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Inflationary models with logarithmic potentials
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We examine infiationary universe models driven by scalar fields with logarithmic potentials of the
form V(P) = VogP(lng) . Combining the slow-roll approximation with asymptotic techniques we
identify regions of the potential where inflation may occur and obtain analytic expressions for the
evolution of the field and the metric in these cases. We construct a family of exact solutions to the
equations of motion with potentials resembling the above form and demonstrate their inQationary
nature; de8ationary and con8ationary cosmological behaviors are also defined and identified. Finally,
a computation of scalar density and tensor gravitational perturbations produced by the model is
presented.

PACS number(s): 98.80.Cq

I. INTRODUCTION

The notion of scalar Gelds driving an epoch of accel-
erated expansion has become a widely accepted element
of many early universe cosmologies [1]. The inHationary
paradigm resolves many of the shortcomings of standard
cosmological models whilst ofFering an explanation for
the origin of structure in the cosmos [2] which is com-
pelling and consistent with recent observations of the mi-
crowave background [3]. In the literature one may find
many mutations of this idea, invoking wide-ranging phys-
ical conjectures to generate the negative stresses required
for a period of inflation in the early universe. The sim-
plest of these assumes the presence of a minimally cou-
pled self-interacting scalar field P with potential V(P)
evolving slowly in the presence of Einstein gravity [4—14]
Multiscalar theories have also been widely investigated
[15] as models of the corrections introduced to general
relativity when the standard Einstein-Hilbert action is
extended to include gravitational couplings [16, 17] or
nonlinear curvature terms [18]. Many of these extensions
may be conformally transformed [19] to the simple canon-
ical form of single Geld models, making it important to
develop a thorough understanding of the evolution and
observable properties of inflationary universes containing
single scalar Gelds.

Previous authors have investigated the consequences
when V(P) assumes constant [4], polynomial [5], expo-
nential [6], or decaying power law forms [9-]. In a series
of recent works we have analyzed a wide range of more
complicated potentials [12] in an attempt to catalogue
the allowed behaviors of these universes and identify fea-
tures which may be generic to all models. In this work we
shall suppose that the universe underwent a phase during
which it became dominated by a scalar Geld possessing a
potential of the form

V(P) = Vo+(in/)~; Vo, p, q const.

Terms such as this appear in the Coleman-Weinberg po-
tential for new inflation [20]. Here we shall study the
analytic structure of approximate and exact inflationary

universes arising &om this family of potentials, and de-
rive their observable properties. We shall focus our at-
tention on the dynamics of the expansion scale factor of
the universe a(t), the field P(t) and the resulting general
properties of the slow-roll phase of the evolution. We
will not address issues such as reheating or the exit &om
inflation in any detail since these features have no bear-
ing on the functional form of the slow-rolling evolution.
A full understanding of the forms of slow-roll inflation
that can arise from potentials of the form of Eq. (1) al-
lows us to complete the catalogue of behaviors that can
arise in potentials which incorporate sums and products
of powers, exponential, and logarithmic functions of P.

In Sec. II we introduce the equations and variables
necessary to describe inflation and the spectra of gravita-
tional wave and density inhomogeneities generated by it.
In Sec. III we find the difFerent varieties of inflation that
can occur for potentials resembling Eq. (1) and classify
the cosmological behaviors arising for all combinations
of the constants p and q. In Sec. IV, we give a number
of new exact solutions of the Einstein equations which
exhibit behavior related to some of the approximate so-
lutions classiGed in Sec. III. In Sec. V, we derive the
spectra and relative intensities of the gravitational wave
and density perturbations created by these forms of in-
flation, and the results are discussed in Sec. VI.

