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We calculate the power spectrum of adiabatic density perturbations in an open inflationary
model in which inflation occurs in two stages. First an epoch of old inflation creates a large, smooth
universe, solving the horizon and homogeneity problems. Then an open universe emerges through
the nucleation of a single bubble, with constant density hypersurfaces inside the bubble having
constant negative spatial curvature. An epoch of “slow roll” inflation, shortened to give Qo < 1
today, occurs within the bubble, which contains our entire observable universe. In this paper we
compute the resulting density perturbations in the same “new thin wall” approximation used in a
previous paper, but for an arbitrary positive mass of the inflaton field in the false vacuum satisfying
m?/H? > 2 where H is the Hubble constant during old inflation.

PACS number(s): 98.80.Cq, 98.65.Dx, 98.70.Vc

I. INTRODUCTION

If the current density parameter ¢ is smaller than
unity as some observations suggest, then we live in an
open universe, described to a first approximation by a
Friedmann-Robertson-Walker (FRW) metric of the form

ds® = —dt® + a®(t)[de? + sinh?[£]dQ3,)] . (1.1)

Slices of constant cosmic time are maximally symmetric
three-dimensional manifolds of constant negative spatial
curvature. The symmetry group of such a universe is
S0(3,1), with “boosts” corresponding to what we com-
monly regard as spatial translations.

Most inflationary models [1-3] predict a value of g
extremely close to unity. However, this is not a neces-
sary consequence of inflation. As noted by Coleman and
de Luccia [4] and by Gott [5], when a bubble nucleates in
de Sitter space, inside the forward light cone of the ma-
terialization center, spatial hypersurfaces on which the
scalar field is constant are spaces of constant negative
spatial curvature. In other words, the bubble contains
an expanding open FRW universe. Consequently, one
can create an open universe from inflation through a two-
stage process [5,6]. During an initial epoch of old infla-
tion the inflaton field is stuck in a false vacuum. In this
epoch the smoothness and horizon problems are solved;
whatever inhomogeneities may have existed prior to in-
flation are erased. Then old inflation is exited through
the nucleation of a single bubble. Instead of tunneling di-
rectly to the true vacuum, the inflaton field tunnels onto
a “slow-roll” potential, and a shortened epoch of new in-
flation occurs inside the bubble. By new inflation, we
mean here slow-roll inflation and do not refer to the way
in which inflation began. For our purposes it is sufficient
to assume that a sufficiently large volume became stuck
in the false vacuum. This may have happened chaoti-
cally [25], or perhaps in some other way. Formally  is
exactly zero on the forward light cone of the materializa-
tion center, and 2 flows toward one during the epoch of
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new inflation inside the bubble until that era ends at re-
heating. In the subsequent evolution Q flows away from
unity. Its present value, ¢, is determined by the total
expansion factor during the new inflationary epoch and
by the final reheat temperature. The usual fine-tuning
argument against Q¢ # 1 is not valid here, because it
is not [27! — 1] at reheating but rather In[Q~! — 1] at
reheating that is proportional to the length of the new
inflationary epoch. Thus to obtain interesting values for
Qo, one has to tune not a very small number, but rather
the logarithm of a very small number. Numerically, this
turns out to be a rather mild requirement [6].

Prior to bubble nucleation the geometry of spacetime
is that of pure de Sitter space, with H2 = (87G/3)V [¢¢]
where ¢¢, is the expectation value of the inflaton field in
the false vacuum. To exploit the SO(3,1) symmetry of the
expanding bubble solution, it is advantageous to work in
hyperbolic coordinates, which divide maximally extended
de Sitter space into five coordinate patches, shown in
Fig. 1, only two of which shall concern us here.

The line element for region I is given in Eq. (1.1), and
for de Sitter space a(t) = H 'sinh[Ht]. The line element
for region II is

ds® = do? + b*(0)[—dr? + cosh®[r]d,)] (1.2)
where for de Sitter space b(c) = H !sin[Ho], with 0 <
Ho < m. [Regions III-V have line elements of the form
given in Eq. (1.1).]

Hyperbolic coordinates are useful for describing the
expanding bubble solution because the inflaton field (in
the background solution) is constant on slices of con-
stant ¢ (in region I) and on slices of constant o (in region
II). In Fig. 2 is sketched a bubble nucleation event, the
dashed lines indicating the surfaces on which the scalar
field is constant. The horizontal solid line separates the
Euclidean (classically forbidden) region below from the
Lorentzian (classically allowed) region above.

