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As the data on cosmic microwave background anisotropies improve and potential cosmological
applications are realized, it will be increasingly important for theoretical calculations to be as accu-
rate as possible. All modern calculations for inBationary-inspired fluctuations involve the numerical
solution of coupled Boltzmann equations. There are many assumptions and choices to be made
when carrying out such calculations. Here we go through each assumption in turn, pointing out
the best selections to make in each case, and the level of inaccuracy expected through an incorrect
choice. For example, neglecting the effects of neutrinos or polarization has a 10'Fo effect. Varying
input parameters such as the radiation temperature and helium fraction can have smaller, but no-
ticeable effects. We also discuss a few issues which are more numerical, such as the k range and
smoothing. Some short-cut methods for obtaining the anisotropy spectrum are also investigated,
for example, free-streaming and tilt approximations; generally none of these are adequate at the few
'Po level. At the level of 1% it is important to consider somewhat baroque effects, such as helium
recombination and even minimal amounts of reionization. At smaller angular scales there are sec-
ondary and higher-order effects which will ultimately have to be considered. Extracting information
from the subsidiary acoustic peaks and the damping region of the anisotropy spectrum will be an
extremely challenging problem. However, given the real prospect of measuring just such information
on the sky, it will be important to meet this challenge. In principle it will be possible to extract
rather detailed information about reionization history, neutrino contribution, helium abundance,
non-power-law initial conditions, etc.
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It now seems clear that anisotropies in the cosmic mi-
crowave background (CMB) have been detected over a
wide range of angular scales (see [1,2], for recent reviews).
We are in a time of rapid experimental progress, and
there is realistic hope of being able to measure fundamen-
tal cosmological parameters &om the shape of the power
spectrum of anisotropies. It has been shown that there
are combinations of parameters which are "degenerate, "
i.e., quite difFerent cosmological models can give very sim-
ilar anisotropies [3]. However, these degeneracies are not

exact [4—7], and to understand the precise sensitivity to
specific parameters, it is necessary to carry out calcula-
tions which are as accurate as possible. In fact, satellite
experiments which are now being considered may be able
to map most of the sky down to a &action of a degree,
thereby measuring a range of cosmological quantities at
once. However, the size of the variations which need to
be measured to extract full cosmological information is
significantly smaller than the accuracy with which theo-
retical predictions have been routinely given in the past
(cf. tables in [8] for a comparison of results).

In order to keep pace with the expected progress in
experiments we need to examine the robustness of the
theoretical calculations. In this paper we have set about
studying the various assumptions which go into these cal-
culations. For most of the issues, there is a very defi-
nite correct choice in order to obtain the most accurate
results, although in some circumstances it may be bet-
ter to compromise accuracy in favor of computational
speed. Although many of these efFects are already in-
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eluded in modern state-of-the-art Boltzmann codes, in
general none of them have been fully discussed in the
literature. Moreover, there are other issues where the as-
sumptions are perhaps more subtle or implicit, and only
become apparent in a systematic investigation.

The outline of the paper is as follows. As discussed
in Sec. II, the power spectrum of CMB anisotropies is
usually denoted by the quantities Ci (squares of the am-
plitudes in a spherical harmonic decomposition l [9]) for
each multipole, and calculated by solving the radiative
transport or Boltzmann equations. As a rule of thumb
we will suppose that we are interested in calculating these
Ci's to an accuracy of at least 1% out to arcminute scales,
since this is roughly what will be required by experi-
ments currently being proposed. We begin in Sec. III
by considering the effect on anisotropies of variations in
background quantities, i.e. , the matter content, expan-
sion rate, and recombination history of the universe. In
Sec. IV we expand the scope to include sources in linear
perturbation theory which are subdominant and often
omitted in calculations. Of course, it should be stressed
that on subdegree angular scales there are other sources
of anisotropy which are likely to be +1% of the primary
anisotropies which are our focus in this paper. We also
survey such "secondary" or "nonlinear" effects in Sec.
IV. However, understanding the issues involved in ob-
taining primary Ci s accurate to 1% is still a worthwhile
exercise and a necessary first step in calculating small
scale anisotropies. Finally in Sec. V, we discuss the ac-
curacy of numerical approximations commonly employed
to make the calculation tractable.

Our general approach in this paper is to understand
what physical effects and input assumptions give mea-
surable changes in the predictions of the C~'s for a fidu-
cial model, taken to be a cold dark matter (CDM) model
with adiabatic initial conditions in an 00 ——1 universe.
Of course many of our results will extend to other mod-
els. Having established this goal, it is a simple matter to
reverse the argument to determine the physical processes
and parameters that we could measure by obtaining ac-
curate C~'s from the sky.