II. EINSTEIN'S EQUATIONS

We study the dynamics of a universe described by
the zero curvature Friedmann-Robertson-Walker (FRW)
metric with scale factor a(t) and tiine coordinate t in
synchronous gauge. We define the Hubble expansion pa-
rameter to be H—:o/a, which couples to the material
content of the universe through Einstein's equations. For
a k = 0 FRW universe driven by a classical scalar field P
these are (in units 8mMpi ——c = 1)

3H' = —jP + V(P),
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P+ 3HQ+ V' = 0, (4)

(10)

where Mp~ is the Planck mass, primes denote difFerenti-
ation with respect to the infiaton field P, and overdots
represent derivatives with respect to t. V(P) is the self-
interaction potential characterizing the particular form
of scalar matter present.

Equations (2)—(4) form a second-order, nonlinear sys-
tem in a and P, which are insoluble in general, given
V(P). It is possible to make progress by reversing the di-
rection of analysis to postulate a particular a(t) and infer
the necessary form for P(t), and hence V(P), Rom Ein-
stein's equations [10]. However, the resulting P(t) must
be invertible; if not, then one cannot deduce V(P) analyt-
ically. A superior approach is to specify the solution by
choosing the functional form of P(t) and then exnploy it
to deduce H and V from Eqs. (2) and (3). A good choice
will ensure that P(t) is invertible and that the first inte-
grals of Eqs. (2) and (3) may be calculated and so a(t)
and V(P) can both be found in closed form.

One cannot hope to obtain exact solutions for every
conceivable form of scalar field potential V(P). In fact,
there are very few soluble cases; as a consequence it is
usually necessary to resort to the slow-roll approxima-
tion [21] which, in its simplest form, requires that the
contraints

P2/2e~= 3 &(1,302

—3 . (&1,
3HQ

be satisfied. For reasons that will become apparent, we
make a distinction at this stage and refer to these H-
subscripted quantities as the Hubble slow-roll (HSR) pa-
rameters. The first of these constraints is identical to
the statement a(t) )& 0, and the second guarantees the
validity of the first for a prolonged period, justifying the
application of this scheme to inflationary dynamics. Ap-
plying these conditions to Eqs. (2) and (4) reduces them
to

3H V,
3HQ = —V',

that is,

(7)

(8)

Although we have three erst-order equations, any two of
them imply the third.

v'
(9)

The HSR parameters oQer a useful tool for understand-
ing the dynamics of inflationary universe models when
we possess the relevant exact solution; however, as pre-
viously noted, this is seldom true. In these cases we rely
upon the potential slow-roll (PSR) constraints to justify
our use of Eqs. (7)—(9). These are

To leading order in HSR parameters we have ev = e~
and g = g~ + e~. The PSR conditions are necessary
for a prolonged epoch of inflation, they are not sufficient,
however, to ensure its existence. This requires the further
assumption that the evolution has reached its limiting
infiationary form and we shall assume that P has reached
an attractor solution resembling Eq. (9). Finally, we note
the PSR parameters for the potential of Eq. (1) are

p+1 q (12)

1 q(2p —1) q(q —1)
p(p —1) + + , . (13)

The form of ev indicates that inflation will always occur
at large P, but never when P is small or close to unity.
We shall find that there are solutions in which ii ) 0 and
a & 0 and we refer to these spacetimes which experience
decelerated contraction as "conflationary. " We also note
the class of behaviors which begin (as t + —oo) in an
inflationary state and subsequently cease to infiate (ev (
1); we shall call these models "defiationary" [22].

III. APPROXIMATE SOLUTIONS

H(P) = —P~ (in/) '
3

(14)

and Eq. (9) gives the integral

2 —JP
24—(t —tp) = dP.

4, p(lng)' + q(in/)'

Making the substitution g = in', Eq. (15) becomes

3
(t —tp) =— , , id' —= I(p, q),

Vp i y. p@'+q@' '

where Pp = P(tp). Although we are not able to evaluate

I(p, q) for arbitrary p and q, we may proceed approx-
imately within discrete regions of the (p, q) paraxneter
space. We first determine the form of I(p, q) at large g
(i.e., large P) by means of asymptotic techniques [23].