To compute the spectrum of density perturbations pro-
duced by quantum fluctuations of the inflation field, one
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FIG. 1. A diagram of maximally extended de Sitter space,
divided into the five hyperbolic coordinate patches. The verti-
cal dashed lines indicate radial coordinate singularities. M is
the materialization center and M is its antipodal point. The
forward and backward light cones of M contain regions I and
V, and the forward and backward light cones of M contain
regions III and IV, respectively. Note that of the five regions,
only region II contains a complete Cauchy surface for all of
de Sitter space.

has to evolve the mode functions from the external de
Sitter space across the bubble wall and into the bubble’s
interior. In a previous paper [6], we performed this cal-
culation in three stages. First we expressed the Bunch-
Davies vacuum modes (the natural vacuum modes for de
Sitter space, see below) in hyperbolic coordinates. We
then matched these modes across the bubble wall, taken
to be very thin. Finally we included the coupling to
gravity and computed the spectrum of density pertur-
bations including gravity in the interior of the bubble.
Because of the technical difficulty of the calculations, we
restricted ourselves to a special case, where the mass m?
of the inflaton field in the false vacuum equals 2H?, with
H the Hubble constant during old inflation. As we em-
phasized there, this was an assumption without physical
basis, solely made to simplify the computation. In this
paper we generalize the result to arbitrary m?/H? > 2.
For those parts of the computation that are identical,
we cite the results from Ref. [6]. Some of these issues
have been investigated using a technique involving ana-
lytic continuation of Euclidean modes in a series of recent
papers [7,8].

The organization of the paper is the following. In
Sec. II we discuss initial conditions. The Bunch-Davies
vacuum for a massive scalar field is expanded in terms of
region IT hyperbolic modes. In Sec. III, we continue these
modes into the bubble coupling to the scalar component
of linearized gravity and calculate the power spectrum.
In Sec. IV we present some concluding remarks.

II. INITIAL CONDITIONS

Initially, prior to bubble materialization, the fluctua-
tions of the inflaton field about the false vacuum ma};

82 o
-+ mz(a)]qﬁ(a, 7,0,0) = 5oz + 3cot[a]$ —

xd>(a,'r,0,¢) =0,
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FIG. 2. Bubble nucleation process.

be regarded as a free scalar field of mass m? = V" [¢g].
The so-called Bunch-Davies vacuum is the natural ini-
tial quantum state for these fluctuations for the following
reason. Let us imagine there is some state prior to the
onset of old inflation. This state may be quite inhomoge-
neous, but if it is to have a finite (renormalized) energy
density, the very short-wavelength field modes must be
taken to be in their ground state. At very short dis-
tances the spacetime approaches Minkowski spacetime,
and the effects of spacetime curvature can be ignored (at
least in the naive approach to quantizing fields in curved
backgrounds that we shall follow here—see, for exam-
ple, [9]). Ground state here means Minkowski space vac-
uum. As inflation begins, the co-moving wavelengths of
all field modes are exponentially stretched. After a cer-
tain amount of old inflation (the same amount needed to
make the universe homogeneous and isotropic) the only
modes of interest are those which were exponentially far
within the horizon when inflation began. It is natural to
assume these modes are in the state forced upon them by
the finite initial density constraint (i.e., the state corre-
sponding to the Minkowski space vacuum at early times).
This is the so-called Bunch-Davies vacuum. (For a dis-
cussion, see [9].) Needless to say, we should be reluctant
to drop this assumption, because without it the mech-
anism of quantum-fluctuation generated perturbations
would be likely to lose any predictive power.

We shall imagine that enough old inflation occurred to
produce a homogeneous and isotropic universe, and to
“drive” the scalar field modes of interest into the Bunch-
Davies vacuum, via the constraint explained above. Our
first task then is to express the Bunch-Davies vacuum in
terms of region II hyperbolic modes, so that we can con-
tinue these modes into region I and after coupling to the
scalar component of gravity calculate the power spectrum
from open inflation. The wave equation for the inflaton
field in terms of the region II hyperbolic coordinates is

1 82 0 r?
— (L yotanhfr] L + — ) —m?
sin?[o] (37'2 + 2tanh(r] or + coshz[r]) m (a)]

(2.1)
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where we work in units with H = 1 and where L? is the
usual angular-momentum operator. Using the “new thin-
wall approximation,” discussed in detail in [6], we set m?
equal to V"' [¢+,] everywhere in region II and equal to zero
everywhere in region I. To compute the power spectrum,
it is sufficient to consider only the s-wave sector, so we
set L? = 0. Equation (2.1) can be solved by separation
of variables, where

Fil¢|r

¢(:t) (o,75¢) = S(o )cosh[T]

(2.2)

where S(o) satisfies
J

P (z) =

In terms of u, where tanh[u] = = = cos[o],

1 1

. 1
- = tiu ) .
SC sech[u] F(l—’l,()e ZFl ( v,v +1,1 ZC, 1+ 2u> .

