
PHYSICAL REVIEW 0 VOLUME 52, NUMBER 10 15 NOVEMBER 1995

Complete model of a self-gravitating cosmic string: A new class of ewact solutions
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We find solutions of Einstein's field equation for topologically stable strings associated with
the breaking of a U(1) symmetry. Strings form in many GUT's and are expected whenever the
homotopy group IIi(Mp) is nontrivial. The behavior of the fields making up the string is described
by the Euler-Lagrange equations. These fields appear in the energy-momentum tensor so we must
solve simultaneously for the coupled Einstein-scalar-gauge field equations. Numerical results are
obtained using a Taylor-series method. We obtain a five-parameter family of solutions and discuss
the assumption of regularity at the origin. Finally, we introduce the idea of gravitational lensing
near the center of the string as a possible physical effect.

PACS number(s): 11.27.+d, 95.30.Sf, 98.80.Cq

I. INTRODUCTION

Phase transitions occur in the early universe as a con-
sequence of its expansion and cooling. The transitions
cannot be observed directly but can be inferred from the
theory of groups and symmetries in elementary particle
physics. If these phase transitions do occur, topological
defects will necessarily form during the transition. These
defects take their name after their characteristic of being
trapped regions of "old symmetry" surrounded by "new
symmetry. " In essence, they retain the characteristics of
the state of the universe as it was before the phase tran-
sition. The topology of the defect varies according to
the symmetry group G characterizing the Belds present
in the universe before the symmetry breaking and the
symmetry group 0 which describes the symmetry of the
field after the symmetry breaking; i.e. , H includes all el-
ements of G which leave the vacuum expectation value
of the scalar field invariant. When the first homotopy
group is nontrivial, IIi(G/H) g I, i.e. , the topological
know cannot be "unwound, " the topology of the defect
is linear, or stringlike. Topologically stable strings occur
in non-Abelian gauge theories such as SU(5) (Shafi and
Vilenkin [1]) and SO(10) (Kibble, Lazarides, and Shafi

[2]) grand unified theories but also in the simple case of
Abelian U(l) symmetry.

The gravitational field of strings has been studied in
general relativity starting with the work of Vilenkin [3],
subsequent to the Newtonian approach to topological de-
fects given by Zel'dovich et al. [4] and Kibble [5]. He
used the linear approximation of general relativity and
an energy-momentum tensor which has no lateral stresses
but only terms describing the energy density and the
pressure (tension) along the axis of the string. This as-
sumption was used later in work such as that of Gott
[6] and Hiscock [7] in looking for exact solutions of Ein-
stein s equations for a string where, in addition, the en-

ergy density of the string was taken to be constant. It has
since been shown by Raychaudhuri [8] that the Gott and
Hiscock solution is not consistent with proper boundary
conditions.

Subsequently, there have been a number of attempts
to obtain better models of cosmic strings. These range
from treatments which impose a Bxed background geom-
etry wherein the properties of the string are calculated,
to the attempt of Laguna-Castillo and Matzner [9] and
Garfinkle and Laguna [10] who alternately held the met-
ric functions fixed while integrating the string equations
and held the string field properties fixed while computing
the new metric &om the Einstein equations.

The purpose of this paper is to extend previous at-
tempts at describing gravitating cosmic strings by simul-
taneously solving the coupled Einstein-scalar-gauge field
equations, so that our model will include the e8'ect of
the energy-momentum of the string on the background.
In addition, we want to study the physical properties
of the string solutions that emerge kom this set of dif-
ferential equations. Recently, Shaver [ll] has examined
the equations for nonstationary cosmic strings and solved
them for the simple energy-momentum tensor introduced
by Vilenkin. Based on the general set of equations ob-
tained by Shaver and dropping the Vilenkin restrictions
to the form of the energy-momentum tensor, we will use
a numerical integration technique to attempt to find all
possible solutions for self-gravitating strings.