II. THE BOLTZMANN EQUATIONS

The standard way to calculate the present-day spec-
trum of anisotropies is to write down the Fourier trans-
form of the linearized Boltzmann equation for each cos-
mological fluid (dark matter, baryons, photons, and neu-
trinos), with all of the relevant physical couplings be-
tween the Huids retained. These equations have been
presented many times in the literature, and since they
require the precise definition of many different quanti-
ties, we avoid their repetition here. Instead we refer the
interested reader to the seminal papers [10—16,9]. More
recent treatments can be found in [17,18) (following the
approach of [19]) and in [20].

These equations can be solved semianalytically for ei-
ther standard recombination, using the tight-coupling ap-
proximation for the photons and baryons (e.g. , [21—29,4])

or for reionization, using the weak coupling approxima-
tion (e.g. , [30—39,17,18]), which also lends itself to ray-
tracing techniques [40—43]. Methods for both cases are
further developed and refined in [5,6,44]. The accuracy
of the calculations is limited by the ability to fit or cal-
culate the time dependence of the gravitational poten-
tial. Although such techniques are extremely useful for
understanding the underlying physical mechanisms, and
are likely to remain useful for some time to come, ulti-
mately the full numerical solution of the coupled Boltz-
mann equations will be required in order to obtain the
most accurate C~'s.

Detailed numerical calculations of the Boltzmann
equations have been carried out for many different mod-
els, e.g. , the pioneering work of [10,13,16,9,45,46], and
the more recent treatments by [47—61,8] among others.
The most comprehensive set of results to date are pre-
sented in [7]. The basic method is due to the work of
[16,9] (see also [62—65]). By integrating over frequencies,
the full Boltzmann equation for the photons reduces to
an evolution equation for the brightness or temperature
Huctuation. This approach is valid in linear perturbation
theory since spectral distortions are only introduced at
second order, provided there is no exotic source of en-

ergy injection into the CMB. The angular dependence of
each k mode of the radiation can be expanded in a series
of Legendre polynomials [13], A(k, p) = P& Ai(k)P~(p),
where p is the cosine of the angle between the A', vec-
tor and the line of sight. This expansion reduces the
equations to an infinite hierarchy of coupled ordinary dif-
ferential equations. (This development was a vast, and
physically sensible, improvement over earlier treatments
which performed calculations using discrete p modes. ) At
very high redshift it is sufhcient to use the tight-coupling
approximation for photons and baryons. In this approxi-
mation (described more in Sec. V B), the Compton scat-
tering rate is sufBciently rapid that anisotropies in the
photon distribution cannot be generated and the modes
with l & 2 are exponentially damped. Only the density
(I = 0) and velocity (l = 1) perturbations are kept in the
photon and baryon components. This is often referred
to as the perfect Quid approximation, since the two com-
ponents can be described by density and pressure per-
turbations alone. Viscosity in the Quid can be treated
perturbatively in this limit and leads to a damping of
small scale anisotropies. As the Universe begins to re-
combine, the moments l & 2 are no longer exponentially
damped and the full hierarchy must be evolved.

The outcome of the numerical evolution is a catalogue
of solutions of the Boltzmann equations for the angular
moments of each k mode [63]. These can then be com-
bined using an initial weighting of the k modes (i.e. , an
initial power spectrum) to obtain the Ci s. Providing
that enough modes are used and all relevant sources are
included, the calculation can then be carried out to an
accuracy of 10, due to the perturbation expansion and
the measured level of CMB Huctuations. We shall be con-
cerned in this paper not so much with the application of
this method of solution as with the physical inputs and
approximations which are made to render this program
tractable. However, in Sec. V, we will comment on some



5500 HU, SCOTT, SUGIYAMA, AND WHITE 52

Tem
1.2

I I I I lllll I I I I I llll I I I I I llll

10
~ 10'

10
10
10
10

I I I I

I I I I Ill]
Polar iz

10 100 i000

I I I I I IIII I I I I I l Ill I—

0.8

I

I

2.73K '. '. , nI
e' I

2.7K

I

I I I I IIII:I
10 100 1000

I I IIII I I»l I

FIG. 1. The angular power spectrum of CMB temperature
anisotropies, i.e., l(l + 1)CI/6C2 vs l, for our fiducial model
(multipole l 8 ). This includes all the effects that are
discussed in this paper, and hence we expect this plot to be
accurate to & 1'70 until the damping region at l & 1500. Also
shown is the polarization power spectrum, normalized to the
temperature quadrupole.

subtle issues of this method of solution which can cause
inaccuracies to creep in.