MARTIN BUCHER AND NEIL TUROK
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2

S" (o) + 3 cot[o] S’ (o) + [ : Cz - mz] S(g)=0. (2.3)
sin®[o]

After the change of dependent variable S(o) =

F(o)/sin[o] and the change of independent variable z =

cos[o], Eq. (2.3) becomes the Legendre equation and

P (cos[o])
S(0;¢) = ~enlo] (2.4)
where v/ = /9 —m? — 1. (There are two linearly in-

dependent solutions, one with P,f,c and the other with
P*C.) We define, as usual (see, e.g., [10], p. 143),

v

(2.5)

(2.6)

From the self-adjointness properties of the Legendre equation, it follows that

(1 - Or(1-¢') / du P (tanh{u]) P’ (tanh[u]) = C1()5(C + ¢') + C2(0)5(C — ¢')

where the functions C1(¢) and C3(() are to be determined from the asymptotic behavior of P:,,C

(2.7)

as © — +oo and

u — —oco. Note that since v/ is either real or of the form —3 + iy with ~ real, it follows that [Pf (tanh[u])]* =

"C(tanh[u]) Clearly, as u — 400,

(1 —i¢)P¥ ~ etiu, (2.8)
From the relation
Iy . I —iQ)I'(— ot .
o L(1—2Q)(+2 ’o .
+w_1("f%1—"+ff% JFi(— V4131 — i w), (2.9)
it follows that, as © — —oo0,
o pi L1 —4Q)r'(—i¢) icu . T = QT (i) o—iCu
P =P ® 5 it T—ic =o)° T TAF o) (2.10)
Consequently, using
/oo du it = 78(¢) + iP (1) : (2.11)
0 ¢
where P indicates the principal part, one obtains
o I'(1—«)T'(1 + )T (—iC)T(+:C) I'(1 —«)T(1 + Q)T (—)T(+¢)
Gig) =m [1 T — i + v)T(L 4 4C o) D(=iC — )T (+iC —o') T T2(1 + v/ )T%(—0)
. sin®[mv/']
= (2m) [1 + m] (2.12)
and similarly
_ 2I'(1 — iQT'(1 — iQ)I' (=)' (+7¢)
C2() = T T (=)D = i€ + P T(—iC — )
= (2m) sin[m/] D(i¢ —v') D1 — i) x [cosh[n(]sin[mv'] — i sinh[n{]cos[mr]] . (2.13)

sinh?[7¢] T'(—i¢ — v') T'(1 + i()
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We wish to define spatial mode functions F* that are linear combinations of P;,C and P,  chosen so that

+oo . o
/ du FEF% =

— 00

The functions C1(¢) and C2(¢) have the form

- 8¢

C1(¢) = (2m)cosh?[€(Q)],

C2(¢) = (27)cosh[€(¢)]sinh[€(¢)]eP©)

where £(¢) and @(() are real. Therefore, we may choose F¢ according to

1
4m4/|¢|cosh[¢]

which in terms of C1({) and C2(¢) may be rewritten as

Ft% (u) =

F+iC (u) —

N 47r\/m

1 [\/1 +4/1 —2|02|2/C% (1 - iC)PJ"C(tanh[U])

Cy [1=VI-1GP/CE L, iC)PJiC(tanh[“])} ‘

N 2

It follows that the creation and annihilation operators
associated with the modes
eFildlm

cosh|[7] ’

+ i
FE = F¢(u) (2.18)

where
~ +oo
der) = [ ac[FPaD O+ FaO©)] (219)

obey the usual commutation relations

[a™(¢),a (] =8¢ - "),
[aD(),a P (] =0,
[@(¢),a (¢ =0.

Although these modes have the correct commutation
relations, they are not useful for calculating expectation
values with respect to the Bunch-Davies vacuum because
the operators @(*)(¢) do not annihilate the Bunch-Davies
vacuum. The Bunch-Davies vacuum is related to the
vacuum defined by the annihilation operators by a Bo-
golubov transformation, which we shall now calculate.

We form “positive frequency” modes (with respect to
the Bunch-Davies vacuum) by considering linear combi-
nations of the form

£+t

where the coefficients c¢ are to be determined.
We may determine the coefficient c¢, and verify the
validity of the ansatz (2.21) as well, by requiring that[

(2.20)

(2.21)

(D +ecfO88%) = (-iam) [ " dorsinl] [

x [—6% B sinl[a] E} x [Ssi;ﬂ;c:]] T (7’ - g)] =0
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1 !
—0(¢+ (). (2.14)
(2.15)
[cosh[g‘/z]r(l — i¢) P} (tanh[u]) — e*sinh[€/2]T(1 + i¢) P, (ta.nh[u])] , (2.16)
(2.17)
f
products of the form
(£ + e, p) (2.22)

vanish where p is a Bunch-Davies positive frequency
mode, and where we define

(v,v) = (=1) /E ax* {u(X)[ayv(X)] - [3uU(X)]v(X)} ;

(2.23)

where ¥ is a Cauchy surface with unit normal n*, and
d¥#* = d¥n* with dX the volume element on ¥. If the
product in Eq. (2.22) vanishes for all p, then fC(+) +c<f<(_)
is a positive frequency mode.