The qualitative behavior of the class of potentials de-
fined by Eq. (1) and its dependence on the choice of p and

q is displayed in Fig. 1. The qualitative structure of the
solutions and their corresponding domains of validity in

In the absence of a general exact solution we now em-

ploy Eqs. (7)—(9) to map the approximate behavior of
universes containing scalar fields interacting through a
potential purely of the form of Eq. (1). For this system
Eq. (7) is
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FIG. 1. The potential

V(P) = Vo+(in/)~ when Vo ——

1 for the parameter choices:
p=2 [(a) and (b)], p = —2 [(c)
and (d)], q=l, 2, 3 [(a) and
(c)], and q= —1, —2, —3 [(b)
and (d)]. The quantities CtI and
V(P) are in Planck units.
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(p, q)-parameter space decompose somewhat differently
as follows.

,t(4-~)/2j+
1(p q) =-

p )neo
(17)

A. The cases p g 0, 4

As @ ~ oo the denominator of the integrand of
Eq. (16) is governed by the @~~2 term. We therefore
make the approximation

This category of solutions now subdivides itself further
according to sign of q. The behavior when q = 0 has been
extensively studied [5, 9], here we shall concern ourselves
with the instances in which q is non-zero. If —q/2 E Z+
then Eq. (16) becomes

1 3 4 —p 2 '-~- )'2"'(-;)(-:-I) (-:-~+~) —:—
)t(~) = ~ ' (in4') ' + ) . g+g (in(t')

u &p 4 —S (4 —p)
+' (18)

with to chosen so as to cancel with the (tIc) arising on the
right-hand side. If q/2 6 Z+ then I(p, q) also exists in
closed form:

t(4) = —(t ' (ln(t) '
p(p —4) V,

3
t(~) =

Vp

4 —p

q —2

t'4-pl ' »(y' )

(3 —1)'

(4 —p)" '(in&)" '

,=; 2"-' (:—1) (; —2) (' —~)
'

~(t) p(p —4) Vo t
2 3

2

(21)

as P -+ oo.
Equation (20) may be inverted asymptotically. To a

6rst approximation we neglect the logarithmic factor to
obtain

after a similar 6xing of tp, li is the logarithmic integral
function (see Appendix B).To leading order, irrespective
of the sign or integer nature of q/2, Eq. (18) becomes

Feeding this result back into the logarithm in Eq. (20) we
obtain the second-order approximation, which at large P
becomes
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2 —q 1
K4 —p) '- fvp) '-

q

P(t) = (—p)'-
l l l

—
l

&'-' (»l&l)' ' .
2 ) E3)

(22)

Knowledge of P(t) now enables us to calculate the full
time evolution of the system. Using Eq. (22) in Eq. (14)
we have

p &q 2)('4- p) 4 pf -Vo) '-p Qq

H(t) = (—p)'-"
I I I

—
I

t'-" (»ltl)'-' .E» E»
(23)

In the asymptotic limit this may be integrated to obtain
the evolution equation for the scale factor:

(4 —pb .— (v, ) —.
~(t) ~exp -(—p)'-

E 2 r E3r

valid for p g 0, 4 as P -+ oo. The temporal limits here
may be obtained by examining the form of Eq. (22) and
Eq. (20) ensures that t has the correct sign to keep the
solutions real for all p and q. When p & 0, t ~ oo; when
0 ( p ( 4, t ~ —oo; and when p ) 4, t ~ 0 as P ~ oo.
The last two limits should both be taken to represent
the early-time behavior of the universe. The apparent
discrepancy arises because of the difFerent origins of t
that we have adopted in each range of p to cancel the
integration constants in the solutions for P(t). We notice
that the partitioning of these regimes is independent of
the value of q.