II. THE COUPLED EINSTEIN-SCALAR-GAUGE
FIELD EQUATIONS

We will be studying string topological defects asso-
ciated with the spontaneous symmetry breaking of an
Abelian group G =U(l). The Lagrangian of this Abelian-
Higgs mod. el is

I' = (D"4) (D~4) V(4') F~ F"

where F„„=%~A —V' A~, D„=V'„+ieA„,V(C')
is the potential of the scalar field, A~ is the gauge field,
e the gauge coupling constant, and 4 the scalar field.
The symmetry breaking potential has the form V(C?) =
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A(O'4 —i1~)~ where A is the self-coupling constant of the
Higgs field and g is the value of the symmetry-breaking
Higgs field. Shaver [11] has shown that for the specific
choice of the energy-momentum tensor given by Vilenkin
[3], A = e /8. Since we are concerned with finding solu-
tions where T„"and T& are not necessarily zero, we will

set A = ne /8 where n is a constant and can be taken as a
free parameter. Note that, when acting on a scalar field,
V'~ simply becomes 0„.Also, because of the symmetries
of the ChristofI'el symbols, V'„A —V A„=t9„A —0 A„.

The spontaneous symmetry breaking is obtained by in-
troducing the Higgs field. The symmetry of the system
after such a breaking is then determined by the degener-
acy of the vacuum expectation value of the scalar field:

4 = i@ie', 0 & 0 & 2m.

= Be',
(2)
(3)

where B—:~C ~.

To describe the gauge field, we refer to the work of
Nielsen and Olesen [12] who obtain from their second
equation of motion for Bat space-time

the self-gravitating string has general cylindrical symme-
try. The metric has the form

ds2 e2(K —U) (dt2 dr2) + —2UW2dy2 + 2Ud 2

W' e2U
(v K)

~

B"+B'
~

—BP~
W W~

W'e'(~- ) P' —P
~

—2U'
~

—e'B'P=O,
qW

(8)

where—:0/Or.
The energy-momentum tensor for the Lagrangian (1)

is given by

T„„=2 0(g gL) —68(g gL)—
i/ —g c)g& ( c)g&

(1o)

where U, K, and TV are unknown functions of r only and
will be solved in our calculations.

Using this metric, the Euler-Langrange equations be-
come

——0„01
(4) The components of T~ are

where j~—:0"F~„,P8~—:j„/e~@~,and we have set
8 = P, the angular coordinate (see below). (We can Ilow
rewrite the equation for the scalar field as 4 = Be'&.)
These expressions for A~ and 4 will be used in our equa-
tions below and we will use B and P to characterize the
scalar and gauge field, respectively. The Nielsen-Olesen
vortex solution is a simple case of the U(1) strings which
might appear in grand unified theories.

The equations of motion are given by

e2(U —K)

+2@ 2K—2U

2(U —K}

2y 2K —2U

TV2e2

e2K 2U

TV2e2

OL BL

c)X &(~g X)

where y is replaced by B, 0, or A@ to give the three Euler-
Lagrange equations. When A„is replaced by Eq. (5),
the equation involving the derivatives with respect to 0
is immediately satisfied, which is a consequence of our
earlier choice of 0 = P. The covariant derivative V'„
requires the metric of the space-time to be specified.

We start by assuming that the space-time defined by

e2(U —K}
Tp

e

2 gJ2e2

2y 2K —2U

The Einstein equations G"„=87rT" that couple the string
stress energy to its space-time geometry become

R"—2 + 2K' —2U' = 8mR' R'
TV'2K' —2U' = 8'

2K" + 2U' = 8'
TV'

+ 4U' + 4U" —2U" —2K" = 8~
TV R'

e2K e2U
B12 + B2p2 + pI2 + 2V 2K —2U

TV2 TV2e2

e2K e2U
BI2 B2p2 + pi2 2y 2K—2U

R'2 R'2e2

e2K e2U
BI2 + B2p2 + pI2 2y 2K —2U

W2 R'2e2

e2K e2U
B/2 + B2p2 + PI2 + 2V 2K —2U

TV2 R'2e2

(14)

