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Anisotropic scalar-tensor cosmologies
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We examine homogeneous but anisotropic cosmologies in scalar-tensor gravity theories, including
Brans-Dicke gravity. We present a method for deriving solutions for any isotropic perfect Quid

with a barotropic equation of state (p oc p) in a spatially flat (Biauchi type I) cosmology. These
models approach an isotropic, general relativistic solution as the expansion becomes dominated by
the barotropic Buid. All models that approach general relativity isotropize except for the case of
a maximally stiff Buid. For stiff Buid or radiation or in vacuum we are able to give solutions for
arbitrary scalar-tensor theories in a number of anisotropic Bianchi and Kantowski-Sachs metrics.
We show how this approach can also be used to derive solutions from the low-energy string effective
action. We discuss the nature, and possibly avoidance of, the initial singularity where both shear
and non-Einstein behavior are important.

PACS uumber(s): 98.80.Hw, 04.50.+h, 98.80.Cq

I. INTRODUCTION

S= d xg—g F(p)B ——(V'y)
1 4 1 2

16' 2

—U(rp) + 16vr1:

where in general relativity mp& = F(rp) remains a con-
stant. The Brans-Dicke model of gravity [2] corresponds
to the particular choice of U = 0 and F(p) = p /8to
where u is a constant parameter. The more general La-
grangian can still be rewritten in terms of their Brans-
Dicke field P = F(p) with the Brans-Dicke parameter
~(&) = Fj[2(dF(d~)')

S = d4~q gym — (~) (Vy—)'
16m

U(0 ) + 16~&rnatter (2)

Scalar-tensor theories of gravity [1—3] allow the grav-
itational coupling to vary, becoming a dynamical field
rather than a Gxed constant;. This occurs in a range
of fundamental theories that seek to incorporate gravity
with the other interactions. In Kaluza-Klein models this
arises &om the variation of the size of the internal dimen-
sions. In string theories the dilaton is a scalar field that is
necessary for the consistent description of the motion of
a string in a curved spacetime [4]. In a cosmological con-
text such theories allow one to seek dynamical answers
for questions such as why the Planck mass is so much
larger than other physical scales or why it should appear
to be fixed today.

The general form of the extended gravitational action
in scalar-tensor theories is

and it is this form that we shall use here with U(P) set
to zero. A nontrivial potential for the Brans-Dicke Geld

in the early universe clearly could affect the dynamics
but we shall neglect this here in order to study the effect
solely of the coupling of the Brans-Dicke field to the met-
ric and to other matter fields. Higher-order gravity the-
ories are equivalent to a scalar-tensor theory where U(P)
is nonzero but to = 0 [5] which introduces Yukawa-type
corrections to the Newtonian potential. Setting U = 0
ensures a strictly Newtonian weak field limit to lowest
order. The post-Newtonian parameters of general rela-
tivity are then recovered in the limit that u ~ oo and
(4(~')(d~ld&) ~ 0 [61

Most analytic cosmological solutions until recently
were restricted to the case of Brans-Dicke gravity [7—12],
specific choices of to(P) [13,14], or relations between to(P)
and U(P) [15, 16]. Here we present techniques for deriv-
ing anisotropic cosmological solutions for general scalar-
tensor theories where u may be an arbitrary function
of P. This can lead to radically different evolution of
the Brans-Dicke field as well as the Brans-Dicke param-
eter. Throughout we draw heavily on results derived. in
the conformally related Einstein kame [17], introduced
in Sec. II. In Sec. III we define the quantities we will use
to describe the evolution of homogeneous spacetimes.

We give solutions for barotropic Auids, including dust
and a false vacuum energy density in Sec. IV, extend-
ing to Bianchi type I models the Inethod used recently
by Barrow and Mimoso [18] in spatially flat Friedmann-
Robertson-Walker (FRW) models. This also allows us to
consider the role of general relativity as a cosmological
attractor within a large class of u(P) theories.

In Sec. V we extend the method introduced by Bar-
row to derive solutions for FRW models in vacuum or
containing radiation [19] or stiff matter [20], to solve for
homogeneous spacetimes including spatial curvature as
well as shear. In particular we give general solutions for
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arbitrary u(P) theories in vacuum, or with radiation or
stifF fluid, in Bianchi types I and V, as well as the gen-
eral vacuum or stifF fluid solutions in Bianchi types III
and locally rotationally symmetric (I RS) type IX and
Kantowski-Sachs models, by exploiting known solutions
in general relativity.

~matter

(G&)'

Thus, although we recover the familiar Einstein Geld
equations, energy momentum is no longer conserved in-
dependently of the Brans-Dicke field

II. CGNFORMAI. FRAMES

Our field equations, obtained by varying the action in
Eq. (2) with respect to the inetric and field P, are

~c bd 1 ab ed~ ~4,c4,d+ l(g g 2g g

+ (g 'g "—g g'") V', V' P,

(3+ 2(u)&P = 8vrT —g

(3)

(4)

Tabwhere the energy-momentum tensor
= (2/V' g) ~(V' -g~-«--)/~g-'

In the scalar-tensor gravity theories the weak equiva-
lence principle is guaranteed by requiring that all matter
Gelds are minimally coupled to the metric g~b. Hence-
forth we will refer to this as the Jordan metric. Thus
energy momentum is conserved:

V' Tb ——0.
However scalar-tensor theories can be rewritten in

terms of a theory with a fixed gravitational constant with
respect to the conformally related "Einstein" metric:

g.b —= G4g b, (6)

where G is in fact an arbitrarily chosen constant which
becomes the gravitational constant in the conformal met-
ric. Note that if P =const then the two frames are identi-
cal (allowing for an arbitrary constant rescaling of coordi-
nates) and so the scalar-tensor results must be the same
as in general relativity whenever this occurs. Notice also
that for P ( 0 we must pick a negative G to maintain
a positive conformal factor. Henceforth we shall assume
$)0.

Instead of appearing in the gravitational Lagrangian,
the Brans-Dicke Geld now appears as a scalar field inter-
acting with matter:

except when the energy-momentum tensor is traceless,
corresponding to vacuum or radiation. In general it is the
difIiculty of including this interaction between matter and
the Brans-Dicke field which limits our ability to produce
analytic solutions.

Of course the overall energy-momentum tensor is con-
served (as guaranteed by the Ricci identities) as long as
we include the Brans-Dicke Geld as a matter Geld with
energy-momentum tensor

g~~gb~ g~b (10)

where we define

3+ 2~(P) dP
16mG

Here we take 3+ 2' & 0.
This allows us to deal most easily with other mass-

less Gelds in the matter Lagrangian, exploiting known
solutions in general relativity to produce scalar-tensor
counterparts [20]. Short-wavelength modes of a field,
rp oc exp(ik x ) where k k = 0, act like radiation with
a traceless energy-momentum tensor. Long-wavelength
modes of a massless scalar field, &p(t), act like a stifF fluid
with density equal to pressure equal to &p /2 [21]. Al-
though this minimally coupled scalar Geld in the Jordan
kame interacts with the Brans-Dicke field in the Einstein
frame, they combine to give the same dynamical efFect as
that of single stifF fluid. We will also c~n-. ~der massless
fields which occur in the low energy effective action of
string theory.

We will present in Sec. V results for scalar-tensor grav-
ity in a number of anisotropic cosmologies in vacuum,
with a stifF fluid and, in some cases, radiation. Before
that, in Sec. IV we will give solutions for other barotropic
fluids but restricted to a Bianchi type I metric.

