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Tetrad-based perturbative approach to inhomogeneous universes:
A general relativistic version of the Zel'dovich approximation
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A new approximation scheme in general relativity is developed to describe nonlinear inhomo-
geneous universes containing irrotational dust. The parallel-transported basis of the orthonormal
tetrad. frame is employed and a second-order differential equation is obtained for the perturbations
of the spatial basis vectors, with nonlinear corrections as a source term. The equation can be solved
iteratively in a way very similar to that in the Lagrangian perturbation theory in Newtonian cos-
mology. The first-order solution is presented, which contains Szekeres exact solution as a special
case. A general relativistic version of the "Zel dovich approximation" is proposed with emphasis on
the formal similarity to the Newtonian treatment.

PACS number(s): 98.8G.Hw, 04.25.Nx

I. INTRODUCTION

There is growing interest on the general relativistic
treatment of nonlinear, inhomogeneous cosmology. Fu-
tamase [1—3] formulated a cosmological post-Newtonian
approximation to describe the metric for a clumpy uni-
verse. (See also Tomita [4,5] for post-Newtonian equa-
tions of motion in an expanding universe. ) Spatial av-
eraging is introduced in his papers to get a background
metric, and the Hubble expansion is generated collec-
tively by the inhomogeneously distributed matter. A
more rigorous argument on the spatial averaging is done
by Kasai [6,7]. An example of exact solutions is pre-
sented which are nonlinearly inhomogeneous but homo-
geneous and isotropic on average. The relation to gauge-
invariant perturbation theory is also discussed. Futa-
mase's scheme may be classi6ed as a "short wavelength
approximation. " It is applicable only when the character-
istic scale of spatial Quctuations, say 1, is smaller than the
Hubble radius L: ~/L «1. There are also works on the
so-called "long wavelength approximation, " such as the
"anti-Newtonian" approximation [8—11]and the gradient
expansion technique [12]. They rely on the assumption
that the characteristic scale is much larger than the Hub-
ble radius: ~/L )) 1. From the viewpoint of structure
formation, however, those treatments are not very rele-
vant because the characteristic size of interest is smaller
than the horizon size at the later stage of structure for-
mation where nonlinear e8'ects become important. In the
matter-dominated era, the horizon size L grows faster
than E. Therefore, even if we assume ~/L )) 1 in the
early stage, the long wavelength approximations have a
limited regime of validity until the horizon-crossing epoch
'/L = 1. Tomita also developed the second-order per-
turbation theory as an extension of linearized theory in
general relativity [13]. It, however, still relies on the as-
sumption of the density Quctuation being small.

Matarrese et al. [14] developed another algorithm
based on the Quid How approach [15]. They claim some

similarity to the Zel'dovich approximation in Newtonian
theory, but the dynamics in their formulation is compli-
cated and followed by a system of six coupled first-order
difFerential equations even under the restriction of a van-
ishing magnetic part of the Weyl tensor II p

——0. The
approach was extended up to the second order and the
results were presented both in the limit ~/L )) 1 and
'/L «1 [16].

Although Newtonian theory may successfully apply in
regions small compared to the Hubble radius, it is not
only of theoretical importance but also of observational
signi6cance to have a general relativistic treatment for
nonlinear evolution of inhomogeneous universes. (An in-
teresting possibility was suggested by Bildhauer and Fu-
tamase [17] that the nonlinear back reaction might re-
solve the cosmic age problem without introducing a cos-
mological constant. ) In this respect, it is desirable to
have a more generic formalism without such restrictions
as mentioned above. In this paper, we develop a tetrad-
based perturbative approach to the nonlinear evolution
of inhomogeneous universes. The spatial basis vectors
(or the triad) are taken as parallel transported along the
Quid lines, and it is derived that the deviations of the
spatial basis &om the "background" are essentially de-
termined by the second-order ordinary differential equa-
tion. The plan of this paper is as follows. Section II gives
a brief summary of the Newtonian treatment by Buchert
[18—20] and Buchert and Ehlers [21]. It is instructive
and important to emphasize the formal similarity of our
fully relativistic treatment to the Newtonian one. Sec-
tion III presents the tetrad-based perturbative approach
in the &amework of general relativity. The first-order so-
lution is obtained, and it is pointed out that it contains
Szekeres' exact solution as a special case. A relativis-
tic version of the Zel'dovich approximation is proposed
with emphasis on the formal similarity to the Newtonian
treatment. Section IV contains concluding remarks. We
use the following convention: Greek indices A, p, . . . (and
a, 6, . . . for tetrad indices) run from 0 to 3, Latin indices
i, j, . . . &om 1 to 3, and the speed of light is 1.
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II. SUMMARY OF THE NEWTONIAN
TREATMENT