B. The case p = 0

In this class of solutions we retain the latter term in
the denominator of Eq. (16) and

xt4 .(ln ltl)-4 (24) 1(p, q) =-
in pp @

(25)

We may treat the scalar 6eld as an eQ'ective time vari-
able during the infiationary regime [24], implying a one
to one correspondence between t and P and enabling us
to identify the asymptotic limit in (tt with a unique limit
of t. The time solution presented in Eqs. (22)—(24) is

This integral may be evaluated for integer values of
1 —q/2. Once more we encounter a subclassification
of solutions, now dependent upon q. When q & 2 and
1—q/2 E Z+, we xnay perform the integration in Eq. (25)
to obtain

1 3 2/2 '
(—1)" (2 —

~2) (1 —~2) . (2 —
~q

—k)

A
—p

(26)

choosing t))to to cancel to on the left-hand side. When q ) 2 and q/2 —1 6 Z+, I(p, q) integrates to yield

(27)

t(&) = —— —& (in&)
1 3 2 ]

2q Vp
(28)

Employing the asymptotic methods used above, we
may invert Eq. (28) approximately as P ~ oo to obtain
P(t) and hence determine H(t) and a(t). We find

Asymptotically, Eqs. (26) and (27) converge, indepen-
dent of the positivity or integer nature of q/2 —1 to yield

valid when p = 0 as P ~ oo. Again we may ask at which
extremum of t the asymptotic analysis of P applies. We
6ndthat whenq&0, t ~ oo and whenq) 0, t ~ —oo
as P ~ oo. The choice q = 0 leads us back to the well-
studied de Sitter universe. When q = 2, Eq. (29) is an
exact solution of Eqs. (7)—(9) (no asymptotic approxima-
tions required). We may calculate the slow-rolling H(t)
and a(t), these are

1
4

&«) =2 '
I

—
l

(-q~)'(inl~l) ' 1 Vp Vp
H(t) = — —ln —4 t—

2 3 3 (32)

H(t) = —2 (ln l), l)',3

a(t) ocexp (
—1 *'t(la(t))*'),

(30)

v, ( v l
a(t) oc exp — t la i

—4 —t —1
)

. —(33)
2 3 ( 3 )
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C. The casey=42 q+2

Here, the integral I(p, q) becomes
2 —q

2

I(p, q) = — d@.
lngp + 4

(34)

If 1 —q/2 6 Z this may be performed exactly. The solutions differ qualitatively with the sign of 1 —q/2. For q g 2

we obtain

and

t(y) = —— —(—
) ) ~

—
~

(tnqtj * + (
—t)' ~ tan '

~

—lnqi
~

if q & 2,3 q '.' '. (—1)'-'+" (4)"
2 Vo 4 2k —1 (qy (q

(35)

() ) I
(I &)

V, „-q —2k —2 iq& 2»(P)+',
fixing to as usual. In the large P limit Eqs. (35) and (36) assume the simple form

(36)

t(~) = (1 ~) '
2(q —2) Vp

and by the methods of the previous sections we solve for the full asymptotic time dependence of the system:
1

f vo i)—
p(t) = exp [2(q —2)]'-q

~

—
i

t2-q

4 q 1
f V 't) 2(2 — ) 4 —q

H(t) = [2(q —2)] '-q
~

—
i

t 2-q exp 2'-q (q —2) 2-q
~

—
i

t '-q
&3)

(37)

(38)

4 —q 1

q , , (Vo) 2(2-q) fv()i '-2
a(t) rx exp(2'- (2 —q)'-

~

—
~

exp 2 —
(q —2) —

~

—
~

t'- (4o)
&3)

valid when p = 4 and q g 2 as P ~ oo. For the extrema of t we find that as P -+ oo, t ~ —oo when q ( 2 and t ~ 0
when q ) 2.