The Bunch-Davies positive frequency modes in terms
of closed coordinates are known. They are

o — oI, (224)
where
Ti(n) = sin'/?[] [P:'e'—uz(—COS[—ﬂ])
21
—?QZ—1/2(“C°S[_77])] ) (2.25)

where tanh[/2] = e”. Here k is a positive integer. n =
m/2 corresponds to 7 = 0 and at 7 = 0 one has 9; = 0.
The condition

P,f,c(cos[a]) el ¢ c<e+il(lf]

sin[o] cosh|[r]

(2.26)
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is equivalent to

/0 " do P (cosfo])sinfko] [%EZ - :gi + Sfr‘f[(lf] G ;Z )] =0. (2.27)

We thus obtain an infinite number of equations, and the kth equation is solved by

l—cc _ i Ty(n=m/2) N do P (cos[o])sin[ka]
L+ee ¢ Ti(n=m/2) N do P¥ (cos[o])sin[ka]/sin[o]

(2.28)

In the Appendix we prove that the right-hand side of Eq. (2.28) is independent of k, so that all of these equations are
equivalent.
It readily follows from Eq. (2.25) that

Tyn=n/2) _ o Tk/2=v'/2+ HT(/2+0'/2 1 1)

= 2.29
Tk(n =m/2) L(k/2—-v'/2)T(k/2+v'/2+ %) (2:29)
where we have used v = v/ + 1. We first calculate the integrals in Eq. (2.28) for k = 1. We rewrite
I = / do sin[o] P (cos[o])
0
+oo i
= du sech 2[u] P¢ (tanh[u])
o0 dy et
F (-, +1;1 -4
I‘(l—ZC)/c° cosh?[u] 1( vor % 1+ 2“)
Z (=)@ + 1)y du e
I‘(l — () # (1 = i¢)nn! oo ‘2“(1 + e2u)n+2
_ 2 Z (=) +1)n /+°° dx z%¢/?
STA-) & (- zonn' o (At+ore
2“’ (=)n(V +1)n T(+i¢/2 + 1)T(=i¢/2 + n + 1)
]."(1 —i() 4 (1 —=i¢)nn! I'(n+2)
. 2F(+z(/2 + 1)I‘(—zC/2 +1) , i¢ . o,
- i) aF (V0 +1, -2 + 11—, %1 ) (2.30)
Similarly,
I, = / daP,f?(cos[a])
0
Z (=)n(V + 1) du e
1 —i) (11— iC)n oo €7¥(1+ e2u)ntl
f —Vl)n(V,+1)n /+oo dx £¥¢/2-1/2
I‘(l — () 4 (1 —i{)an! Sy 1+ z)»+1
1 Z )n (V' + 1)n D(+i¢/2 4+ JT(—i/2+n+ )
I‘(l—zC) (1—1{) n! P'(n+1)
_ T(+i¢/2+ 5)1'(—2C/2 +3) ' i€
= 1“(1_10 3F2 —Vv,Vv +1,—'—2—+ 2 Zc,l 1 (2.31)
We simplify the generalized hypergeometric functions using Whipple’s theorem [11], which states that
3Fz(a,b,c5e, f;1) = ()L (f) (2.32)

Il(a +e)/2]T{(a + f)/2]T[(b + €)/2]T((b + £)/2]

whenever a +b =1 and e + f = 2c + 1. The generalized hypergeometric functions in Eqgs. (2.30) and (2.31) satisfy
these conditions.
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Consequently,
I 2(i¢/2 + I (—i¢/2 + 1) sFa(=v',v' + 1, -i(/2 + 1;1 —4(, 2; 1)
I,  T(i¢/2+4 3T(—i¢/2+ %) sFa(—v/, v/ + 1,—i(/2 + 351 —i(, 1;1)
_ D(i¢/2 + DD(=i¢/2 + 1) T(=+//2+ HL@//2+ 1) 2.9
- T(i¢/2+ PI(=i¢/2+ 3 T(—v'/2+ DT(v'/2 + 2) '
and
(1“04) _ ¢ L(+i¢/2)T(—(/2)
1+c¢ [SIT[5 + (+i¢)/2I0[5 + (=i¢) /2]
= icoth[7l'C/2]
I<]
14 eI
per=r (2.34)
so that ¢, = —e~"l¢l. The result agrees with the previous calculation for the special case v’ = 0 in [6], and with the

results of [8] for general v’ obtained using different methods. Surprisingly, the result is independent of »/'.
Near the null surface the positive frequency part of the inflaton field operator is

1 +o0 dc (ew(;/ze—i(f _ e—n(/26+i(r)

1

2(+ —
¢( )(U,T) - A (eﬂ-c _ e_ﬂ-(')]_/z

4 Jo V<

cosh[7|sech[u]

2

x ( { \/ 1+ V1= 1G(OP/CHC) jricu _ ot | L= V1= IC(OF/C (C)e—ifu}a<+>(+c>

2

N { \/1+\/1—|cz(o|2/012(<)e~i<u_e_i¢<<, 1—\/1—rcz(C)rZ/Cf(c:)e+i<u}&(+)(_<)) (2.35)
2 2 ’ )

where C1(¢), C2(¢), and ¢(() are defined in Eq. (2.15).