(15)
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These equations can be rearranged to give a simpler set
of equations. The first simplification comes from Eq. (14)
and (17), from which we obtain K' = 2U' + ~I. Since
W(0) = 0 (see initial conditions), we set Ci ——0 oth-
erwise K'(0) -+ oo and we run into numerical problems
(assuming U remains finite at the origin). Therefore, we
directly obtain a relationship between K and U which is
of the form K = 2U+ C2, where a new constant of inte-
gration is introduced. Since all solutions may be trans-
formed such that K(0) = U(0) = 0, we set ( 2 ——0 and
therefore K = 2U.

By subtracting Eq. (14) from (15) we obtain an ex-
pression for lV":

f P/2X" = —vrrI X
i

—16n(R —1)2
~

, r'X' W'l
X W (22)

RP2 R"R" = X +4nX R(R —1) —R'
A@2 tv (24)

R2PW" = —87rrj X
~

X + 2nW(R —1) ~, (23)

e2KR2P2
Wv 8

~

e + 2~ 2(K—U)W (18)
W' X'P" = 8X2R2P + P'

~

(25)

Using K' = 2U', and (15) and (16) gives, for U",

Pt2e2U W'
Uf) 4

~

2~ 2(K —U)
~

U/ (19)

e2U
+P' ( ) P" —P'

~

—2U'
~e2W2 ( W )

The Geld equations are integrable only if the conservation
equations of energy and momentum T~ = 0 are satisfied.
These conservation laws often give, analogous to the first
integrals of classical mechanics, an important indication
of how to solve the field equations. Using the energy-
momentum tensor given above, the only nonvanishing
component of the conservation equations is

W' ~2U
R' "( — )

~

R" +R'
~

—RP"
W W2 dR

1 X'f W'

4~q2X q W
B2P2

l
+X'] X'

x'')
x)'
P'2

, + 2n(R —1)'
~

. (26)

Notice that the "e"'s all disappear from the equations.
It can be interpreted as a scaling factor. We are left
with a two-parameter set of equations instead of 3. The
units that we chose to adopt in this paper are the natural
units: t" = h = G = 1. In the original equations, B had
units [M], W and r, [L], and P and X, [1]. After rescaling,
the units of R, W and r have become [1] like the other
variables. The dimensions of rI, and e, A and n are [M]
and [1],respectively. According to these units, the energy
density will be expressed in terms of [M]4.

g2/2P —0 (20)

III. INTEGRATION METHOD
AND SOLUTIONS

Note that this equation is a linear combination of Eqs. (8)
and (9) and therefore indicates that one of Eqs. (8) and
(9) can be taken as redundant. Since the conservation of
energy equation was derived &om the Einstein equations,
one of these equations can also be taken as redundant.
We will take Eq. (15) as the redundant equation, which
we will nevertheless continue using as a consistency check
for our numerical integration, and keep both Eqs. (8) and
(9). Equation (15) can be rewritten as

TV' e2K pi2~2U
~

K' —U"
~

+ R'P'—
4m ( W ) W e2W

A complete set of equations consists of Eqs. (8), (9),
(18), and (19), with Eq. (21) above. Similar results have
been obtained by Garfinkle [13] and Laguna-Castillo and
Matzner [9].

Putting V = n's (R —r) ), K = 2U, e = X, and
rescaling R by i), W and r by ~8/ge gives us the final
set of equations to solve

For any given set of initial conditions, the differential
equations determine the behavior of B,P, X, and H as
a function of r. Although all solutions obtained from
any initial set of conditions are valid solutions of the dif-
ferential equations, we will examine in this work only
solutions that exhibit the particular asymptotic behav-
ior, for which lim„~ B = 1 and lim„~ P = 0. These
conditions are derived from the requirement of finite ac-
tion. Such solutions will be denoted as "unacceptable"
solutions. They have the structure of a trapped vortex or
string. Examples of an "acceptable" solution and some
"unacceptable" solutions are portrayed in Fig. 1.