1 (VP)'S = d x g—g —B —— + 167rdrnatter
16~ G 2

where the covariant derivative V' is taken with respect
to the Einstein metric and

III. HOMOGENEOUS SPACETIMES

Spatially homogeneous spacetimes admit a group of
isometrics acting transitively on their spacelike hyper-
surfaces [22]. It is possible to write the metrics of these

Note that in this context the Brans-Dicke field is consid-
ered a gravitational field as its coupling to the metric is
non minimal.

If this is not so then the scalar field in the Einstein frame
has a negative energy density and the Minkowski vacuum, for
instance, will be unstable. This seems to be a strong physical
argument for rejecting such models and henceforth we shall
assume 3+ 2~ & 0.
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models as

ds = d—t +p p(t)W W~bdx dx (12)

field to the spacetime curvature creates an anisotropic
stress [26] which is proportional to the shear:

where the W (dual to W ) are the invariant vector
fields of the reciprocal group, [W, Wp ] = C pWs
The structure constants of the isometry group C~ p, sat-
isfy the Jacobi identities C~&&C

~

——0.
These metrics fall into the two classes of Bianchi and

Kantowski-Sachs models. The former have a three-
dimensional group acting in a simple-transitive way on
the spatial hypersurfaces. They separate into equiva-
lence classes according to Bianchi's classiGcation of the
three-dimensional Lie groups [23, 22, 24]. The latter has
a four-dimensional isometry group, but no three simple-
transitive subgroup acting on the three space. Instead it
acts on a two-dimensional subspace. This subspace has
constant (positive) curvature.

Although in all spatially homogeneous models the unit
normal to the spatial hypersurfaces is a geodesic vector
field t (with t t = —1) invariant under the group [22],
the matter How might be tilted relative to this direction.
For the sake of simplicity, in what follows we shall only
be concerned with those models in which the velocity of
matter is parallel to the unit normal. It follows that T
has a timelike eigenvector and, thus, both rotation and
acceleration are vanishing.

The homogeneous three-dimensional spatial hypersur-
faces thus have a metric 6 b, orthogonal to the unit vec-
tor Geld, such that the full four-dimensional metric in the
Jordan kame

gb ——hb —t tb.

7C = ——0~ba~p (18)

(20)

where ~3~B is the curvature scalar of the hypersurfaces
of homogeneity, and the Raychaudhuri equation

d0 1-2 —2=+ —0 = —47rG (3p + 3p + p + p) —2cr
dt 3

(21)

The total energy momentum in this frame is conserved:

Thus though the Brans-Dicke field will not produce shear
where none exists, it does exert an anisotropic pressure
in the presence of shear even when the other matter is
isotropic. On the other hand, in the Einstein kame the
definition in Eq. (10) of the energy-momentum tensor
T b, associated with the Brans-Dicke Geld, can exert no
anisotropic stress for a homogeneous Geld.

It is straightforward to calculate conformally trans-
formed quantities in the Einstein metric where we find

2

V = (Gg) i V, dt = (GQ)dt, o
(G&)

'

p — p
(G&)" (G&)'

The metric field equations (3) then yield the familiar con-
straint equation

T'= pt t'+Ihb+~b . (14)

We will only consider isotropic matter in what follows
with mrs = 0 (although one should bear in mind that an
anisotropic expansion can induce anisotropic pressures in
some Huids [25]). The extrinsic curvature of the hyper-
surfaces can be deGned as

1
ta b = ~ab + &abi

where the expansion 0 = t and the she. ar cr2—:ohio&/2.
We will also Gnd it convenient to deGne a volume scale
factor V such that

A perfect comoving fluid, with density p, isotropic pres-
sure p, and (possibly) anisotropic stress 7r then has an
energy-momentum tensor

=(p+ p) + 0 (p+ p+ p+ p) = 0,
dt

(22)

—+0(p+p) =0,dp
dt

(23)

which can be integrated for a barotropic fluid with p =
(p —1)p to give p oc V r or p oc (GP)~ ~ l~ V ~ in the
Einstein frame.

The equation of motion for the Brans-Dicke Geld is
then

where we include the density p and pressure p of the
Brans-Dicke Geld.

But we are also interested in how the Brans-Dicke Geld
and other matter evolve separately. The continuity equa-
tion for isotropic matter minimally coupled in the Jordan
kame remains simplest in that kame,

1 1dV0= —V, t
V ' Vdt (16)

d2$ -d@ 1 16mG

dt2 dt 2 3+ 2~ (24)

~
B~s — g~sB

~
P = 87t (T~g —+ T~g) (17)

then we Gnd that the nonminimal coupling of the scalar

Note that if we redefine the contribution of the deriva-
tives of the Brans-Dicke Geld to the right-hand side of
the scalar-tensor equations of inotion in Eq. (3) to be an
efFective energy-momentum tensor T b, so that

This is the one equation of motion in the Einstein kame
that still includes an explicit dependence on the form of
w(P). In vacuum or with radiation the right-hand side
is zero and so the evolution of both g and the volume
scale factor V in the Einstein frame is independent of the
choice of function ur(P). We will show in Sec. V that
these solutions for V(t) also include all the scalar-tensor
cosmologies containing stifF matter. Analytic solutions
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for other barotropic fluids but restricted to spatially flat
FRW models have recently been given by Barrow and
Mimoso [18]. We will now extend this method to the
case of Bianchi type I metrics.

coupled scalar field in the Jordan frame interacts with
the field @ in the Einstein frame, so shear, which evolves
&eely in the Einstein &arne, is coupled to the Brans-Dicke
field back in the Jordan frame, and we have

IV. BAROTROPIC MATTER
IN BIANCHI TYPE I

322

4(GQ) a (33)

We will erst consider the case of barotropic fluids
[where p = (p —1)p], such as dust (p = 1) or false vacuum

(p = 0), but excluding for the time being the exceptional
cases of stiff' ffuid (p = 2) or radiation (p = 4/3) as well
as vacuum. We will also restrict our analysis to the sim-
plest case of a Bianchi type I metric, where the structure
constants t

&
all vanish and the spatial curvature is zero.

The metric can then be written as

This is a result of the effective anisotropic pressure (in
the presence of shear) induced by the Brans-Dicke field
in the Jordan frame, but absent in the Einstein frame.

We will use the approach developed by Barrow and
Mimoso [18] for the scalar-tensor solutions in spatially
flat FRW metrics, itself an extension of the method used
by Gurevich, Finkelstein, and Ruban [8] for Brans-Dicke
gravity. We introduce the time coordinate ( defined by

ds = dt + a—i (t)dx + a2 (t)dy + a3 (t)dz, (25) a3(1—0) (GQ)
(3'Y—4)/2 3

dt3+ 2(d
which includes the spatially flat FRW metric when ai ——

a2 ——a3. The expansion is given by = a3(~—&)
3 dt,3+ 260

(34)

3da0= ——
adt '

where the volume scale factor

V:—a = aia2a3 .3=

(26) and the variables

16~G 3 dga
dt

z;=a 0;,

(35)

(36)
The g-field equation of motion, Eq. (24), is driven by

the barotropic fluid density in the Einstein &arne
z= —) z;.