D. Thecasep=4, q=2

In this case the form of I(p, q) is particularly simple,

(
a(t) oc exp —— exp 2e ' —1

)

d@
1(p q)=4

1ngp If + g

(41)
—4~~~ t (45)

leading to

1 3 1
t((tt) = —— —ln 1ng+—

4 Vp 2
(42)

Vp 1
p(t) = exp(exp —4 t—

3 2

v, & v'i
H(t) = —exp l

—4
3 ( 3 ) 2

Vpx exp 2 exp —4 —t —1
3

(43)

(44)

Without the need to resort to asymptotic analysis, we
obtain

Vp Vp
H(t) = —exp 2 exp —4 t—

3 3

1 4a(t) ar exp (
——exp 2e

8 (48)

where E is the exponential integral function, defined in

Appendix B.Equations (43)—(45) form an exact solution
to the HSR equations of motion, although we note that
in this model t -+ —oo as P ~ oo and the asymptotic
form of this solution in this region is therefore

Vp
4r(t) = exp (exp —4 —t

)3
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IV. EXACT SOLUTIONS

We seek exact inBationary solutions of the 6eld equa-
tions, Eqs. (2)—(4), in which P(t) has the form

leading to

(51)

P(t) = Aexp( —pt") . (49)

&(&) = (-p) "n»nI —
IgA)

Equation (3) then implies

(50)

Differentiating with respect to t and eliminating t we
obtain

(52)

We are now presented with three qualitatively differing
classes of behavior, dependent upon the sign of (n 1)/n- .
From Eq. (52) we can see imxnediately that in models
where 1/n is not an even integer, exchanging p ++ —p,

maps between inHationary and con8ationary solutions.

A. The case (n —1)/n & 0 (n&1 o, r n ( 0)

When (n —1)/n is an integer (i.e., n ( 0), we have an exactly integrable system. Equation (52) then gives

(n —11 (n —1 l (n —1
x

I

—k+1I ln~
n ) I, n ) ).

In con&unction with Eq. (51) this allows the calculation of the potential for this theory,

(n —1 l (n —1 & ((P t

x
I

—1
I I

—k+1
I
»I —

In r ( n r EA)

and substituting &om Eq. (49) we have

(54)

k=0

)
Making the substitution 8 = t, we can integrate Eq. (55) to obtain the scale factor evolution:

(55)

pnA2 " (ll 1 (n —1 ) (n —11
—1) ~ ~p) 2"+

~ ) ~ )
(n —1 l (n —1 l (—2p)" ' (

x
I

—1
I

.
I

—k+ 1
I

q
El 2pt"

I

—expI —2pt"
I). (k —1)'

A, —z I-2s
I 1 (1 —2n& (x)

(k —1)(k —2) . (k —r)t"~" 'l 2p, ( 2n ) ( ) J

I
exp

I

—2pt"
I

(56)

We illustrate this class of solutions by considering the
relatively simple case n = —1, for which (n —1)/n = 2.
We find the +parametrized solution

&(+)=, »
I

—
I

—»
I

—I+—3$' (P l
16p2 i A) (A) 2

~(y) = - »
I

—
I

—»
I

—
I

+-
4p, (A) (A) 2

(57)
EA)
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(a}

FIG. 2. (a) V(P) and (b)
for the parameter choices

A = 1.5, n = —1 (all axes in
Planck units).

and, in terms of t, this is

A2 p 2 p 1 ( 2p1+ —+ — exp
I

——I, (59)
4p, t t 2 ( t)

A' t ( 2p1
e(t) = exp l

— 1 ~ — exp
~8, p ( t j

H(t) =—

The potential in Eq. (58), and s~ as derived froxn
Eqs. (5) and (59) are displayed in Fig. 2. To ensure
V(P) & 0 as required for infiation, we have confined our
interest to the domain P ) 0. Although V(P) and e~ are
independent of the sign of p this is not the case for the
remaining dynamical quantities. When p ( 0 the field
rolls from P = oo at t = 0 to P = A as t ~ oo and from
either of Eqs. (57) and (59) we see that H ) 0 for all P
and t values and the universe is expanding. Examination
of the form of e~ reveals that when A ~ 2.4 the evolu-
tion is intially inBationary, temporarily deBating as the
universe becomes kinetic-dominated, before reinBating in
the final stages of the evolution as P -+ A. This double-
inBation feature is not generic; when A ) 2.4, t ~ & 1 for
all P, t The sca.lar curvature, 'R = 12(H'2 —H2), is sin-

gular at t = 0 in this model and approaches the constant
R, = —3A4/16p2 at late times. It also contains a max-
imum, the height and position of which are determined
by the values of A and p.