III. CONTINUATION INTO THE OPEN
UNIVERSE

In the previous section we expanded the Bunch-Davies
vacuum in region II in terms of the hyperbolic modes.
In this section we continue these modes into region I, so
that we can calculate the power spectrum of Gaussian
adiabatic density perturbations today.

In the new thin-wall approximation explained in [6],
the effective mass squared of the inflaton field (equal to
V" [¢p] where ¢ is the background value for the infla-
ton field), changes discontinuously from m? = V" [¢g,] to
zero as one passes across the forward light cone of the
materialization center from region II into region I. This
discontinuity is a result of the approximation, in which
we assume that (1) the bubble radius (at materialization)
is small compared to the Hubble radius H~! during old
inflation, and (2) the bubble radius (at materialization)
and thickness are small compared to the co-moving wave-
lengths of interest. If these two conditions are not sat-
isfied, the computation becomes more involved, and the

results would then depend on the detailed shape of the
potential in the vicinity of the false vacuum.

In [6], we derived the following matching conditions
across the light cone:

e—iCu e+i(‘r

., sin[(¢] (+i¢—1)
(+9) sinh[{]e " "

sech[u] cosh[T]

e—i(u e—i(r
sech[u] cosh[7] ’
(3.1)
e+i(u e+i(‘r

sech[u] cosh[7] ’

B
sech(u] cosh[7] sinh(¢] ’

where ( > 0. The left-hand side indicates asymptotic
behavior in region II as 0 — 0 [u — +o0]; the right-hand
side indicates asymptotic behavior in region I as ¢t — 0
[n = —oo]. We define region I conformal time with the
relation €” = tanh[t/2].

For small ¢t the positive frequency part of the field op-
erator is



5544 MARTIN BUCHER AND NEIL TUROK 52

—i [Tee d¢ 1 sin[C€]
ar V/C e sinh[¢]

" etm¢/2 14+ +/1— |C’2|2/Cf J
(eﬂ'(' _ e—1r§)1/2 2

L —7¢/2 _ 1= 2/02 .
—ei®(©) e \/1 1- |G| /CleﬂCn]a(H(C’_{_)

(eﬂ'c _ e—‘n{)l/Z 2

(&) =

[ e/ \/1+\/1—102|2/c%e+i<n
2

+ '(e‘er _ e—‘rrC)l/Z

(em¢ — e—7¢)1/2 2 (3.2)

i) etm¢/2 \/1 — \/l_jm —zCn:I (+)(<, _)} .

In [6], it was shown that the asymptotic behavior near the null surface for the inflaton field ¢ ~ e**7~" corresponds
to the asymptotic behavior

47I'GV¢ i:z(n+n
:I:zC + 2

for the gauge invariant gravitational potential. It was further shown that the asymptotic behavior for ® above matches
onto the exact solution

(3.3)

T cA— [1— (i,
)

T HiC+2° 3(CFi)- (3.4)

subject to the following assumptions: (1) H remains constant, and (2) the potential is linear. Consequently, to write
the positive frequency part ®(*), we modify Eq. (2.35) to become

1411'GV¢ o +o° d¢ sin[¢€] 1
H o /< sinh[€] (em¢ — e—mC)1/2

wis2 | L+ VIZICPJCE en [ ¢—i }

L — — 2 2 ,+iln "
_ew(c)e—«c/z\/l VI TOPIGE ey G 62,7}}&<+)(+Q

2+414¢ 3(¢ —1)

4 |emmer2 1+ 4/1—|C,|%2/C? €+ic." 1— C+i_ 027
2 2+ 3¢ —19)

_e—¢<r:)e+wc/z\/1 — V1 - [C3?/CF e {1 R 6271}] &(”(—C)} ,

&) (g,m) =

2 2=\ T3¢+ (35)

Even though we are working in units with H = 1, we insert the H~! factor to facilitate later conversion to more
conventional units in the final result. We define the power spectrum for @ according to the following expression for
the two-point function:

sin[(¢]
inh(¢]

Taking the limit ¢ — oo [p — 07] isolates the growing mode. Pg shall denote the limit of Pg((,t) as t = oco. It
follows from Eq. (3.5) that