3 M(Gy)("-4)/2
8m G a3~ (28) The equations of motion, Eqs. (24) and (29), reduce to

where M = 8vrGpa ~/3 is a constant and a = V is the
volume scale factor in the Einstein frame. This same
energy density drives the evolution of the three scale fac-
tors whose individual expansion rates 0; = a;/a; obey
the field equations

0;+08, = 3(2 —p) M(GP)( ~

2 a3~ (29)

20' —= —(0,2 + 0,' + 0,' —0,0, —0,0, —030,),3 (30)

so in the conformally transformed Einstein frame it
evolves like the energy density of a minimally coupled
stiK fluid

do +280. = 0.
dt

(31)

Thus it behaves exactly like a sti8' fluid with density

2 3+2
8'G 32vr Ga

However the difference between the expansion rates in
any two directions is not driven by the isotropic fluid.
The shear is

y' =M (4 —3p),
3+ 2(u 3(2 —p)M

3 2

plus the constraint Eq. (20), which becomes

4 2 2 + g2 + 4M(Gy) (3g —4)/2 —3(2—P)

(38)

(39)

(40)

Each term on the right-hand side is non-negative and
so we can describe the expansion in the Einstein frame,
z, at any time as being dominated by either the
term arising &om the Brans-Dicke field energy den-
sity y, the shear Z, or the matter energy density
4M(Gy) (3~-4)/2 a3(2-~)

These equations of motion can be integrated to give

y = (4 —3p)M(( —(,),
3(2 —p)M ~ 3 + 2(u(()z2- a + 0'~

2 $ 3

(41)

(42)

where (0, („and cr; are integration constants. Hence-
forth we will set the constant (, to zero without loss of

where Z is a constant, evolving in a flat FRW metric
with scale factor a.

Note that this general relativistic result is not in gen-
eral true in scalar-tensor gravity. Just as a minimally

Note that these variables correspond to those defined by
Barrow and Mimoso in terms of Jordan frame variables where
z = g(3 + 2cu)/3[(x/3)+(y/2)) with G = 1 in that paper [18].
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generality. This merely amounts to a translation of the
time origin. We have chosen (0 so that

) cr;=0, ) o.,'. = 2Z'. (44)

We can use these results to rewrite the equation of
motion for the Brans-Dicke field, Eq. (24), solely in terms
of P and our time coordinate (:

i

—I+-(gVi
'

4 —3q (z')' (P'l '
1 (P'l

(4-»)&. «& «&)
(45)

The solutions to the Bernoulli equation, Eq. (45), can be
cast into the particularly simple form

l
I

—
I

=(4-»)&4l
E&o) g, g(()

(46)

where $0 is an integration constant, by absorbing z(()
into another function,

z = 3(2 —p)M ~ 3+ 2~(()d(.
2 g

3

The integration constants o; thus characterize the initial
shear and obey

bounded. The former requires that (z rexnains bounded;
whenever ~(~ ~ oo the model isotropizes. As we shall
see in following sections, ( ~ oo as t —i oo for u )
2(~ —5/3)/(2 —~)'.

Note that singularities in the Jordan kame, by which
we mean here points at which the volume scale factor, a,
vanishes, can occur only if g -+ 0 or P -+ oo. In fact the
latter case can be shown also to require that g/zz ~ 0
and thus the dynamical role played by matter (excluding
stiff fluid with p = 2) at the singularity is negligible in
anisotropic models. Thus we reserve a discussion of the
nature of the singularity until Sec. V B where we discuss
vacuum and stiK Quid. models.

The behavior of the coupling u(P) which defines the
scalar-tensor theory is given in terms of z(() by

3+ 2 [4(&)1 =
3 2, ( ')'

The ur(P) dependence is only obtained after we have
solved for the evolution of P and &u as functions of (, if we
can invert Eq. (46) to find ((P). In practice a theory is
chosen by specifying g(() as a generating function from
which P(() follows by Eq. (46), and u(() &om Eqs. (47)
and (52). We have a(() from Eq. (51), as well as a;(f)
from Eqs. (50), and we can relate our time coordinate ( to
the proper time in the Jordan frame, t((), from Eq. (34).

z'(() K4 —3q )
)

(47) A. Brans-Dicke gravity

(~y)(sp —4)/2 as(z —p)
g =

M
(( y)as(&-~)

M (48)

In other words, 4M g(() is just the energy density term
on the right-hand side of the constraint Eq. (40), and
the definition of g in Eq. (47) is precisely this constraint
equation, where

g2
gp = (49)

with gp another integration constant.
Comparing the expression for P'/P obtained from

Eq. (46) with that from Eq. (41) shows that

Brans-Dicke theory is recovered when ~ = up is a con-
stant and we see from Eq. (52) that this implies that

9(2 —p)zMz 3+ 2(uo

3 (53)

In. the isotropic case where the shear Z = 0, setting (0 ——

0 corresponds to what is often referred to as the solutions
being matter (rather than P) dominated at early times.
In fact because both g and yz then evolve as (, the
relative terms on the right-hand side of the constraint
Eq. (40) are strictly proportional and so this could more
accurately be described as a scaling solution. Clearly
all Bianchi type I solutions approach this behavior, with
a oc (& and P oc (", where

1

rMg)
«+)

o; /3+ 2ur(j)
2M g(()

Thus g(() must be non-negative.
The behavior of the individual scale factors in the Jor-

dan frame, a;((), is given by

2 (3 + 2~) (2 —p) —2(4 —3p)
3(3+ 2~)(2 —~)' —(4 —3~)' '

4(4 —3q)
3(3+ 2~)(2 —~)' —(4 —»)' '

(54)

(55)

(5o)
as ( —i oo, giving Nariai s [7] isotropic power-law solu-
tions, a oc t and P oc t", where

which gives an analytic expression dependent on our abil-
ity to perform the integration in the exponential. The
average scale factor obeys

(51)

2(3 + 2~) (2 —p) —2(4 —3p)
3(3+ 2(u)p(2 —p) —(4 —3p)(3p —2)

'

4(4 —3q)
3(3 + 2~)p(2 —p) —(4 —3p) (3p —2)

'

(56)

The shear terxn, Zz, in the constraint Eq. (40) will only
remain dynamically important if both y and g remain

upon integration of the time transformation, Eq. (34),
irrespective of the initial shear.

However, the ( -+ oo limit is never reached (for positive
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P) for w ( 2(p —5/3)/(2 —p) as in this case g -+ 0 at fi-
nite ( (and would become negative as ( -+ oo). Nonethe-
less this universe does correspond to an infinite proper
lifetime in the Jordan &arne, but with a late time ex-
pansion driven by both shear and the Brans-Dicke Geld
density, i.e. , the model does not isotropize.

B. Approach to general relativity

Among the wider class of scalar-tensor gravity theories
Brans-Dicke behavior looks atypical. It only occurs at
late times where g(() oc ( in the limit ( —+ oo. Otherwise
the generalized Friedmann constraint equation becomes
scalar field dominated if g(() ( a( for any constant a
as ( ~ oo, or matter dominated if g(() ) u(2 as ( -+ oo.
In this latter case we see from Eq. (52) that the Brans-
Dicke parameter ~ must diverge, and [from Eq. (46)] the
Brans-Dicke field P tends to a constant value; in other
words me recover the general relativistic behavior at late
times.