The two-point boundary-relaxation routine was used
by LCM and by Garfinkle and Laguna to solve only for
the scalar and gauge field differential equations using a
specific background geometry. These authors then use
a Runge-Kutta routine to solve the Einstein equations
with the relaxation and initial value solution processes
exchanging data. Thus theirs is a combination of relax-
ation and shooting methods. Our coupled differential
equations not only describe the scalar and gauge field,
for which there is a boundary condition at r m oo but
describe also the coupled gravitational field, for which
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FIG. 1. The magnitude of the scalar and gauge field as a
function of r and the difFerence between an "acceptable" and
"unacceptable" solutions.

we cannot impose a boundary condition at large r unless
an assumption is made about the spacetime structure
there. We solved the coupled Euler-Lagrange-Einstein
equations using a shooting method and searched the pa-
rameter space for all possible solutions.

A Taylor-series method was used to numerically inte-
grate the set of five coupled difI'erential equations. This
method was chosen in part because of the fIexibility of im-
plementation at various orders, which allowed the same
computer code to be used for both rapid exploration of
parameter space followed by a more detailed study at
a higher order of integration. In addition the use of a
Taylor scheme, with the production of the higher order
Taylor coefFicients, allows direct calculation of many of
the geometrical objects of interest (such as the Christoffel
symbols or curvature tensors), without any need for data
fitting or divided difI'erence difI'erentiations. Because of
the complexity of the functions to be integrated, we used
the REDUCE algebraic computing system to produce the
mathematical expressions for the high order derivatives
needed for the numerical integration. The transformation
of the algebraic expressions to build the Taylor integra-
tion program in the C source code was done using the
SCOPE package in REDUCE. The code so generated was
verified to be correct by running the C source code back
through REDUCE. This latter check is particularly im-
portant when using automated code production systems.
Several consistency checks were applied to our solutions
to ensure accuracy of the results. For example, the value
of B' computed by the integration scheme was compared
with that obtained &om the redundant expression shown
in Eq. (26).

The solutions of the difI'erential equations are uniquely
determined by a set of initial conditions. Recall that

the variable U has been defined such that U(0) = 0 and
therefore X (0) = 1. We also require that R(0) = 0, i.e. ,
the axis is the region of false vacuum where the potential
attains its local maximum. In order to define an axis,
we must have W(0) = 0. Previous studies have required
regularity on the axis and have imposed the condition
that lim„~ /july/r2 = 1 (Garfinkle [13]). This means,
in terms of our choice of coordinates, that W'(0) = 1.
However, it is not clear that this condition is justified.
For now, we will set W'(0) = 1 and will return to the
case W'(0) g 1 in Sec. V. By asking that all derivatives
be finite at the origin, we require that P(0) = W'(0) and

h "(0) =
4 (~,(o)

—16cr) awhile II"(0),/I'(0), P"(0)
are undetermined and X'(0), W(0), W"(0), R"(0), P'(0)
vanish. An "acceptable" solution is therefore derived
&om those initial conditions, given the five &ee parame-
ters g, n, W'(0), R'(0), and P"(0).