When p, & 0 the field starts at P = 0 and rolls asymp-
totically to P = A. H is always negative in this case
and the system describes the dynamics of a collapsing
universe. The HSR parameter e~ is invariant of the sign
of p, and so we have the possibility of two conBationary
epochs when A - 2.4. The Ricci curvature R in this case
is initially zero, passes through a maximum and tends to
'R, as t becomes large.

As a final observation, regarding this case we note the
approach of the potential to the form of Eq. (1) at large
P since V(P) ~ 3/4(in/) /16p2 as P -+ oo, and its ten-
dency toward a sixnple polynomial form as P -+ A.

B. The case (n —1)/n & 0 (0 & n & 1)

Once again, the solution is only integratable if (n—
1)/n is an integer, i.e. , 0 & n & 1; we now explore this
possibility. Equation (52) integrates to give

H(P)= (—1)" A —
I A)l

(61)

The potential driving the evolution in this case is

2 2

V(&) = 2 . (Pl (Pl 2k —1

( 2")t (A) I, A -
(

" —l)( " —2) (
" —A)

x lnl —
I

—2+' ln
(Pl

qA)
(62)

The P dependence in Eq. (61) xnay be converted into a time dependence using Eq. (49):

H(t) =
1—2 rx

pA, 2 2 2k —1

—1
I ee

(63)
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We can integrate to obtain the behavior of the scale factor:

1 1 —2 rt

a(t) ocexp g (—1) " A & tZ( —2pt ) +exp( —2pt )2 1—2n

Xt,~1—n —nk
(1—n

I =1 ~

exp (—2pt")

(64)

V(P) = & 21i
12 (A)

p2

A2 ln

+6y2

and

+2@3
e(tj ec exp tS ( 21et'~e)—

g2 2

2 ~1/3
6

A p

A2
exp —2pt ~

(67)

As a simple example of these models we study the special
case n = 1/3 i.e., (n —1)/n = —2. We find

II(g) =
& 21i

6 gA)
(65)

Although these models are all inQationary in the limit
as P -+ oo, the potentials driving them only resemble the
form of Eq. (1) at sinall P and it can be seen &om the
plot of e~ for these theories in Fig. 3 that the evolution
is noninQationary in this limit. Despite this, the interim
behavior between P = A and P = 0 has a particularly
interesting structure.

From Fig. 3 we see that e~ contains a pronounced min-
imum when 0 ( P ( A and one can show that when A ~

11.55, s~(P;„) - 1; indicative of accelerated behavior in
the trough of the minimum. If we confine our attention
to models in which p, ) 0, then H ) 0, and the universe
expands &om a curvature singularity as the field rolls
&omP=Aatt=Ot oP=Oast-+oo. Thismodel
encompasses both the beginning and the end of the inQa-
tionary regime and is exact. InQation here is a transient
phenomenon, arising naturally as P decays &om its ini-
tially kinetic-dominated state and ending once P becomes
large again.

The form of V(P) in this case is reminiscent of the
potential for intermediate inflation [9], as may be seen
&om Fig. 3. As the field approaches P = 0 the potential
approaches zero much faster than in any intermediate
inQationary scenario and this serves to halt inQation after
finite duration.

FIG. 3. (a) V(P) and (b) s~
in the range 0 ( p ( A for
the parameter choices ~p~ = 1,
A = 12, and n = 1/3 (all axes
in Planck units).
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C. The case (n —1)/ n= 0 (n = &)

In this case we obtain the simple solution

H(P) = —gP,

1 f ql'
0 y2 I P+

25 ( q)+ =
4~2 l(P +

I ~ ~

(77)

(78)

2 3
(7o)

H(t) = exp (—2p,t),p,A

4
(71)

a(t) oc exp
2A8' (72)

When p is positive, the universe expands &om a curva-
ture singularity at t = —oo, displays slow-rolling inflation

Auntil a time t, =
&

ln 8, and then tends to the static
Minkowski form as t becomes large. This is an example
of a deflationary universe, asymptoting to a Friedmann
mod. el with a constant scale factor. For negative p this
scenario runs in reverse, collapsing &om maximum extent
at t = —oo to become conflationary at t„before ending
in a "big crunch" as t -+ oo.