Recently Damour and co-authors [27, 28] have argued
that the general relativistic limit acts as a cosmologi-
cal attractor within the parameter space of more gen-
eral scalar-tensor gravity theories. This occurs when the
Brans-Dicke parameter diverges. In the notation favored
by Damour and co-authors this corresponds to the Brans-
Dicke field P = F(p) as defined in Eq. (1) having a local
maximum with respect to the field p (with P g 0). To
see how this emerges in our notation, and in the Bianchi
type I cosmologies, we will consider the limit

F(p) = Pp ——k& + 0(& ) .
2

(58)

This simply corresponds to a pole in the function w(P),

2(u((t) + 3 = —
~ ~

1+0 (

(»)
This type of behavior occurs as ( ~ oo and we consider

a generating function

g(() = g„('"+0(('" '), (60)

with n ) 1. Equation (46) then gives the evolution of
the Brans-Dicke field as

tionship between the time coordinate ( and the proper
time in the Jordan frame, Eq. (34), we find (for p g 0)

( ~ t(2—~)/n~

a ~ t'~'&,

~—2 (n —i) (2—p) /np —3(n —i) (2 p)/n—
OC t oc a

p

(63)

(64)

(65)

For p = 0 both $ and thus a grow exponentially with
respect to the proper time t leading to de Sitter expansion
as ( m oo.

Note that the shear must vanish relative to all the other
terms in the constraint Eq. (47) as we approach general
relativity. As ( m oo we find p oc t 2 but o.2 oc t

V. MASSLESS FIELDS
IN ANISOTROPIC COSMOLOGIES

We will in this section restrict ourselves only to vacuum
or to matter consisting of the short-wavelength modes
(radiation, p = 4/3) and long-wavelength modes (stiff
fiuid, p = 2) of massless fields [20]. Here we can integrate
the equations of motion in the Einstein &arne without
specifying u(P).

For radiation the Quid is conformally invariant and in
this case, as we have seen, a perfect Quid, i.e., noninter-
acting, in the Jordan &arne remains a perfect Quid in the
Einstein &arne. On the other hand, a noninteracting stifF
Quid in the Jordan &arne does not remain a perfect Quid
in the Einstein frame, but we can still deal with the dy-
namics in this case as the homogeneous Brans-Dicke field
also becomes a stifF fiuid, @, and although there is an in-
teraction between the two components their combined
dynamical efFect is the same as that of a single perfect
stiff Quid. Thus if the stiff Quid in the Jordan &arne is
a homogeneous minimally coupled scalar field p, we can
define the composite scalar, y, by

dx' —= d4'+ G4dv', (66)

which obeys the equation of motion for a homogeneous
minimally coupled Geld

d x gdx+8 =0.
dt2 dt

The corresponding energy density in the Einstein &arne
ls

(61)
1 /'dg) 3 A~

( dt j 8~G 4P2
(68)

which, via Eq. (52), gives the above w(P) behavior for

A:= 3(2 —p)2 n —1

4(4 —3q) n2 (62)

Note that there is actually an upper bound on k
3(2 —p) /16(4 —3p). This corresponds to the condition
that the Brans-Dicke field is overdamped and approaches
(t p monotonically. For larger k it will execute damped os-
cillations about Pp [27].

Using Eq. (51) to find the limiting behavior of the av-
erage scale factor and using this to determine the rela-

8~G r MGy+
V4/3 V2

8vr G I' MGQ+
3V4/3 V2

(70)

where I and M are non-negative constants, we can obtain

where A is a constant of integration. In the absence of a
second field y then we simply have y = @.

Thus with the conformally transformed matter den-
sity and pressure, for radiation and or stiff Quid in the
Einstein &arne
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the energy density of the Brans-Dicke field in the Einstein
frame as

1 fdvPl 3 A2 —4MGQ
2 g dt ) 8vrG 4V2

(71)

Clearly we require 4MGQ ( A for this to correspond to
a non-negative energy density. Thus in the presence of
a stifF fiuid, M g 0, this places an upper bound on the
value of the Brans-Dicke field, or equivalently a lower
limit on the effective gravitational coupling constant in
the Jordan frame, G,s. P & (4M/A )G.

The evolution of the volume scale V(t) can be given if
we can solve the Einstein equations (20) and (21) with
total energy density

Einstein frame and we must have general relativistic be-
havior. The latter case corresponds to singular behav-
ior of the conformal factor so we may expect radically
different behavior in the Jordan frame from that in the
Einstein frame. On the other hand as y ~const we must
have either w -+ —3/2 or P ~constant. Thus for any
cu & —3/2 we must also recover general relativistic be-
havior in this limit.

A. Scalar-tensor theories

We will give here only three particular examples for
which we can perform the inversion to find P(y) analyti-
cally in Eq. (74), though we can solve for any w(P) using
numerical integration.

8~G A' I
4V2

+
V4r's

and pressure

(72)
1. Bv ans-DicIce gv amity

When w = wo ——const we find

4V2 3V4r's (73)

3+ 2(u(P) dP
3

(74)

as well as the shear and spatial curvature which will de-
pend on the Bianchi class. This Einstein frame solution
for radiation and a stiff Quid, in a particular Bianchi or
Kantowski-Sachs metric, is independent of u(P) and de-
scribes the Einstein frame behavior for any scalar-tensor
theory.

It is only at the final stage that we must specify ~(P)
in order to invert

1671G
( )

3+ 2&p

3 3
for M=0, (76)

3+ 2(up ~A~ + QA2 —4MGQ

~A~
—QA2 —4MGQ

for M g 0. (77)

Notice that while the presence of a stiff Quid leaves the
evolution of the scale factor in the Einstein frame unal-
tered (i.e. , independent of the value of M for a given A )
it affects the form of y(P) and thus the evolution of P
and the conformal transform back to the Jordan frame.

Inverting these relations gives

and thus obtain the evolution of P(y), which is both the
Brans-Dicke field and the conformal factor relating the
Einstein frame to the Jordan metric. We see that the
effect of a stiff fluid in the Jordan frame (i.e., M g 0
for a given value of A2) is to alter the relation between

y and P. But this is the role, in vacuum, solely of ~(P)
and so any scalar-tensor theory, defined by ~(P), plus a
stiff Quid in the Jordan frame is equivalent to an effective
theory with a„,(P) in vacuum given by [20]

A2
3+2 -.(&) =— , l3+2 (&)1

However, this equivalence is broken by the presence of
any matter other than radiation (i.e. , any matter with
nonzero trace of the energy-momentum tensor) which in-
teracts in the Einstein frame with the field g, rather than
X.

Even without knowing the specific form of w(P) we
can note a few general features of y(P). In particular
if y diverges this must correspond to either ~ + oo or
ln(GQ) ~ +oo (with only P ~ 0 possible for M j 0).
The former case may occur as P approaches a finite,
nonzero constant value in which case the Jordan frame
coincides (up to an arbitrary constant factor) with the

(a~G)'~' q

FIG. 1. The Brans-Dicke field P, as a function of the min-
imally coupled Geld in the Einstein frame, y. In Brans-Dicke
gravity (with pr = 1) P(y) is given by solid lines (for two
choices of sign of Pp) in vacuum or radiation (A = 2, M = 0)
or by dotted line in presence of a stiff fiuid (M = 0.2). For
u(P) given in Eq. (81), with Pp = 0.8, the dashed line gives
the Q(y) for M = 0, or dotted-dashed line for M = 0.2.
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16vr G
for M=0,

3 (78)
y -+ oo we must have P —+ 0 or P -+ oo for M = 0. In the
presence of a stifF fluid (M g 0) only P —+ 0 is possible.