In order to show the quantitative size of the effects we
discuss, we choose a specific cosmological model around
which to vary our different assumptions and other phys-
ical inputs. For definiteness, we will take 00 —— 1,
A~ = 0.05, h = 0.5, n = 1, T/S = 0, i.e. , the standard
cold dark matter (SCDM) model with adiabatic Gaus-
sian initial conditions and no tensor component. We will
discuss more specific assumptions and refine our model
as we progress. The anisotropy spectrum for this model
is shown in Fig. 1. This is plotted in the usual form of
l(l + 1)CI vs l, which gives the power per logarithmic
interval in l.

FIG. 2. The relative error in t ~ for di8'erent choices of the
present-day photon temperature T~o. Plotted is the ratio of
CI for T~o = 3 K (dotted), 2.7 K (dashed), and 2.73 K (solid),
relative to T~o ——2.726 K.

rate of perturbations. Specifically, any increase in the
relativistic content prevents the growth of perturbations
inside the horizon. This leads to decay in the gravita-
tional potential, which affects the photons through grav-
itational redshift [67]. In Figs. 3(a) and 3(b) we show
the effect of varying the number of neutrinos from 2 to
4, which changes Cl on the order of +10'%%uo near the first
peak. The decay of the potential drives the acoustic os-
cillations, resulting in larger anisotropies. Notice that
the deviation with radiative content has a distinct and
symmetrical signature near the first peak that is poten-
tially measurable and competitive with nucleosynthesis
bounds. At smaller scales, changes in the angular loca-
tion of the peaks through the horizon and sound hori-
zon at last scattering, as well as additional effects in the
damping region, lead to a more complicated, oscillatory

III. THE BACKGROUND COSMOLOGY

A. Photon temperature and neutrinos
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One of the most basic input parameters is the tempera-
ture of the microwave background today. By altering the
radiation content of the Universe this affects the epochs
of last scattering, matter-radiation equality, and baryon-
photon equality, and hence the anisotropies in the CMB.
A simple question then arises: what is the effect of using
a slightly different value7 In Fig. 2 we show the ratio
of the angular power spectrum, l(l + 1)CI vs /, for three
temperatures T~o ——3, 2.7, and 2.73 K, to that for the
current best value of 2.726 K [66]. This shows that the
+0.005 K uncertainty in t;he Far Infrared Absolute Spec-
trophotometer (FIRAS) measurement of the temperature
leads to a ( 1% change in the CI's.

Other massless species such as neutrinos affect the red-
shift of matter radiation equalit;y and hence the growth
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FIG. 3. (a) The angular power spectrum of CMB
anisotropies with varying number of neutrino species:
N = 2, 3, 4. (b) The ratio of C~ for N„= 2, 4 relative to
N„= 3.
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values Yj ——0.20 and Yj ——0.26. As can be seen, it is
necessary to include helium as a neutral component of
the universe in order to obtain accurate C~'s. We shall
now discuss to what extent the recombination history of
both hydrogen and helium affect anisotropies.

1.06
+He Recomb, "

1.08 I I I I I IIII I I I I IIIII I I I I I IIII

a(T) Fit / a(T)-T '~'

C. Recombination

Physical consi derati ons
1.02

The process of recombination would proceed via the
Saha equation (see, e.g. , [72]), except that recombina-
tions to the ground state are inhibited by the recombina-
tion process itself [73]. Thus recombination is controlled
by the population of the first excited state, and the phys-
ical processes which either populate or depopulate it in
the expanding Universe. This problem was first worked
out in detail in [74] and at about the same time in [75],
and by many authors since [76,77].

Solving the coupled ionization and matter tempera-
ture equations gives the evolution of the ionized frac-
tion x,(z):—n, /nH and the visibility function g(z)
e dr/dz, for Thomson scattering optical depth r. The
quantity g(z)dz is the fraction of the radiation that was
last scattered in a redshift interval dz. There are in gen-
eral two effects that the ionization history has on the C~'s.
The visibility function determines the epoch at which
fluctuations from the tight-coupling regime are frozen in.
The ionization &action x, (z) determines the breakdown
of tight coupling, i.e. , the photon diffusion length, which
is responsible for the damping of anisotropies. Thus the
detailed description of the ionization in the tails of the
visibility function is important: two ionization histories
with the same maximum and width for their visibility
functions will not in general lead to the same C~'s.

