rom field theories by at least forty
orders of magnitude. This puzzle which makes up the
essence of the problem has been the subject of numerous
papers [21-23].

A possible approach to circumvent this problem, which
has been investigated in the recent literature (see Ref. [23]
and references therein), is to assume that the efFective A
term is a Quid interacting with the other matter fields of
the universe (as in a multiHuid model). In this case, the
vacuum energy density is not constant since the energy
momentum tensor of the mixture must be conserved in
the course of the expansion. Thus a slow decaying of
the vacuum energy density may provide the source term
for material particles or radiation, thereby suggesting a
natural solution to this puzzle: namely, the cosmological
constant is very small today because the universe is very
old.

VIII. CONCLUSION

In this paper we have attempted to give a systematic
treatment of how thermodynamics and semiclassical con-
siderations can be used to determine the spectrum of a
p Quid, including the vacuum spectrum as a particular
case. The physical motivation of such a study is based on
two difFerent, although closely related features: namely,
the Lorentz invariance of the vacuum state which requires
that its energy-momentum tensor is proportional to the
Minkowski tensor, that is, a perfect fluid obeying the
equation of state p = —p and the probable existence of
a universal A term which is also equivalent, in the cos-
mological domain, to a vacuum fluid satisfying the same
equation of state.

For the sake of generality, several thermodynamic
properties of p Quids with positive and negative pressures
have been investigated. In this connection, we remark
that thermodynamic states with negative pressures are
metastable but they are not forbidden by any law of na-
ture. These states are also hydrodynamically unstable for
bubbles and cavity formation and a spontaneous collapse

could also be expected [15]. As remarked in Ref. [13] one
may speculate whether such collapse may be answerable
for the matter creation process &om "nothing" with the
particles being ultimately described as a kind of vacuum
condensation.

By regarding the class of p fluids as radiation with dif-
ferent equations of state, a formal deduction for Wien's
law has been presented and such a result allows us to
derive, up to a dimensional constant, the generalized
Planckian type form of the spectrum. Probably, only
using QFT or statistical methods, such a constant will
be determined. It was also shown that in the limit of
low &equencies the spectrum scales with kTv&
For comparison, the usual blackbody expressions have
systematically been recovered by taking p = 3. Further,
as a special case, the thermodynamic behavior and the
vacuum spectrum satisfying the equation of state p = —p
were obtained and its unusual features discussed in detail.
The vacuum temperature, or more generally, the temper-
ature of a p fluid (for p ( 1) increases in the course of
an adiabatic expansion and, unlike blackbody radiation,
their wavelength decreases as required by Wien's law.
In particular, this explains why the energy density of a
pure vacuum (cosmological constant) remains constant if
a hollow cavity (universe) undergoes an adiabatic expan-
sion.

We also argued that the unsettled situation arising
from the overall existence of the vacuum and its conse-
quences on the interface uniting QFT, general relativity,
and cosmology may be circumvented by a more compre-
hensive picture of the vacuum itself. Theoretically, as
happens when one includes quantum corrections to the
general relativity, the treatment of the vacuum as a fluid
also suggests a cosmological scenario where the evolution
may initially be supported by a pure vacuum state. By
virtue of the expansion, the vacuum decays generating all
matter and entropy existing in the universe, thereby ex-
plaining naturally the small value of the A term presently
observed (see Ref. [23] for a cosmology satisfying such
conditions) .
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