The "acceptable" solutions form a particular subset of
all solutions. The "goodness" of a solution is the devi-
ation &om the correct asymptotic structure and is mea-
sured by computing v R/2 + P'2 at large r. In agreeinent
with Shaver, an "acceptable" solution is found at o. = 1.0,
il = 0.19947106, W'(0) = 1.0, R'(0) = 1.4586085, and
P"(0) = —4.0 with a deviation of 0.00003625 measured
at r „=4.0 (our integration limit). From the precision
on the parameters, one can see that to find an "accept-
able" solution requires a very fine-tuning of the initial
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FIG. 2. Contour plot of the measured deviation from
the correct asymptotic structure around the "acceptable"
solution with parameters n = 1.0, g = 0.199471 06,
R'(0) = 1.4586085, and P" = —4.0. The contours are plot-
ted for values of the deviation of 0, 0.5, 1, 2, 5, 10, 20, and
20 000. There is a deep valley very near the "acceptable" solu-
tion where the deviations get smaller than in the surrounding
regions.
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parameters. A small deviation in one of the input pa-
rameters causes a large deviation at r „and gives an
"unacceptable" solution. Finding "acceptable" solutions
is therefore very diKcult due to the strong coupling of
the differential equations. Because of the "sharpness" of
the valley of deviation of an "acceptable" solution (see
Figs. 2 and 3), or, in other words, because of the preci-
sion required for the initial parameters, it is impossible
to search randomly all parameter space in a reasonable
time and hope to all on an "acceptable" solution. The ap-
proach we took for searching for "acceptable" solutions
relies on the perturbation method of a known "accept-
able" solution. By manually tuning the initial parame-
ters for a perturbed solution and by using an extrapola-
tion method to find the next "acceptable" solution, we
were able to step away &om the known solution and find
the other "acceptable" solutions in the parameter space
of all solutions. Our search through parameter space was
a discrete search done for specific values of g with inter-
polation between found solutions. The subset obtained
using this method covers the surfaces shown in Figs. 4
and 5. The ranges of the n and g parameters are such
that o. covers the region &orn 0.001 (n cannot be zero)
to 2.5 and g, &om 0.0 to 0.2.

A representative sample of solutions is shown in Figs. 6
and 7. The angular deficit is defined and discussed in
Sec. V. If X and X' are set equal to 1, we recover
Shaver's case. The first families of solutions, those with
n constant, have P"(0) and 4 "(0) constant as well and
show the same energy-momentum tensor. The special
case of the Bogomol'nyi limit for which o. = 1.0 and
P"(0) = —4.0 yield solutions which have no angular and

R' 1.

FIG. 4. Surface representing the subset of "acceptable" so-
lution. The surface covers a range in o. of 0.001 to 2.5 and a
range in q of 0.0 to 0.2. This plot shows the value of R'(0)
for a specific choice of o. and g parameters that will give an
"acceptable" solution.

radial energy-momentum components and have a met-
ric of the form X = 1.0 and TV = br, which represents
the conical Minkowski spacetime where 6 is a constant
and is directly related to the deficit angle by the relation
2vr(1 —6) [see Fig. 6(a)]. This special case was studied
in detail in Shaver [11] and Linet [16]. It was found that

0.000 I

/

0
D)
Q3a

0.00001

CU

C3
P / I

0.00000 '1

C3

0

angle in radians

0.0000001

FIG. 3. Circular scans of the measured deviation shown in
Fig. 2. Scans are drawn for circles of different radii around
the "acceptable" solution. A complete circle is shown by an
angle going from 0 to 2' as shown on the abscissa. The narrow
valley of deviations is more apparent in this figure.

FIG. 5. For the same range as given in Fig. 4, this plot gives
the value of P"(0) for a specific choice of n and rI parameters
that will give an "acceptable" solution.
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b depends on g and that keeping b positive requires that
& 4'. The maximum value for q for these particu-

lar solutions is therefore 0.2821. The angular deficits
measured for this set of solutions are in agreement with
Shaver and with LCM. The solutions with T„"and T@~

non-null show a di8'erent linear energy density and deficit
angle. This is due to the fact that the Gaussian curva-
ture used to calculate the deficit angle, as described in
Sec. V, depends on the energy-momentum tensor in the
following way [15]:

value of o. = 4) but quote a value of 0.03% in the text.
It should be noted that a factor of 100 in this expres-
sion does make this solution meaningfully diferent &om
Minkowski spacetime. For the same families of solution,
we also notice, in agreement with LCM, that the angular
deficit and Weyl tensor are small for values of g ( 0.01
and get larger and more important for g ) 0.01 with in-
creasing g. We also observe that the angular deficit and
Weyl tensor increase with o.. The Weyl tensor describes
the shear in gravitational lensing and will be considered
in Sec. VI.