A2
for M/0,

4M h2 PP 16''G
2 3

(79)

2. (u(P) mith Hs'ness-Dickie
and general ~lativistie limits

An alternative choice of u(P) that displays both a
Brans-Dicke regime and general relativistic behavior is

as shown in Fig. 1, where 2'�(P)+ 3 = (2urp + 3) 2 (81)
3

3+ 2cuo
(80)

Thus at an initial singularity in the Einstein kame where

Clearly for P ) Pp we have ~ ) ~p and ~ approaches this
lower limit as P -+ oo, while as P ~ Pp we find u ~ oo.

Equation (74) then yields

16mG 2(up + 3 /'P —Pp )
for M=-O, (82)

(QA2 4MGy—.+ QA2 —4MGy&ln for M /0.A' —4MG4 l QA2 4MGy.——QA2 —4MGy~

Note that y —+ oo as P M Pp, and also as P -+ oo when M = 0. But because P ( A2/4MG in the presence of the stifF
fIuid the latter Brans-Dicke limit cannot be reached.

This can be inverted to give

for M=O,

16vr G
for M 0,3

( 16~G
4(X) = 4'o 1+exp '

3 PoX
)

A~ fA —4MGQoi 2 (1
4MG g 4MG ) l2

(84)

where Pp was defined in Eq. (80) and
S = d xg ge ~ B+—g" &p „(p „

&o=pp
A2 —4MGpp

A2

The function P(y) is plotted in Fig. 1. ng""P „P„——H„„),H"""— (87)

3. A, zion-dilaton st~ing cosmologies

While the efFective action derived in the low energy
limit of string theory is sometimes referred to as Brans-
Dicke gravity with cu = —1, this is strictly only true when
all other matter fields are minimally coupled to the Jor-
dan, or "string, " metric. This is generally not true in
string theory, but we will show that at least for other
massless fields such as the antisymmetric tensor 6eld,
H„„p, and moduli fields, P, appearing in the low en-
ergy efFective action, the techniques developed for scalar-
tensor gravity can also be applied to string theory. (For
a more detailed discussion in the case of isotropic FRW
cosmologies see [29j.)

The background 6eld equations of motion reduced to
four dimensions can be derived &om the action [4]

~pvA ~ puAmg
)K (88)

and e~„g„ is the antisymmetric volume form.
Conformally transforming to the Einstein frame the

above action then becomes

Conventionally the variable gravitational coupling is rep-
resented by the dimensionless dilaton field p, which is
simply related to the Brans-Dicke field P:—1/(Ge&). If
the antisymmetric tensor field is a function only of the
four-dimensional spacetime coordinates then it can be de-
scribed by a single (pseudo-)scalar "axion" field h, where
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V 9 & 9 V', y, V', v n9 P, g /3, u

——g" e~h 6)P (S9)

Thus we see that the dilaton is simply related to our Geld

g, defined in Eq. (11), as d@—:—dy/+16mG. For ho-
mogeneous fields we can also define the composite scalar
field y(p) such that

and thus

1 (dqb 3 A'

2 ( dt p SvrG 4g2
n (dP~ 3 B

16~G ddt)
1 /dh) 3 Me

2~G E dt y S~G P2

1 ('dg) 3 A —B2 4M—e
2 pe) S~G Q2

(91)

(92)

(94)

2(p

dy =d@ + dP + dh8G ~6G
whose total energy-momentum tensor is conserved. Al-
though the axion field in particular is coupled directly to
the dilaton, we can still integrate the equations of motion
to deduce the relative energy densities in the Einstein
frame:

e (95)

The relation between y and p is then

Once again we see that the presence of other massless
fields places an upper bound on the value of the Brans-
Dicke Geld, or equivalently a lower bound on the dilaton:

16aG 1 A

2~3 i/A' —B' —4Me —'~

1 A2
(p for M = 0,A2 —B2

A' ~ i/A' —B'+ i/A' —B' —4Me —'~ )
ln 1 i for M $0.

A —B '~ i/A2 B2 i/A2 —B2 —4Me

(96)

(97)

(9S)

Inverting this gives

A2 —B2 16~G ~
e~(y) = exp 2~3 for M=O, (99)

A —B
cosh V 64mGy for M/0. (100)

For M = 0 and B = 0 this coincides with the Brans-Dicke
result with w = —1. For M = 0 but B g 0 the efFective
Brans-Dicke parameter lies in the range —3/2 ( tu ( —1.
In the presence of the antisymmetric tensor field (M P 0)
the form of P = (Ge~) differs from a purely Brans-
Dicke result.

Thus we can use the same results as we will use for
general scalar-tensor gravity models with stifF fluid (with
or without radiation) in the Einstein frame to derive the
general solutions to the low energy string effective action
including homogeneous antisymmetric tensor and moduli
fields (with or without radiation).

B. Anisotropic models

Rianchi type I
Considering again the spatially Aat, anisotropic metric

given in Eq. (25), we will introduce the variable X = a

(GP)a and the conformally invariant time coordinate
dg = dt/a—:dt/a. Remembering that the shear in the
Einstein frame is given by o 2 = 3Z /4a, and using p as
given in Eq. (71), so that

3 QA2 —4MGy
3+ 2(u X (101)

and p given in Eq. (69), we find the constraint Eq. (20),
in vacuum or with a stiff fluid in the Jordan frame (but
for I' = 0), can be simply written as

XI2 = a'+ Z'. (102)

This is precisely the same constraint equation as solved
in the case of scalar-tensor gravity in Hat FRW models
in vacuum [19] or with stifF fluid [20] and we have

X = a = QA2+ Z2 ~i7
—rje~ .
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In the presence also of radiation in the Jordan frame the
constraint Eq. (20) becomes

x" = a'+ z'+4rX,
and so

(1o4)
C)

0
O
O

Q

O
O
CO

w = ~* =
I n —n. I (gx + r.* + r I„—„,I) .

(105)

These are well-known general relativistic results for the
evolution of Bianchi type I models in the presence of ra-
diation and stiK fluid. As one would expect the stiK fluid
and shear dominate the evolution near the singularity
(a ~ 0) but the radiation term will dominate as a ~ oo.

The behavior of this averaged scale factor, together
with the shear

322

4~ry —ry, ~'(i/A'+ E'+ rory —ryo~)'
(106)

(1o7)

where the definitions of the overall expansion and shear
give two constraints on the three new integration con-
stants:

) c;=1, 2A'
3(A'+ Z') (1o8)

Thus although there is a unique (isotropic) late-time be-
havior in the presence of radiation (I' g 0), where a, oc

describe the general evolution. However, the Bianchi
type I metric has three degrees of freedom so there is a
degeneracy within the evolution we have described so far
depending on how the expansion and shear are divided
among the three scale factors. Solving the equations of
motion for each scale factor in the Einstein kame we find

x. —(3c,/2)
v A'+ z' ~ r~& —

&o~

E
O

C

co nl
C
i2

0.5 1.5 2.5

conformal time, g —go

I'IG. 2. Evolution of the three independent scale factors
a, , in the Einstein frame, in Bianchi type I metric as given in
Eq. (107) with A = 2 and with radiation (solid line, I' = 2)
or without (dashed line, I' = 0). We have chosen ci ———1/4,
cq == 1/2, and cs = 3/4 in both cases.