(@ (€ = 0,)B(&, 1)) = / ac¢ S py 1) (3.6)
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4 1 1

Ps(¢) = (GV,qb)ngz ¢(¢z+1) e™ — e—m¢

+ e—"C/z\/l +

é 1 1
9C(CZ+1) et —e-nC

= (GVy)?
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2
o | lermerz 1+ VI |C2?/CF 4 e +iR(O) CHeY —mer2, [1-V1— |C2|?/C?
2 (—1 2
2
1-|Cy|2/CE 4 e—i#(O) %Y 4me/2, [1 V11— |C2|2/C?
2 C+i 2
(3.7)

w¢ o o-ne  |C2l [ pCHi _ipC—t
x[e + e +C (e +e i .

¢—1

1

Using x = 16nG(V?/V3)@® (during inflation), one obtains that the power spectrum for x (which has a normalization
that relates more directly to the density perturbations seen after reheating) is

P, (¢) = [167rG (%)] P5(¢)

_ 9 (H) 1 [e"<+e—“<+(|cz|/cl){ef¢[(<+z')/(<-i)]+e-"¢[<c—i)/(c+i)1}

T a2 \Vy) (2 +1)

where

_2H'$+ 9%

(038 3.9
3 14w + (3.9)

X

Computing the power spectrum in the limit ¢ — +o0,
which formally assumes inflation without end, has the ef-
fect of completely eliminating the decaying mode. While
Q is close to one (which is true here except for the very
early part of the new inflationary epoch) the variable x is
conserved on superhorizon scales irrespective of changes
in H or in the slope of the potential. Note with the
conventions used here P ~ (~3 corresponds to scale in-
variance. :

Our result differs from that of Lyth and Stewart [12]
and of Ratra and Peebles [13,14] (who assume different
initial conditions for the quantum fields) only by the fac-
tor in square brackets in Eq. (3.8). Because |C;|/C; <
1, the bracketed quantity lies between tanh[w(/2] and
coth[w({/2]. This fact severely limits the influence of mass
at large wave numbers. Observations of the large-angle
cosmic microwave background (CMB) anisotropy, for ex-
ample, are only sensitive to values of { > 1 or so. We
conclude that the idea of open inflation is actually more
predictive than it might appear at first sight. In Fig. 3,
we plot the bracketed quantity versus co-moving wave
number for various values of m?/H?. The envelope of
two dotted curves indicates the bounds tanh[w({/2] and
coth[r(/2].

The phenomenology of the Ratra-Peebles spectrum has
been explored in a number of recent papers, with the
assumption that the inflaton potential V(¢) is linear.
The conclusion of those papers was that for Q¢ ~ 0.3—
0.4, adiabatic density perturbations of the form studied
here were consistent with most current observational con-
straints [15,16].

], (3.8)

e™ — e ¢

[

We should point out, however, that in our scenario,
which provides physically motivated initial conditions,
there is no very strong reason to expect the potential to
be linear over the range of ¢ of interest. By shortening
the length of the slow-roll transition and assuming that
the potential does have significant structure (i.e., a false
vacuum) for the relevant range of ¢, we are increasing
the sensitivity of the final perturbation spectrum to the
details of the potential. For example, it may be that
within our framework a positively tilted spectrum (i.e.,
increasing power at shorter wavelengths) is quite likely,
and this could restore the viability of models with even
lower values of Q.

IV. CONCLUDING REMARKS

We conclude with the following comments.

(1) In [6] we calculated the power spectrum for the
“conformal” mass case m?/H?2 = 2. There was no phys-
ical motivation for choosing this mass; the choice was
made solely for computational simplicity. Naively one
might expect that allowing m2?/H? to be a free param-
eter would diminish the predictiveness of open inflation.
However, this does not turn out to be the case, except
for very small values of €2y, which can be ruled out ob-
servationally based on lower bounds on the mean mass
density of the Universe. For scales smaller than the cur-
vature scale there is little freedom to alter the density
perturbations by adjusting m?2/H?2.

(2) The assumptions made here to calculate the power
spectrum should be stressed. We assumed that at materi-
alization the size of the bubble and the bubble wall thick-
ness are both small compared to the Hubble radius H !
during old inflation. Relaxing these assumptions would
alter the power spectrum calculated here. If at material-
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ization the bubble covers an appreciable fraction of the
Hubble volume during old inflation, a precise calculation
of the perturbations requires taking into account the ef-
fect of the Euclidean (classically forbidden) evolution of
the background solution on the evolution of the inflaton
field perturbations. Alternatively, if one considers per-
turbations on a co-moving scale not large compared to
the bubble wall thickness (or bubble radius at materi-
alization), details of the bubble wall profile, which are
highly model dependent, become relevant. Our discon-
tinuous treatment of the mass change across the bubble
wall may be regarded as a sudden impulse approxima-
tion, which breaks down for sufficiently large co-moving
wave numbers. Although the problem of calculating the
perturbations when the bubble is not small remains an
open problem, important progress in this direction has
been made in [17,7].