(27)

As we know, when the only nonvanishing component of
the energy-momentum tensor is T~, the angular deficit
simply depends on the linear energy density of the string.
For all computed energy-momentum tensor components,
our values agree with Shaver and Garfinkle but disagree
by a factor of 10 with the values obtained by LCM. It
was also noted that LCM obtain a value of 3%, which is
also what we obtain, for their value of 1 —e+ (in our case,
1 —X ) at i7 = 0.01 and n = 1/4 (corresponding to our

IV. ASYMPTOTIC STRUCTURE

We know that the asymptotic behavior of the scalar
and gauge field makes our solutions become either coni-
cal Minkowski spacetime or pure Minkowski spacetime
as r —+ oo (see Sec. V). We are interested in find-

ing if the string can be finite in extent and have those
conditions apply at a finite radius away Rom the ori-
gin thus providing a solution with an interior and ex-
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FIG. 6. Metric coefficients
(left), energy-momentum ten-
sor components, and angular
deficit (right) of two represen-
tative string solutions of the
Einstein-Euler-Lagrange equa-
tions. The top figures (a)
corresponds to the solution
with parameters n = 10,
g = 0.19947106, W'(0) = 1.0,
R'(0) = 1.458 6085, and
P"(0) = —4.0 and the
bottom figures (b) represent
the solution with n = 1 0,
q = 0.19947106, W'(0) = 2.0,
R'(0) = 1.458 6085, and
P"(0) = —8.0.
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In starting to look for solutions, we chose to set
W'(0) = 1. This has been consistently assumed through-
out the literature on cosmic strings, on the basis that
W (0) = 1 implies that the axis of the string is pure
Minkowski, i.e. , "free of conical singularities" [15]. There
seem to be few arguments that lead to a justification of
this particular assumption of regularity. We can write
our metric in terms of the new coordinates as

W r
ds = —X'(r) (dt —dr ) + dP' + X (r)dz' (28)X~(r)

and impose the set of initial conditions derived in Sec. III,
as r —+ 0, X ~ 1, and R" —+ 0, independently of
the choice of W' at r = 0. There is then no sin-
gularity in the sense defined by the divergence of the
Kretschmann scalar: K = R ~"'R „„whereR

„

is
the Riemann tensor. For the general metric given above,
the Kretschmann scalar is given by

K= 4 (3X" X W —10X"X' XWX8W2
+6X"X'W'X R' —2X"O'"X R" + 14X' TV

—22X' W'XR'+ 6X' W"X R'+ 11X' TV' X
—6X'W"W'X'+ W"'X') (»)

angular deficit at r2, 8(r2). We can see that for a sim-
ple cone, Eq. (30) does not apply, but Eq. (31) gives
the correct answer, namely that 8(r2) = 8(rl) every-
where. Let us now evaluate the angular deficit outside
the string, e.g. , at r = 4, for two particular solutions
mentioned above. The first one with W'(0) = 1 and
T" = T@~ ——0, i.e., with regularity at the origin, has
a value of ((r = 4) = —0.5 which represents a coni-
cal spacetime with angular deficit of 2'( —0.5 + 1) = vr

at r = 4. In this case, we could have simply used
Eq. (30) to obtain the answer. The second particular
solution with W'(0) = 2 and without regularity at the
origin has a value of ((r = 4) = —1,((0) = —2, and
8(0) = —2' in agreement with no deficit angle, i.e.,
8(r = 4) = —2vr + 2vr( —1+ 2) = 0 (see Fig. 6—note that
for smaller values of r, 8(r) is negative and we refer to it
as angular surplus). The spacetime is pure Minkowski at
that distance &om the origin. For the nonregular solu-
tions, Eq. (30) does not apply but the angular deficit can
still be computed using Eq. (31) which is an extension of
the Gauss-Bonnet theorem.