~ry
—

77p ~, the initial behavior (for ~iy
—

gyp
~
(( QA2 + Z2/r)

is dependent upon the choice of integration constants c,.
(see Fig. 2).

This early power-law evolution of the scale factors in-
cludes the pure general relativistic "Kasner" vacuum so-
lution with A = 0. Although the averaged scale factor,
a, always vanishes at go, this singularity can be pointlike
(all c; ) 0 for all i) or linear (only one c, ( 0) unlike the
Kasner behavior for which only the linear singularity is
possible (except when c~ = 1 and c;~~ ——0 and the singu-
larity is planar). Indeed for A ) 3Z only the pointlike
singularity is possible [11].

To recover the full scalar-tensor results in the original
Jordan frame we must calculate y as a function of time
froin Eq. (68),

16' G
[x(n) —xp] = A.

n iry
—

rypi

A

gA'+ Z'

for I'=0,

rory
—vip i

QA2+ z2+ r[~ —~, [

forl $0,

(109)

(11o)

and then use P(y), dependent on the form of u(P), to
specify the evolution of the Brans-Dicke Geld, and thus
the conformal factor relating these solutions back to the
Jordan frame variables. Note that the Geld y must always
diverge as ry

—+ gyp. (In the absence of radiation it also
diverges at ry -+ +oo.)

As noted earlier, the definition of yc(P) in Eq. (74)
requires either w —+ oo or 1n(GQ) ~ +oo. The former
case where P tends to a finite, nonzero value will lead
to a purely general relativistic result as X —+ 0. In the

@ oc /ry
—gyp/",

a ~ [g —g ]&"' "&/'

i

(s—n)/2

(111)
(112)
(113)
(114)

if u m w(0) g —3/2 and n g 3, where, &om Eq. (101),

latter case we can expand about the point X ~ 0 and
we find that in the Jordan fralne we have
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A2

A2+ Z2 (115)

Thus without specifying the full ~(P) we can deduce a
number of features of the possible behavior in the Jordan
kame.

(1) In the presence of shear and/or a stifF fluid in the
Jordan frame, a "bounce" (where the volume factor V is
stationary, dV/dt = 0) will occur whenever

da 1 (X' =0,
dt (116)

which, from Eqs. (101) and (104), requires

3 3 (A —4MGQ&
2 2 g A2+Z'

We thus see that a bounce is only possible when

3——&a&0.
2

(117)

3Z2GQ
4X3 (119)

so if P vanishes faster than X the anisotropic initial
singularity in the Einstein frame becomes isotropic in the
Jordan frame. Again from Eqs. (74) and (104) we find
that this requires P ~ 0 and

In a flat FRW metric (Z = 0) and in the absence of
a stiK fluid (M = 0) we require ur = 0 [20]. The pres-
ence of shear or a stiff fIuid requires a negative value
of u, producing a negative effective energy density for
the Brans-Dicke field in the Jordan frame, to produce a
bounce. For a~(P) less than that given in Eq. (117), the
averaged scale factor in the Jordan kame actually grows
as both X and P approach zero.

(2) The singularity at X = 0 is always present in the
Einstein frame, and is bound to be anisotropic for Z2 g 0,
with 0 ~ oo as X ~ 0. However, we noted in Sec. III
that in the Jordan kame the Brans-Dicke field exerts an
anisotropic pressure proportional to the shear and one
might wonder whether it is possible for this to suppress
the shear as one approaches the singularity. This is in-
deed possible. The shear in the Jordan frame in a Bianchi
type I model is given by

3(A2+ Z2) Gy ( 3g2 1+
4 X i 3+2(d

» —4MGyl
A2+ P2 )

(121)

We see that whenever P ~ 0 as X -+ 0 such that the
shear o. ~ 0, then the expansion will also vanish (for

—3/2). This also coincides with the case where
'g M 77p takes an infinite proper time in the Jordan frame.
Thus although these models reach an anisotropic singu-
larity in a finite time in the Einstein frame, this cor-
responds to a nonsingular, shear free -infinite proper life
time in the Jordan frame T.he condition for this to occur
is simply the condition for the shear to vanish as X ~ 0
given above, which can occur for

3 4
2 3 (122)

in a flat FRW metric (Z = 0), or for the more lim-
ited range given in Eq. (120) depending on the relative
strength of the anisotropy. Remember that P = 0 coin-
cides with y(P) -+ oo for oi g —3/2 and so P -+ 0 can be
an attractor solution as X —+ 0 where we have shown y
must diverge.

(4) If P grows suKciently rapidly as we approach X —+
0 then the dynamical efFect of other matter, neglected
here, may no longer remain negligible. The condition for
the density of isotropic matter with barotropic index p
to decrease with respect to the shear or Brans-Dicke field
density in the Einstein kame as g —+ gp is that

3 3 (4 3~) '( A'
~& ——+ —

I

2 i 2 —p) (A'+Z ) (123)

For smaller values of ~ it may no longer be possible to
neglect the effect of this matter as a ~ 0. In particular
in the case of the nonsingular solutions given above with
vanishing shear and expansion (in the Jordan kame) as
g —+ gp, the relative density of barotropic matter always
grows as we approach gp for Quids with p & 1. %e have
also neglected here any possible anisotropy in the matter
content. This, of course, may well play an important role
in anisotropic solutions, but is beyond the scope of this
paper and we leave this for future work.

3 1(
z I2 6 (

(120)

(3) Is it then possible that the singularity as X
0 in the Einstein kame can be avoided completely in
the Jordan kame? First note that the condition that
da/dt = 0 [Eq. (117)] is incompatible with the condition
that the shear should vanish [Eq. (120)], or even remain
finite, as X and P both approach zero. However, the
expansion 8:—3(da/dt)/a can remain finite even though
da/dt diverges if the average scale factor a grows fast
enough. Using the above results for a general scalar-
tensor theory in a Bianchi type I metric with a stiff Quid,
we can write the expansion as

2. Bianchi type V

The next simplest case to consider is that of a Bianchi
type V metric which can be written as [30, 24]

ds = dt + a (t)fdx +—e [L (t)dy + L (t)dz ] j.
(124)

The requirement that u ( —4/3 to avoid the singular-
ity was pointed out by Nariai [9] in the case of Brans-Dicke
gravity.
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Just as Bianchi type I includes the flat FRW model,
Bianchi type V includes the open FRW model in the
isotropic limit, L =const. Here we have already intro-
duced the averaged scale factor a, so that the expansion
is simply

0= -' —", (125)a dt
and the shear is then

1 dL
0

L dt
(126)

Like open FRW models, the homogeneous hypersurfaces
have a negative spatial curvature

(3)~ (127)

but because this is a function of the averaged scale factor,
i.e., does not select out a particular direction, it does not
drive the shear.

Thus transforming to the Einstein frame where the
Brans-Dicke field decouples from the spacetime curva-
ture, we Gnd that the shear again evolves as a free Geld,
o = 3Z /4a, just as in Bianchi type I. Introducing
X = a = Gga and dg = dt/a = dt/a as before, the
constraint equation, including stifF fluid and radiation,
simply becomes

X"—4X' = A'+ 22+ 4I'X. (128)

~ (gA'+ z'+ r~)
1 —7.2

where we have written

7 = tanh lg
—q

(129)

(130)
This variable, ~, turns out to play much the same role in
the presence of negative spatial curvature as the confor-
mal time, g, does in the spatially flat case, as is the case
in FRW models [20].