V. OBSERVABLE PROPERTIES

Inflation overs an attractive mechanism to generate
perturbations that may have seeded the formation of
galaxies and large scale structure observed in the present
day universe.

The current theory of the magnification of quantum
mechanical Buctuations and their subsequent growth
upon horizon reentry via gravitational instability has
been extensively examined [2]. We quantify the scale
dependence of scalar and tensor metric perturbations in
terms of the spectral indices n, and n~, respectively. Dur-
ing slow-roll inflation we may express these quantities as
expansions in terms of the PSR parameters and to first
order we obtain [2]

1 —A8 —66~ —277~ &

Ag = —26~
&

(73)
(74)

25
Ri ———~v .

2 (75)

1 2q(p + 1) q(q + 2)' (I-~)' (76)

The second-order corrections [25] to these results are
cumbersome and not particularly illuminating and so we
will not introduce them here. Furthermore, one may
show that the extension to the domain of validity of the
results overed by the second-order corrections is small,
justifying a first-order analysis. Since the PSR parame-
ters are deemed to be small during inflation, the generic
predictions should be n, 1, nz B~ 0. For the
potential described by Eq. (1), Eqs. (73)—(75) become

and. there are obvious simplifications when p = —2, —1, 0
and q = 0, —2. The form of these expressions confirm
that we always observe slow-rolling in6ation at large P
and the values of the observables become asymptotically
indistinguishable from the pure de Sitter case in this
limit. When P is smaller, however, it becomes possi-
ble for n, to deviate from unity, and for the gravitational
wave contribution to the perturbation spectrum to be-
come large. We also note that when —2 ( p ( 0, n, can
rise above unity, introducing additional power at small
scales in a manner akin to intermediate inflation [9]. This
can occur whenever g~ ) 3m~ and arises as a result of
slow-roll evolution that is not &iction dominated. , i.e.,
when gP is small, but ~P~ is allowed to vary. In these
cases we note the restriction n, - 1.5, based on estimates
of the overproduction of primordial black holes in such a
scenario [26].

The models presented here make no provision for a nat-
ural end to the inflationary epoch, and for this reason it
is not possible to invoke constraints on p and q &om the
requirement of minimum expansion, or that the reheating
temperature be large enough to allow baryogenesis to oc-
cur [1].Despite this, bounds may be placed on the energy
scale, Vo, at which in8ation occurs [27], first by enforcing
the consistency relation for our classical analysis, 3H (P)
- Mp&, and more importantly by demanding that the
predicted bp/p be consistent with the cosmic microwave
background radiation (CMBR) quadrupole anisotropy,
8p/p 2.3 x 10, as measured by the Cosmic Back-
ground Explorer (COBE) satellite [3].

VI. CONCLUSIONS

In this work we have studied a number of exact and
approximate inflationary universes, obtained as solutions
to Einstein's equations when one postulates a form for
the inflaton potential resembling Eq. (1). We have de-
rived the functional form of the spectral indices arising
in this case and have indicated how further constraints
can be imposed by comparison with observations. We
show that when the potential also contains terms of
the form li($2) one may obtain exact solutions interpo-
lating smoothly the epochs of initial kinetic-dominated
expansion, potential-dominated inflation, and late-time
Friedmann-like expansion. This extends the deflationary
universe models of [22] to include cases in which the ini-
tial evolution is noninflationary. Generally, however, the
solutions are not complete histories and are only meant to
describe evolution on the finite portion of the real poten-
tial where inflation occurs. The mechanism by which the
universe exits the inflationary epoch and enters the re-
heating phase is not treated here, instead. we have sought
to classify the possible ways in which an inflationary uni-
verse containing a slow-rolling scalar Geld with a very
general potential may behave. Our results complete a li-
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TABLE I. A summary of the evolution of the scale factor of inBationary universes driven by scalar 6elds with potential
V(P).