VI. POSSIBILITY
OF GRAVITATIONAL LENSING

and does not diverge at the origin. The Gauss-Bonnet
theorem can be used to calculate the angular deficit for a
spacetime &ee of conical singularities, i.e., given a simply
connected and regular surface bounded by a closed curve,
the angle through which an arbitrary vector rotates when
parallel transported around the curve is proportional to
the integral of the curvature over the surface. For the
metric given by Eq. (28), the integral of the Gaussian
curvature A has the analytic form

R
8(R) = 2vr K(r) ~gdr

0

(W'(r) X(r) —W(r) X'(r) i
X(r) ~g X'(r) )

= 27r [((R) —((0)], (30)

where g(r) is the function given on the second line of
Eq. (30) to be evaluated at R and 0 [17]. Because the
spacetime is regular at the origin, ((0) = —1 and the
angular deficit at R is 8(R) = 2vr(((R) + 1). The angu-
lar deficit becomes simply 2n(1 —b) if the spacetime is
conical Minkowski at R. Returning to the Gauss-Bonnet
theorem, we can also write

f'2

8(r2)8(rl) = 2vr K(r) ~gdr
rl
—1 (W'(r)X(r) —W(r)X'(r) )

X(r) ( X~(r)
= 2vr[$(r2) —((rl)] . (31)

This equation does not require regularity at the origin
and if lim i~08(rl) is known, we can use it to find the

The solutions we have derived introduce the possi-
bility of the existence of cosmic strings in our universe
which would produce gravitational lensing as long as the
energy-momentum tensor is nonzero (it can be easily
seen from the differential equations that if the energy-
momentum tensor is zero, the spacetime is simply conical
Minkowski or pure Minkowski and the lensing is geomet-
rical). For our solutions, this occurs everywhere since
the spacetime approaches conical Minkowski or pure
Minkowski only asymptotically even though the stronger
effects occur in a finite region around the origin. As-
suming that the effective finite size of GUT strings is of
the order of 10 cm, it seems unlikely that any gravita-
tional lensing efFects will be observable today Rom strings
in our horizon volume. Nevertheless, the dynamics of
strings (and GUT strings in particular) has not yet been
worked out and it is possible that they may evolve in size
so that their gravitational efFects might be observed to-
day. Also, realistic strings might form with a more com-
plicated internal structure including condensates which
would contribute to the T„"and T&@ components of the
energy-momentum tensor and therefore to the gravita-
tional lensing effects. The limit imposed by Kaiser and
Stebbins [14] on Gp for GUT strings cannot be consid-
ered rigid since their method for computing such a limit is
not rigorous. In this section, we present the gravitational
lensing effects and leave the discussion of the possibility
of observing such effects to a later time.

The gravitational perturbation of cosmic strings on
light rays produces real gravitational lensing which con-
trasts greatly with the geometrical lensing associated
with the conical Minkowski spacetime. We first exam-
ine the null geodesics in the string spacetime describing
our solutions.
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The null geodesic equation for the string metric given
by Eq. (28) can be expressed as

For the case where W(r)/X(r) = br, this integral can
be obtained analytically and, as expected, the angular
deviation in the conical spacetime is constant:

—E' X'(r), (dr l ' X'(r)
X2(r) W2(r) (dP) W2(r) she = —cos (

—"')
1'm Bx

The geodesics are described in the plane z = const. We
can rewrite this equation in terms of functions of r, the
closest approach radius where dr/dP = 0. This gives

dP 1
~'"' hgh2 —1.X(1,)

+mBx 1

x(~.)
(34)

srhere h = ~t, i/(g~ i) . The + sign in front, of the

expression on the right-hand side of the equation can be
interpreted as the receding part of the orbit (+ sign) and
the approaching part of the orbit (—sign).