In region I we assumed that the potential was exactly
linear and that over the range of interest V[¢] does not
change appreciably, so that H could be regarded as con-
stant. These are precisely the same assumptions that
give an exact scale invariant power spectrum for stan-
dard (% = 1) new inflation. In the recent literature,
it has been stressed that because of the change in H
during inflation and because of variation in the slope of
the potential during inflation, deviations from exact scale
invariance are to be expected. These considerations ap-
ply equally well to open inflation. The power spectrum
calculated here should be regarded as the small-Qy ana-
logue of exact scale invariance for the flat (o = 1) case.
It is the generic prediction from which small deviations
that depend on the exact choice of potential are to be
expected.

As mentioned at the end of the last section, in the
open case there may be more reason to expect a tilted
spectrum than in the flat case, because in open inflation
the epoch of new inflation begins near a local maximum
of the potential.

(3) It seems that for m?/H? < 2 the approach taken
here is problematic.! The problem is that in this case
the two-point function for the Bunch-Davies vacuum in
region I falls off so slowly on hyperbolic spatial slices that
it cannot be represented as sum over the modes used here.
For m?/H? > 2 there is no such problem.

(4) For small values of m?/H? one has to worry about
whether the tunneling is described by an SO(3,1) sym-
metric bounce (i.e., the Coleman-de Luccia instanton).
When |V”|/H? < 4 at the top of the barrier (i.e., at
the local maximum), the tunneling is described by the
Hawking-Moss instanton [18] rather than the Coleman-
de Luccia instanton [19]. In this regime there is no
expanding bubble solution that is SO(3,1) symmetric,
and it seems doubtful that a sufficiently homogeneous
and isotropic universe will result. Moreover, in the
limit as the Coleman-de Luccia instanton approaches the
Hawking-Moss instanton, the power spectrum on large
scales diverges, because of the flatness of the potential
near the local maximum. The physical interpretation of
the Hawking-Moss instanton has been discussed in [20].
Generally, one would expect m2/H? (at the local min-
imum) to be comparable to |V"|/H? at the local max-

!We thank M. Sasaki for pointing this out to us. See [22] for
a proposed solution to this problem. See also [23,24].
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imum, so it would appear difficult to construct viable
models with very small m?/H?2.

The implications of the power spectra calculated here
for the cosmic microwave background will be discussed
elsewhere [21].

Note added. After this work was completed, we re-
ceived a preprint on related work by K. Yamamoto, M.
Sasaki, and T. Tanaka on the CMB anisotropy from open
inflation [22]. It should be noted that although these
authors describe a scenario similar to the one described
here, they assume that m? = 0 everywhere, both inside
and outside the bubble. A. Linde [25] and A. Linde and
A. Mezhlumian [26] have recently proposed various inter-
esting scenarios for open inflation.

J

T(k/2 — V' /2 + HD(k/2 +'/2 + 1) [, duP} (cos|o])sin[ko]sin[o]
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APPENDIX

In this appendix we verify that the right-hand side of
Eq. (2.28) is independent of k. Using Eq. (2.29), and
the substitution = = cos[o] = tanh(u], dz = sin[o]do, we
need to show that

T(k/2—v'/2)T(k/2+v'/2+ 1)

is independent of k. We denote the integral in the nu-
merator A, and that in the denominator B, k.

From the standard recursion relation for Legendre
functions (e.g., [10], p. 161),

(140 — Q)P4 (2) = (v + el (2) — - P (a),
(A2)
it follows upon substitution into the integrals, integrating
by parts, and using trigonometric double angle formulas
that
A,,l’k+1(lj’ — k) = 2(1 +v - iC)Av’—{-l,k
—'(VI + k)Au’,k—l )
B,/I,k+1(1 + I/l - k) = 2(1 + l/l - iC)Bul+1’k
—(1+v +k)By -1, (A3)

which, since A, o = B,/ o = 0, give all the integrals we

. Al
= duP¥ (cos|o])sin[ka] (A1)

oo

f
need in terms of those for k¥ = 1. Redefining

A 1 k !
c,,,,kzr‘(ﬁ—i+—)r(—+y—+1)A,.,k,

2 22 22
k vV E v o1

e=T(2-= 4+ —+=)Bu A4

Dy, x r(z 2)r<2+2+2) e (A4)

(which are well defined for arbitrary positive mass), we
find from Eq. (A3) that C and D obey identical recursion
relations:
Corprr1=—(1+v —i()Cury1k
+ik+v)1+k+20)Cok-1,
Dyigy1 = =14 —i¢)Dyry1,k
+3(k+V)Q+k+v)Dy 1. (A5)
Since both vanish for k = 0, it follows that Cp: /Dy j =

C,'1/D, 1 and thus that Eq. (Al) is independent of k,
as wanted.