In this section, we brieQy review the Newtonian treat-
ment. It is not only helpful in order to make the pa-
per self-contained but also important to emphasize the
formal similarity between the Newtonian and relativis-
tic treatments. Using expanding coordinates (see, e.g. ,
Ref. [22])

0 1—:——+ —V. V'
dt Bt G

(2.10)

I'urthermore, it was found that the Zel'dovich approxi-
mation [23,24], which is widely applied to the problems
of the large scale structure formation, is contained in a
subclass of the first-order solutions in the Lagrangian per-
turbation theory [19].

Introducing the Lagrangian time derivative

r = a(t)»,

the basic equations in Newtonian cosmology are

Eqs. (2.2), (2.3), and (2.9) become
2.1

dp G p—+3—p+ —V -v=0,
dt G G

(2.11)

19p G 1—+3—p+ —V'. (pv) = 0,
Bt G G

(2.2) dV G+ —V = g)dt G
(2.12)

BV G 1+ —V+ —V'VV = g)
Ot G G

V' x g = 0,

(2.3)

(2.4)

dg G 1—+ 2 —g = 4mGpbv. + —[(v V)g —(V' g) v] . (2.13)
dt G a

Differentiating Eq. (2.12) again and using Eqs. (2.6) and
(2.13), we obtain

where

g = —4m. Ga(p —pb), (2.5) d s(dx adxas
~

+ 2 — —4~Gpbx
~)dt (dt2 a dt

Gv—= r ——r=Gx
G

(2 6)

is the peculiar velocity which represents the deviation
from the uniform Hubble Bow, p is the density of dust
matter, and the scale factor a(t) satisfies the Friedmann
equation

= a [(v . V') g —(V' . g) v], (2.14)

which is the key equation in the Newtonian treatment.

B. The Brst-order solutions

(')8GRG
qa) 3 3 a (2.7)

with the background density pb. Throughout the paper,
we assume the "background" is k = A = 0 Friedmann-
Lemaitre-Robertson-Walker (FLRW) . The generalization
to k g 0, A g 0 cases is straightforward. We can obtain,
from Eqs. (2.2) and (2.5),

So far the treatment is exact. The left-hand side of
Eq. (2.14) is already linearized with respect to x and the
source term in the right-hand side contains higher-order
terms. Therefore, it can be solved iteratively. Neglecting
the source term, the equation for the first-order solutions
1s

s (d'x a dxas
~

+ 2 — —4vrGpbx
~

= C, = 0) (2.15)
g dt2 a dt

Therefore,

(Bg a+ 2 —g —4mGpv
~

= 0.
rq8t a (2.8) or, choosing C —= —4m GpbG q,

d2 G

dt2 (x—q) + 2 ——(x—q) —4vrGpb(x —q) = 0. (2.16)
G dt

{9g G 1
+. 2 —g = 4vrGpbv ——(V' g) v g V' x t.

Bt a G
(2.9)

In the following, we shall omit the curl term V x t, which
is not relevant to the purpose of this paper.