At late times (g —+ koo) w -+ 1 and the evolution
becomes curvature dominated, as we would expect in a
noninflationary universe. Because the curvature does not
drive the shear,

0
3(1 —~2)sZ2

131
47's (gX2 + Z2 + r'r)'

it vanishes as 7 —+ 1.
At early times w lg —

gaol

« 1 and so the curvature
is irrelevant and we recover a Bianchi type I solution.
However, unlike the general Bianchi type I, the metric
has only two degrees of freedom and so its evolution in the
Einstein frame is completely described by the expansion
and shear. Integrating the expression for o gives

L —L27-~»/'&&'+&'
0

( ) ~3Ei+A2+z2
=Lo

I(v A2+ z2+ r~ j

(132)

for I' g 0 . (133)

This is mathematically identical to the constraint equa-
tion solved in the case of scalar-tensor gravity for an open
FRW model [20]. We can integrate this to obtain

The behavior near the singularity in Bianchi type V
metrics is thus only a subset of the Bianchi type I so-
lutions, given in Eqs. (107) and (108), restricted to
c2 c3 —~3K/(A + Z ). Thus (for a given A and
I ) they are parametrized solely by the choice of Z.

Similarly, because the Brans-Dicke Geld is decoupled
from the spacetime curvature in the Einstein frame, the
Geld

16~G
3 (X —Xo) = A

&~2+ Z2

A

gA'+ Z'

lnv for I' = 0,
I'v.

ln gA'+ z + r~

(134)

8. Bianchi type III and Eantomski-Sachs vnodels

Here we will write the metric in the Jordan kame as

ds = dt + ai(—t)d2: + a2(t) dy + e (y)dz

(136)

where
'

siny for Kantowski-Sachs models,
s(y) =

& y for axisyrnmetric Bianchi I,
sinh y for Bianchi III.

(137)

The volume scale factor V = a~a2. If we introduce a
conformally invariant tiine coordinate d(—:—= = anddt dt

CLg CL g

let X = aqa2, we can write the Einstein equations as

X"+ 4kX
(a', ) ' X' a',

I

='
I

+jaiX a
(X' ' (a', l '

+4kRij

= 8~G(p —p) Xaz,

= 4~G(p —p) a2„

= 8&Gp + pa2 ~

(138)

(139)

(140)

where '—:d/d( and k = +1,0, —1 corresponds to
Kantowski-Sachs, Bianchi I, or Bianchi III, respectively,
in analogy with FRW models.

We have only been able to solve these equations analyt-
ically in the presence of a stifF Quid plus the Brans-Dicke
field. Even in the case of radiation, where one can ob-
tain both p and p as functions of a~ and a2, the resulting
equations for az and a2 still cannot be integrated. How-
ever, we see that a stifF fluid in the Einstein frame, like
the Brans-Dicke Geld, does not enter the first two equa-
tions and so (for I' = 0) we can integrate both of these
directly to give

AX = —(2X-&.]),2
(141)

for I' g 0, (135)

and thus P(y) approaches a fixed value P as r ~ 1
[unless y(P) is singular at this point]. Thus the evolu-
tion of the metric in the original Jordan kame will also
approach that in the Einstein kame at late times.



5624 JOSE P. MIMOSO AND DAVID &ANDS 52

O
V
O

O CV

D
V
fh

(C ) 0). Thus the singularity is linear or pointlike. In
the Kantowski-Sachs case we And another singularity at
( M (p + m'/2. This is like the initial singularity but with
C + —C, and thus a pointlike singularity is followed by
a linear singularity, or vice versa (unless C = 0 in which
case ai remains constant throughout).

We can then integrate Eq. (68) to obtain

16m G Ad(
X XP ~ I (148)

0.5 1.5 4(1 —C2)
ln v. .

3
(149)

FIG. 3. Evolution with respect to time coordinate ( of
the two independent scale factors aq and a2, in the Einstein
frame, in Kantowski-Sachs (solid line) or Bianchi type III met-
ric (dashed) as given in Eq. (143). We have taken C = 0.3.

Thus y must diverge both at early and late times in the
Kantowski-Sachs (or Bianchi type I) metric, but the ex-
panding universe becomes curvature dominated in the
Bianchi type III metric with positive spatial curvature
and y coasts to a fixed value y -+ +4(1 —C2)/3.

with the appropriate function s(z) defined above and
thus

Qy = Qyg'T (142)

A2 2 2 (I C2) (145)

and so clearly we must have C & 1 in the presence of
a stiff fluid in the Einstein frame, or C = +1 in general
relativistic (i.e. , P =const) vacuum.

Note that we again obtain Kasner type solutions near
the singularity at ( ~ (p, independent of the sign of
k. The curvature becomes irrelevant and we recover an
axisymmetric subset of the Bianchi type I solutions, Q; oc

~g
—

rIp~ "~, where dq = dt/(aia2) ~ and

cy
1 —C

C2
——C3 —— ) 0.

2 —C
(146)

7 z —C
(143)1+ kw2

where we have defined

~
tan(( —(p) ~

for Kantowski-Sachs models,
7 = & ~(

—(p
~

for axisymmetric Bianchi I,
~
tanh(( —(p) ~

for Bianchi III.

(144)

A, C, and ai, are integration constants and a2, ——A/a. i, .
The evolution of the two scale factors is shown in Fig. 3.

The energy density of the stifF fluid in the Einstein
frame is given by Eq. (68) where the constraint Eq. (140)
requires

LRS Bianchi type IX

To give an example of an anisotropic cosmology
with closed spatial hypersurfaces we consider a Bianchi
type IX metric [9, 10]

ds = dt + ai (—t) (sin /de —cos @sin Od p)
+a2 (t) (cos @do + sin @sin Odp)

+as (t) (dQ + cos gd(p) (150)

whose homogeneous spatial hypersurfaces have volume
V = 16vrQ~Q2QS, so the expansion

Qy Q2 Q3+ +-
Qy Q2 Q3

(151)

When ai/ai ——a2/a2 ——as/as we recover the closed FRW
model.

As the curvature terms in anisotropic models become
more complicated, our ability to give analytic solutions
becomes more restricted. In the case of Bianchi type IX
we can only give analytic solutions for the locally rota-
tionally symmetric (LRS) case (where a2 ——as) plus stifF
quid in the Einstein frame [31], corresponding to vac-
uum or stiff Quid solutions in scalar-tensor gravity. This
will not show the chaotic behavior of the more general
Bianchi IX metric [32] nor the isotropizing effect of mat-
ter such as isotropic radiation. Such issues would require
a phase-space analysis and is beyond the scope of this
paper but is perhaps a topic worthy of investigation in
its own right.