(1] A. Guth, Phys. Rev. D 23, 347 (1981).

[2] A. Linde, Phys. Lett. 108B, 389 (1982); A. Albrecht and
P. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).

[3] A. Linde, Phys. Lett. 129B, 177 (1983).

[4] S. Coleman and F. De Luccia, Phys. Rev. D 21, 3305
(1980).

[5] J. R. Gott, III, Nature (London) 295, 304 (1982); J.
R. Gott and T. Statler, Phys. Lett. 136B, 157 (1984);
J. R. Gott, in Inner Space/Outer Space: The Interface
Between Cosmology and Particle Physics, Proceedings of
the Workshop, Batavia, Illinois, 1984, edited by E. W.
Kolb et al. (University of Chicago Press, Chicago, 1986).

[6] M. Bucher, A. S. Goldhaber, and N. Turok, Phys. Rev.
D 52, 3314 (1995).

[7] M. Sasaki, T. Tanaka, K. Yamamoto, and J. Yokoyama,
Prog. Theor. Phys. 90, 1019 (1993); M. Sasaki, T.
Tanaka, K. Yamamoto, and J. Yokoyama, Phys. Lett.
B 317, 510 (1993); T. Tanaka, M. Sasaki, and K. Ya-
mamoto, Phys. Rev. D 49, 1039 (1994); T. Tanaka and

M. Sasaki, ibid. 50, 6444 (1994); K. Yamamoto, T.
Tanaka, and M. Sasaki, ibid. 51, 2968 (1995).

[8] M. Sasaki, T. Tanaka, and K. Yamamoto, Phys. Rev. D
51, 2979 (1995).

[9] N. Birrell and P. Davies, Quantum Fields in Curved Space
(Cambridge University Press, Cambridge, 1982), and ref-
erences therein.

[10] A. Erdelyi et al., Higher Transcendental Functions
(McGraw-Hill, New York, 1953), Vol. 1.

[11] W. N. Bailey, Generalized Hypergeometric Series (Cam-
bridge University Press, London, 1935).

[12] D. Lyth and E. Stewart, Phys. Lett. B 252, 336 (1990).

[13] B. Ratra and P. J. E. Peebles, Astrophys. J. 432, L5
(1994).

(14] B. Ratra and P. J. E. Peebles, Phys. Rev. D 52, 1837
(1995).

[15] M. Kamionkowski, B. Ratra, D. Spergel,
Sugiyama, Astrophys. J. 434, L1 (1994).

[16] K. Gorski, B. Ratra, N. Sugiyama, and A. Banday,

and N.



5548 MARTIN BUCHER AND NEIL TUROK 52

“COBE-DMR-Normalized Open Inflation, CDM Cos-
mogony,” Princeton Report No. PUPT-1513, CfPA-Th-
94-61, UTAP-194, astro-ph 9502034 (unpublished).

[17] V. Rubakov, Nucl. Phys. B245, 481 (1984); T. Vachas-
pati and A. Vilenkin, Phys. Rev. D 43, 3846 (1991); J.
Garriga and A. Vilenkin, ibid. 45, 3469 (1992).

[18] S. Hawking and I. Moss, Phys. Lett. 110B, 35 (1982).

[19] L. Jensen and P. Steinhardt, Nucl. Phys. B237, 176
(1984).

[20] A. Starobinsky, in Current Topics in Field Theory, Quan-
tum Gravity and Strings, edited by H. J. de Vega and N.
Sanchez, Lecture Notes in Physics Vol. 206 (Springer,
Heidelberg, 1986); A. Goncharov and A. Linde, Sov. J.
Part. Nucl. 17, 369 (1986); A. Linde, Nucl. Phys. B372,

421 (1992).

[21] M. Bucher and N. Turok (in preparation).

[22] K. Yamamoto, M. Sasaki, and T. Tanaka, “Large Angle
CMB Anisotropy in an Open Universe in the One-Bubble
Scenario,” Kyoto Report No. KUNS 1309, astro-ph 95-
1109, 1995 (unpublished).

[23] D. Lyth and A. Woszczyna, Phys. Rev. D 52, 3338
(1995).

[24] D. Lyth, “The Grishchuk-Zeldovich Effect in the Open
Universe,” Report No. astro-ph 95-01113, 1995 (unpub-
lished).

[25] A. Linde, Phys. Lett. B 351, 99 (1995).

[26] A. Linde and A. Mezhlumian, “Inflation with Q # 1,”
Report No. astro-ph 95-06017, 1995 (unpublished).