Note that Eq. (2.16) has the same form as that which
governs the density contrast b in linear perturbation the-
ory. Using the growing mode and the decaying mode
solutions D+(t) oc t ~, D (t) oc t ~, respectively, the
first-order solutions are

A. The Lagrangian approach

The Lagrangian perturbation theory of FLRW
cosmologies has been thoroughly investigated by
Buchert [18—20], and Buchert and Ehlers [21]. This the-
ory does not rely on the density Buctuations being small.

x = q+ D+(t) V'4 + D (t) 7'4
= X+ D+(t) —D+(t;) V'4+ D (t) —D (t, ) VC,

(2.17)

where X = x(t;) are the Lagrangian coordinates, and @
and 4 are functions of X.
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The erst-order solutions contain exact solutions as a
special case when the collapse is locally one dimensional.
It is most easily seen by setting 4 and 4 are functions
of, say, X only. Then

V)Ii(, )
——(V(li(, )

. V') V'@(,) —(V' @(,)) V(li(, ). (2.24)

III. GENERAL RELATIVISTIC TREATMENT
v = (v, o, o), g = (g, o, o) (2.18)

and the source term in Eq. (2.14) vanishes exactly.

C. The Zel'dovich approximation

In this section, we develop a general relativistic treat-
ment. The models we consider are the same as in the
previous section, i.e. , that contain irrotational dust with
density p and four-velocity u~. In comoving synchronous
coordinates

Prom the viewpoint of the Lagrangian perturbation
theory, the Zel'dovich approximation is regarded as a
subclass of the erst-order solutions which take the grow-
ing mode in the first-order solutions

r = a(t) x = a(t) (X+ [D(t) —D(t;)] V@j,

ds = —dt + g;~ dx'dx~

with u& = (1,0, 0, 0), the Einstein equations read

I "'~+ Pc' )' —x* z' ) = 8~op

(3.1)

(3.2)

D(t) oc a(t) oc t2~,

and use the exact expression for the density

p
~~ p i ~2IQ 3 1

a det((9x'/(9X&)
+i 1

p.
det '-+ D t —D ti

(2.19)

(2.2o)

K '
ll

' K '
ll

' —0 )

Ki +K'Ki +~'~~i =4~Gpe'-
2 j)

and the energy equation u~T~. = 0 gives

p+ pK'i = 0,

(3.3)

(3.4)

(3.5)

(until the quasinonlinear stage 8 1). The first part of
Eq. (2.20) is directly obtained &om Eq. (2.11).

where an overdot (') denotes 8/Ot,
~~

denotes the covari-
ant derivative with respect to the three-metric g,z, B'-
is the three-dimensional Ricci tensor, and

D. Beyond the Zel'dovich approximation i 1 iI(" ~K . = —g gA&2 2
(3.6)

Higher-order solutions in the Lagrangian perturbation
theory have been obtained in order to overcome short-
comings of the Zel'dovich approximation. Here we will
give a simple example of the second-order approach. For
more extensive discussions including third-order calcula-
tions, see Refs. [20,21] and references therein. We assume
the form

"B'.+ 2K' ( )Be Ki lie+ Ke Ili

Ki lie Ke Ili
Ile e II~" (3.7)

is the extrinsic curvature. The propagation equation for
the Ricci curvature tensor may be obtained &om the
Bianchi identity, which reads

x. = q+ D(t) V4„) + E(t)V'@„). (2.21) [See the Appendix for a simple derivation of Eq. (3.7).]