The equations of motion for the scale factors in the
Einstein frame are then

These c, obey the relations given in Eq. (108) with
2

,

2,. ..(1 —2C)b
(147)

The area of the two-dimensional subspace always van-
ishes as we approach the singularity, while the remaining
spatial dimension is &ee to diverge (for C ( 0) or collapse

~ (a, l -a,+0-
dt (ai )

d (a, l -a,+0—=
dt (a2 j

Qg

2Q2

Q —2Q1 2

2Q4,

plus the constraint equation

(»2)

(153)
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G2 G1 G2 4G1G2 —G1 3A
2——

I ~ ~ I g ~2~4 &~2~4 )

l G2 G1 G2 4 1 2 4 1G2
(154)

where the only energy density is px given in Eq. (68).
Introducing the volume weighted time coordinate d( =

dt/(aiaz) and using the variables x = 4a4i and y = 4a2ia22,

we can rewrite the equations of motion as

(x'5 '

2( —
)

+x=0,
kxJ

2/ —
I

+y=o,&y'l '

(155)

(156)

which can immediately be integrated to give

tU1

cosh uti (g —gi)
w2 cosh oui (g —gi)

G2 =
2

tUi Cosll W2 (( —g2)
(157)

as shown in Fig. 4, where (i, (2, mi, and m2 are integra-
tion constants. Clearly, tU1 must be positive and we can
also take tU2 to be positive without loss of generality.

The constraint equation requires

3A = 4tU2 —tU1 (158)

This is sufhcient to ensure that tU1 & 2tU2 and both G2

and ai approach zero as ( —+ +oo (for nonzero mi and
t02), the interval between this big bang and big crunch
taking only a Gnite proper time in the Einstein kame.
Near these singularities the scale factors evolve as power
laws, with respect to proper time (or conformal time),
and we recover another one-parameter (for given A) sub-
set of the Bianchi type I solutions, with

C1
4tU2 —tU1

2tU1 —tU1
c2 = c3 =

4tU2 —tU1
(159)

The initial (and final) shear then approaches 02

0
0
0
O

O
V
CO

O

CI
g O
C

Lal

FIG. 4. Evolution with respect to time coordinate ( of
two independent scale factors aq and a2, in Einstein frame, in
LRS Bianchi type IX metric as given in Eq. (157). We have
taken A = 2 and mq ——5.

3Z'/4a' with Z' = 4(w2 —mi)2/9.
Note that the equation for the scalar field energy den-

sity, Eq. (68), shows that y is just proportional to the
volume weighted time, (, and so we have

16vrG
(x —xo) = +AC, (160)

which must also diverge as we approach both the initial
and Gnal singularities.

VI. CONCLUSIONS

We have derived a number of new exact solutions for
anisotropic cosmologies in scalar-tensor gravity theories.
Previous studies of general scalar-tensor theories have
been restricted to isotropic (FRW) models [19,27, 18,20].
We have extended the method used for deriving exact so-
lutions for barotropic Huids in spatially fIat FRW mod-
els [18] to Bianchi type I spacetimes and demonstrated
that the ability of general relativity to act as a cosmo-
logical attractor [27] also extends to these models. Ear-
lier studies of anisotropic scalar-tensor cosmologies con-
centrated on the particular case of Brans-Dicke gravity
[9—11,33, 30, 13]. In the Brans-Dicke gravity theory the
deviation &om general relativistic behavior is strictly lim-
ited due to present day observational limits on the Brans-
Dicke parameter w [6]. However, in more general scalar-
tensor gravity the present day value need not constrain
the value of ~ near an initial singularity. In the Jordan
frame the nonminimal coupling of the Brans-Dicke Geld
introduces an effective anisotropic pressure proportional
to the existing shear which can significantly modify the
evolution even in vacuum, especially near a singularity.
It is possible for the Brans-Dicke Geld to reverse the col-
lapse as we approach an anisotropic singularity and lead
to a nonsingular, isotropic expanding universe.

We have emphasized the importance of using the con-
formally related Einstein metric where the Brans-Dicke
field is minimally coupled with respect to the metric
and so the usual general relativistic results remain valid.
Here, for instance, there is no anisotropic pressure due
to the Brans-Dicke field. Non-Einstein behavior only ap-
pears in the transformation back to the Jordan frame.

The analytic complexity of the evolution in the Ein-
stein frame lies in the interaction introduced directly be-
tween the Brans-Dicke field and ordinary matter. Ex-
cept in the particular cases of vacuum, radiation, or a
stiff Quid, this forces us to restrict our results for gen-
eral barotropic Huids [p = (p —l)p] to the spatially Hat
Bianchi type I metric. Here the solutions for general
u(P) theories are characterized by a generating function
g((), where ( is a time coordinate. Brans-Dicke gravity
corresponds to the case where g oc ((+ (o)

The shear vanishes relative to the density of matter
and/or the Brans-Dicke field (i.e. , the models isotropize)
whenever ~(~ -+ oo. This requires simply that g remains
positive, or equivalently that the Brans-Dicke parame-
ter (u & 2(p —5/3)/(2 —p)', as ~(~ m oo. If g ( n('
for any constant a ) 0 as ( ~ oo then the dynamics
become dominated by the Brans-Dicke field density at
late times. Conversely, if g ) o.( then the models be-
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come dominated by the barotropic matter and we recover
the general relativistic behavior where the Brans-Dicke
field P ~const and w —+ oo. Thus models that approach
general relativity must isotropize. Brans-Dicke gravity
is seen to correspond to the particular case where the
relative densities of the Brans-Dicke field and ordinary
matter remain proportional.

Singularities in the Jordan frame (where the volume
scale factor vanishes) occur only when the effect of or-
dinary matter (with p ( p) becomes negligible com-
pared with the shear and Brans-Dicke Geld energy den-
sity. Thus it is sufhcient to consider only the vacuum or
stifF fluid (p = p) models to discuss the approach to the
singularity.

We have shown that in the presence only of radiation
and a stifF fluid (equivalent to the short and long wave-
length modes of massless fields), or in vacuum, the evo-
lution of the scale factor in the Einstein &arne is inde-
pendent of the form of u(P) and corresponds exactly to
the standard general relativistic evolution with radiation
and a stifF Ruid [20]. This enables us to give results for
arbitrary ur(P) theories in Bianchi type I, III, V and LRS
type IX and Kantowski-Sachs metrics. At singularities
in the Einstein &arne these all approach a Bianchi type I
solution as the spatial curvature becomes negligible. As
has previously been shown in Brans-Dicke gravity [9—11,
33, 30], the presence of the Brans-Dicke field, acting as a
stiff fluid in the Einstein &arne can change the nature of
the singularity, admitting the possibility of a pointlike,
anisotropic singularity. Transforming back to the Jor-
dan metric may further modify the evolution dependent
upon u(P). If w ( —4/3 then the initial singularity can
be avoided in the Jordan frame, as found by Nariai in
the case of Brans-Dicke gravity [9].

Approaching the singularity, the energy density of the

scalar Geld in the Einstein &arne, y, must diverge. The
relation between this field and the original Brans-Dicke
Beld depends on the form of u(P), but in any case a
necessary condition for the divergence of y is that ln(P)
diverges or u ~ oo. However, the simplest general rel-
ativistic limit, considered above as a late-time attractor
in Bianchi type I, in vacuum, or in the presence solely
of radiation or stiff fluid, is not sufhcient to lead to a
divergence of y and does not act as an attractor solution
at the initial singularity. On the other hand P —i 0 is an
attractor which can lead to nonsingular behavior in the
Jordan &arne.

Thus while many scalar-tensor gravity theories do ap-
proach general relativity at late times, where the role of
other barotropic matter is dominant and anisotropy van-
ishes, they may nonetheless give markedly non-Einstein
behavior near the initial big bang where anisotropy is
important.

Note added. After completing this paper we became
aware of similar work [34] considering cosmological solu-
tions in scalar-tensor gravity with massless fields in spa-
tially flat FRW and Bianchi type I metrics.
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