Therefore, for the receding part of an orbit starting at
r and finishing at large r = r, the angle traversed
can be computed using the integral:

This metric is conformally flat and one can apply a coor-
dinate transformation and interpret the difference Rom
pure Minkowski spacetime as the presence of a missing
or surplus angle. For our solutions, there are no uniform
conformal transformations which will make the metric
pure Minkowski. The metric has real curvature and the
string is a true gravitating string.

We use an eight-point Gauss-I egendre integration
method to compute the orbit of a photon in the equa-
torial plane of the string. Care is required in the inte-
gration near the closest approach, due to the vanishing
denominator, but this can be handled easily by using the
limiting form near closest approach as given in Eq. (35).
The orbits are plotted for representative string solutions
and are shown for different closest approach radius in
Fig. 8.

In discussing the null orbits, it is important to investi-
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FIG. 8. The orbit of a pho-
ton in the equatorial plane of a
cosmic string, plotted in terms
of the cylindrical coordinates
r and g, for selected values
of the closest approach radius
of the orbit. The orbits de-
picted here are for the solu-
tion depicted in Figs. 6 and
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gate the possible existence of an event horizon or a pho-
ton cylinder (in analogy to the photon sphere for the
Schwarzschild spacetime) associated with our string so-
lutions. To determine if the solutions we have found have
a photon cylinder, we need to find the zeros of dr/dP Ex. -
amination of this function graphically shows that there
is exactly one zero for each ray, that at closest approach,
but no others. There can be no ray which spirals contin-
uously into the string axis, and thus there is no photon
cylinder. We also find that there is no event horizon by
considering the possibility of nullity of the appropriate
Killing vector.

We are interested as well in the Weyl tensor for dif-
ferent gravitating string solutions to determine whether
or not there exist tidal efFects since these can lead to an
understanding of the distortion, shear, and rotation of
the geodesics in the string spacetime. All nonvanishing
components of the Weyl tensor can be obtained from the
component

2X"XW —6X"6'+ 4X'WX —8'"X'
6W

(36)

by using the relations: C«« —— —Ct„t»Ct, t,
l TV 42

~Ctrt7 y Ct@tg —(~2 ) Ct7 t7' & Cgzgz — Ctgtg &

C„y„y——2Ctyty. The fact that the Weyl tensor has
nonzero components combined with the nonvanishing of
the Ricci tensor leads to the conclusion that these string
solutions will produce significant gravitational lens eÃects
for null rays passing near the axis of the string. These
efFects are in strong contrast to the simple "prism" op-
tical eBect introduced by the traditional vacuum strings
where both the Ricci and Weyl tensors are identically
zero. Thus there will be real distortions and amplification
of distant objects seen along lines of sight passing near
these strings. Of course, in the static situation treated.
here, there can be no perturbations to the temperatures
of distant sources, such as the cosmic background radia-
tion.

VII. CONCLUSION

We have shown that the Einstein-Euler-Lagrange equa-
tions describing a gravitating cosmic string can be solved
simultaneously and accurately using a Taylor series
method. This method allows us to also study the physi-
cal properties of the string solutions for any set of initial
parameters we wish to examine. We found that there
exist strings solutions which have the angular surplus at
the axis and are described by a spacetime asymptoti-
cally going to pure Minkowski spacetime. This contrasts
greatly with the already known solution for strings which
assumes regularity at the axis and which approaches con-
ical Minkowski spacetime for large distance away from
the axis of the string. The new solution is equally valid
and the correct representation of the string spacetime
might be one where the angular deficit (surplus) is local-
ized and not known to the rest of the universe. Until we
understand the dynamics of the string spacetime, we can-
not say which is the correct representation of the string.
We have shown that the string solutions given in this
paper are characterized by significant gravitational lens-
ing which might become important in the observation of
strings once they have been described realistically using
a dynamical model.
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