Then we obtain &om Eq. (2.14) the second-order equa-
tion

dE dE+ 2 — —4m GpgE V'4(, )

A. Tetrad-based perturbative approach

Let us introduce the orthonormal tetrad by

dt a (v(, )
. V') g(, )

—v(, ) (V g(, )) , (2.22)
1

with

—(~) —(b)
ggsv —j(a) (b) p, v (3 8)

where v(, ) and g(, ) are the first-order quantities. This is
solved to give

e('„) =u„= (—1, O, O, O), e('„) = (O, e",.)). (3 9)

x = X+ [D(t) —D(t;)] V4„)
D'(t) —D'(t;) V4„), (2.23)

We take the parallel-transported spatial basis along the
Quid lines: i.e.,

(3.1o)

and @(,) is related to 4(,) by the equation In our choice of the tetrad components, it gives
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'' =K.e"'
z 2. (3.11) B. The Grst-order solutions

Similar to the Newtonian case, it is convenient to use
the conformally transformed basis

Again, the treatment is exact so far. In this subsection,
we shall assume the following form for the triad,

e",' —= a(t) e",'. (3.12) e(~) g(~) + g(~) (3.21)

Then

e"'=i K'
2

P (
(~) —V2 e(&.')

a
(3.i3)

and obtain the first-order solutions for 6 ',.'.
Let us write the first-order quantities with subscript

(1). The peculiar deformation tensor is expressed in the
first order as

(&) II(l (&) IA: 2( )~' (3.14)

Using these definitions, Eqs. (3.3), (3.4), and (3.7) are
rewritten as

V'. = e(,')e" is the peculiar deformation tensor which
represents the deviation &om the uniform Hubble expan-
sion. It is also useful to define the covariant derivative
with respect to p;) = a g;~ denoted by i, and the corre-
sponding curvature tensor

(&)
V,'„- = b'„, b' . (3.22)

Hereafter, we shall concentrate our discussion on initial
scalar perturbations. In the first-order level, scalar (vec-
tor) and tensor modes do not couple with each other, and
can be discussed separately. (It is, however, of interest
to study nonlinear coupling eKects of these modes. This
problem will be investigated elsewhere. ) Then, we can
write

V.
i

—V.I. —0 (3.15)
V(', )

- ——6" -. (3.23)

It is apparent that the constraint equation (3.15), which
reads

V' +
i

3—+ V"„
i

V'. + —
i

'R' - ——'R h*ra ~&); 1 r;
) ' '&' 4 V' —V'

(1) g)X (1) X)g (3.24)

=
4 ((V).)' —VeV'), ) ~', (3 16)

in the first order, is satisfied by use of this expression.
This also means the right-hand side of Eq. (3.17) van-
ished in the first order, which in turn gives

R'- + 2V' Re- = V' . le + Ve I' —V' le —Ve I'
el~ ~ le ~ le e

(
(3)

a (3.25)

(3.17)

DifFerentiating Eq. (3.13) twice with respect to t and us-
ing Eq. (3.16), we obtain

It means that each perturbed region on a k = 0 back-
ground evolves as if it were a separate FLRW universe
with small scalar curvature (cf. Refs. [7,25]). Strictly
speaking, of course, it may not be true because a FLRW
behavior requires

a
~

e'; +2—e'; —4vrGpbe',
~

=a(a Si —S2)
( )~

2 Q2 2 (3.26)

(3.18)

where

s = — (v")'-v' v- .&" + (v'v', —v"„v',.)
e'"

(3.ig)

and

Now let us take a look at our key equation (3.18). It
is apparent that Si in the source term is a second-order
quantity (and higher). From Eq. (3.25), S2 is also found
to be a higher-order quantity. Again, the source term
vanishes in linear order, and Eq. (3.18) can be solved
iteratively. Neglecting the source term, the first-order
solutions satisfy

S, =
~

Z.),. —-~ a',
i

e(',.). (3.2P)
3

i

"(&) + 2 (&) 4 G (&)
~

G(&) G(&) P
)

(3.27)
This is the relativistic correspondence to the key equation
(2.14) in Newtonian theory. Choosing C(," = —4)rGp(, a q(';)(x"), the solutions are

. + (* )+, (t) '.(* )+ (t) ', '(* )

—= h",.'+ 4',"(x ) + [D+(t) —D+(t;)] )I)'(',) + [D (t) —D (t;)] C'", (3.28)
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and the metric is written as

7v ='~v+2+v+2 D (t) —D (t') @,V
+2 D-(t) —D-(t, ) C„(3.29)

assuming the symmetric property X'zj: bz(z)X'
&

X'jz.
X;j represents the initial metric perturbations. The re-
lation between 2C(," and 4 is given by Eq. (3.16). In the
first order, it reads

V(:)'+3-V(:).-+ —.
~ ~()' —-~() ~''

~

='

where 'R(,
&

is the first-order quantity of the three-
dimensional Ricci tensor R calculated &om the initial
metric p;~ (t;, x") = h;~ + 2X;z.