V(4') Range InBation Scale factor

VpgP exp( —AP ) m=n=o Always exp ~vt
3

m=1, n=O If A' & 2

0&m&1 As t-+ oo exp „(,' ) (-„') - ln':

m &O, ngO, 4 n)4, t-+0 exp (~~)'-" (—2n) -"- ('-,") '-"

0&n&4, t~ —oo
4

t4 —n

n&0, t +oo

m &0, n=o As t —+ —oo exp ~t expv A
3 2

m)1, n=O 1&m&2, t +0
m

2 —tYL

x Am 2 —m ~ t2 ~

m) 2, t~ —oo

m=2, n=O Astm —oo exp ~t exp ——exp 4 ~At3 2 ( 3 )

m&0, n=4 As t + —oo exp ——exp —8 ~t1 V
8 3

W

Vp(P(ln P)~ pro 4 p&0, t +oo
2q —4

-p —:(-»-' ('-.") .— (-". )
—.

0&p&4, t~ —oo
4 2q

xt4 ~ (ln ~t~)
4-j

p)4, t +0

q&0, t —+oo

q)0, t + —oo

exp ~2 2t l~ t

p=4, q+2 q&2, t + —oo

q)2, t +0

4 —q

exp 2 -'. (2 —q) —.(~n)'&'- ~

4 q 2 Vx exp 2'-~ (q —2) '-~ (~) '

p=4 q=2 As t —+ —oo 1
~V

exp ——exp 2e8

Vp (in/)" e &2, t —+oo
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4 The poten
tial V(Q) = Vo(ln P)~ exp( —Ap)
when Vo ——A = 1 for: (a) pos-
itive q and (b) negative q (all
axes in Planck units).

C)
1

(a) (b)

brary of solutions for the evolution of slow-rolling scalar
field universes when the potential is a combination of log-
arithms, powers and exponentials of the field P [12, 14]
and are summarized in Table I. Other variants, consis-
tent with slow rolling, may be obtained by using these
results in. conjunction with the methods described in [14]
to eKect transformations of known inflationary solutions
which introduce new functional dependences while pre-
serving the slow-roll nature of the solution. The final
entry in Table I was obtained in this manner and the full
solution is presented in Appendix A.

APPENDIX 8: SPECIAL FUNCTIONS
AND APPROXIMATIONS

dv' for —oo ( aP ( 0, (B1)

We define the exponential integral function E(ag) to
be [28]

E(ag))—:Ei(ag)
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a~
= Ei(ag) —= dr for 0 ( aP ( oo,

—OO

(B2)

APPENDIX A: LOGARITHMIC-
EXPONENTIAL POTENTIALS

and E(ag) is singular at P = 0. Similarly the logarithmic
integral li (aP) is defined as

Here we briefly describe the behavior when an expo-
nential potential is modified by the inclusion of a loga-
rithmic factor. This possibility was first explored in [14].
We find that when V(P) = Vo(in/) iexp( —AP), the time-
dependeiit solution, at large P and t, is

li (aP) = a for aP & 0.
ln ar

Equations (Bl)—(B3) are linked by the identity

li (aP) —= E [ln(ag)] .

We note the approximate relations

(B3)

(B4)

P(t) = —lnt + —ln ln'~ ~ (1nt)
A A

q/2
ln ln ln (ln t)

(A1)

(A2)

E(ag) i as QM —00,

li (aP) i as P -+ 0,
a(j&

(B5)

(B6)

a(t) oct ~" ln " (lnt) .

Variants of this potential are displayed in Fig. 4.

(A3) and the rather more crude asymptotic formulas, asserting
the approximate validity of Eqs. (B5) and (B6) as P -+
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