(3.31)

Then we obtain

9 t; (, 1
i R„, —— (,); ~

. (3.32)

In particular, its trace gives

t2
» 20 a2(t )D+(t )

(3.33)

V' = diag (V, 0, 0) (3.34)

and Eq. (3.33) reads

Note that 4 in the decaying mode is independent of X,",
and does not couple to the spatial curvature fluctuations
"&R(». In this sense, the decaying mode may be consid-
ered as the purely "isocurvature" perturbation.

The first-order approximate solutions contain Szekeres'
exact solutions [26,27] as a special case when the col-
lapse is locally one dimensional. It can be most easily
seen by taking 4 and 4 are functions of, say, x only
x' = (x, y, z), and q",) = diag[A(x"), 0, 0]. Then,

C. General relativistic version of the Zel'dovich
approximation

From the formal similarity as shown in the above dis-
cussions, it is very natural to propose a general relativis-
tic version of the Zel'dovich approximation defined in the
following way: (a) take the growing mode in the first-
order solutions

e",' = a(t) (h",.' + 4",.' + [D(t) —D(t;)] 4"",' },
D(t) oc a(t) oc t2~, (3.38)

and (b) use the exact expression for the density,

a det e ' (t, x")

a det (b",.'+ X",.'+ [D(t) —D(t, )] e ",.'}
(3.39)

(until the mildly nonlinear stage b 1). The first line
of this expression is directly obtained from Eq. (3.5). In
this approximation, the metric is written as

g, = (t) (8, + 2X; + 2 [D(t) —D(t;)] 4';, ) . (3.40)

The proposal is supported not only by the formal anal-
ogy but also by the following physical correspondence.
In Newtonian theory, the Lagrangian coordinates X. are
used to label the Quid lines, and the Eulerian coordinates
r = a(t) x(X, t) are to represent the actual positions.
a(t)x gives the peculiar velocity which represents the
deviation &om the uniform Hubble expansion, and the
Zel dovich approximation utilizes the first-order solution
for the peculiar velocity. In our relativistic formulation,
comoving coordinates x' are by definition the Lagrangian
because dx'/dt = 0 along the fluid lines. Let us consider
two nearby Quid lines labeled by x' and x' + bx'. Then
hx' is also the Lagrangian displacement. The Eulerian
displacement, which-represents the physical length of the
separation, is given by the triad components

0 .=—P(x) = —(A)l„+A'.)
9

(3.35)

2
ds' = Ct'+ t'i' A(x—")+ t'i'P(x) + t ' p(x) dx'

with a normalization t2 ja2 (t;)D+ (t, ) = 1. It is of interest
to note that Szekeres' exact solutions

bx("—:a(t) e",' hx*, (3.41)

and a(t)e" bx' gives the relative peculiar velocity which
represents the deviation &om the uniform Hubble expan-
sion. Therefore, the first-order solution for e(',) in our for-
malism precisely corresponds to the linearized solution
for the peculiar velocity in Newtonian theory.

+dg + 8z (3.36)
IV. CONCLUDING REMARKS

with

A(x") = -P(x) (y'+ z') + ~(x)y+ ~(x)z+ ~(x)

(3.37)

satisfy the "linearized constraint equation" (3.35).

In this paper, we have developed a tetrad-based per-
turbative approach to the nonlinear evolution of an in-
homogeneous universe containing irrotational dust. We
have used the parallel-transported basis along the Quid
lines, and obtained the second-order differential equation
for the spatial basis vectors. The equation can be solved
iteratively, and the first-order solutions are given in a
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k = G, A = p background. A general relativistic version
of the Zel'dovich approximation is proposed as an extrap-
olation of the erst-order solutions to the mildly nonlinear
regime. The relativistic version possesses the following
favorable features: (a) it does not rely on the smallness
of the density fluctuations, (b) it contains exact solutions
when the collapse is locally one dimensional, and (c) it
coincides with the result of linear perturbation theory
when ]b] « 1. These are precisely the features of the
original Zel'dovich approximation in Newtonian theory.

It is of interest to compare our results with those ob-
tained in other methods. First, in the fIuid Qow approach
by Matarrese et at. [14], the dynamics is quite compli-
cated and followed by a system of six coupled first-order
ordinary difFerential equations, whereas in our approach
it is essentially determined by the second-order ordinary
difFerential equation. In the successive works [16], they
gave results of the second-order perturbation expansion
both in the limit of I/L )) 1 and l/L « 1. How-

ever, it should still be clarified whether such wavelength-
speci6c assumptions are crucial or not to their approach.
Next, in the gradient expansion method [28] they need
the fifth-order calculations (and a computer algebra pro-
gram) in order to reproduce the exact Szekeres solu-

tion, while in our approach it is already contained in
the first-order solutions. Croudace et al. [29] applied
the Zel'dovich approximation to general relativity. They
rely on the long wavelength assumption, so it is unclear
if their approximation is adequate for the description of
subhorizon scale inhomogeneities. Our version of the rel-
ativistic Zel'dovich approximation is formally similar to
theirs, but no wavelength-specific assumption is made in
it. Therefore, it is hoped that our approach gives a sim-
ple but powerful tool to study the nonlinear evolution of
inhomogeneous structures, not only on scales larger than
the horizon but also on subhorizontal scales.

Another advantage of our method is the possibility of
using in high resolution numerical studies. The visualiza-
tion of numerical simulations using our method may be
illustrated in the following way. (1) First, prepare a box
and draw Cartesian grids inside with separation Ax . (2)
At each grid point, place the orthonormal triad basis e",
which deviations from the grid lines are given by e",' Lx'.
(3) The velocity components along the orthogonal frame
of each particle on the grid are given by v "~ = e" 4z'.
(4) After a time step of At, move each particle accord-

ACKNOWLEDGMENTS

I would like to thank G. Borner for the hospitality at
Max-Planck-Institut fur Astrophysik, where an impor-
tant part of this work was done. I would also like to
thank T. Buchert, J. Ehlers, and B. Schmidt for valuable
comments, and Y. Yamamoto for helpful discussions in
the early stage of the study.

APPENDIX

A simple derivation of Eq. (3.7) is given as follows. In
a locally Qat three-dimensional coordinate system with
(3)pz pjk

and

(ge~, i, + gee, ,. —g~s, e)

z Ilz= ~,-Ilk+ ~ kll;
—~,k (A1)

(s)~ ~sil e ~sif e

X II~ ~e X ll~ ~e+ jllz& ij

Then

(A2)

(')i' + 2Z' (')n' = g'(')i~=g eq

II& ~& II' ~ II&

ell,
- +

~ Ile
—

~ lie

Because of the tensor nature of Eq. (A3), it holds in any
other coordinate system in the three-dimensional sense.

ing to the rule 2:~'~(t + At) = x '~(t) + v't'~ At .(5) Place
the triad kame on each particle and repeat the proce-
dures. So far relativistic simulations for the problems
of structure formation in the Universe are quite limited.
Therefore, it is hoped that our method might give some
physical intuition in the direction of this study. Such ap-
plications, as well as the extension to k j 0, A g 0 cases
and the inclusion of the transverse traceless modes, will
be the subject of future investigation.
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