This is most clearly seen in the consideration of he-
lium recombination. One might naively expect it to have
a negligible effect on the C~'s because helium recombines
while the radiation and matter are still very tightly cou-
pled, at z 2500 for HeII and z 6000 for HeIII. How-
ever the diffusion damping length grows continuously and
is sensitive to the full thermal history. We find that in-
clusion of helium recombination afFects the second, third,
and fourth peaks at the 0.2, 0.4, and 1% levels, as shown
in Fig. 7. This is in good agreement with analytic es-
timates which interpret the effect as a decrease in pho-
ton diffusion during the epoch that helium was ionized.
Hence it is important to follow the recombination of the
helium in order to obtain accurate C~'s at the percent
level. (On the other hand, the effects of D, He, Li, etc. ,
are entirely negligible until the 10 level. ) Note that
because of atomic collisions, even after helium recombi-
nation, helium atoms are tightly coupled to the hydrogen
through collisions. Since they contribute to the inertia of
the photon-baryon fluid, helium atoms should therefore
be kept in the baryon evolution equations.

However, we found. that following He III~He II was not
entirely necessary, and furthermore that simple use of
the Saha equation for helium is as good as following the

I I I I I IIII I I I I I IIII I I I I I IIII I

10 100 1000

FIG. 7. The effect of different approximations for the
physics of recombination. The solid line shows the ratio of C&

using accurate values for the recombination coefficients n(T),
relative to a model using values which scale as T . The
dashed curve shows the extra effect on the C~'s of adding the
helium recombination.

2. Refinements of hydr ogen r ecombination

Since the recombination process is so crucial to both
the calculation and interpretation of CMB anisotropies,

helium atoms more fully. Treating helium in isolation
one finds that the HeII to HeI recombination is slower
than the Saha equation predicts [78] (though note that in
principle more levels are important than those followed
in this reference, and the energy gap between n = 2 and
the continuum is only 3 eI/' for HeII, so the recom-
bination would happen at z 1000 in contrast to the
results of [78—80]). However, there is a trace of neutral
hydrogen present even at redshifts z 2500, which can
absorb the helium Lyo. photons and prevent every helium
recombination photon from ionizing another helium [81].
We find that by z = 2500 the mean free time for a neutral
hydrogen atom to capture a helium Lya photon is many
orders of magnitude smaller than the Hubble time. The
extra energy imparted to the electron is rapidly shared
with the plasma, which is strongly enough coupled to
the photons at this redshift that the matter temperature
is unafFected. Thus direct recombination to the ground
state is possible for helium (in contrast with the case for
hydrogen) and the ionized fraction follows the Saha value
to a good approximation. We show the recombination
of the stages of helium and hydrogen t;ogether in Fig. 8
(specifically plotted for the standard CDM cosmological
parameters) .

It is worth noting that the framework in which the re-
combination calculation is done does not allow for the
inclusion of spatial information, i.e. , the effect of the in-
homogeneities on the recombination process (see, e.g. ,
[82]). However, this is a second-order efFect. In fact, it is
just like the Vishniac efFect (Sec. IV D 2), except at high
redshift when t;he baryons and photons are still tightly
coupled. Thus we expect it to be extremely small.
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FIG. 8. The recombination of the plasma for a model with
the parameters of standard CDM (i.e., 0 = 1, Aii = 0.05,
h = 0.5) and with Y& = 0.23. The quantity plotted on the y
axis is n /n~, which is unity when the hydrogen is totally ion-
ized, and is higher by an amount 2nH, /nH when the helium
is doubly ionized too.

FIG. 9. The effect on the C~'s of adopting the assump-
tion of simple Saha recombination (dashed), or an instanta-
neous recombination approximation (dotted), compared with
a more accurate recombination calculation.

and because much of the work on recombination consid-
ers new effects in isolation, we shall consider a range of
approximations and refinements to the hydrogen recom-
bination process. Recombination is a gradual process,
which must be followed in detail. The dotted line in
Fig. 9 shows the C~'s for a model with instantaneous re-
combination at the redshift where ~ = 1 in the standard
scenario (z 1125). The first level of approximation is
to use the Saha equation in an expanding universe, corre-
sponding to an exponential falloff in x . This is shown by
the dashed curve in Fig. 9, which is very similar to the
instantaneous case. The Saha approximation has long
been realized to be inadequate and most recent work has
followed, for example, the equations of [76]. However,
it has also been realized that following recombination to
even higher accuracy can be important [83] while impos-
ing little computational burden compared with evolving
the temperature anisotropies.

Further refinements to recombination will have much
smaller, but still potentially important effects. One vari-
ation involves following the kinetic temperature (T i)
of the electrons independently [84,74]. It turns out that
this has an effect only on the very late-time tail of the
visibility function, since the matter and radiation remain
coupled until z 200 (see Fig. 10). The effect on the
CI's is on the order of 0.1% and is thus negligible. On
the other hand, an exotic scenario involving energy in-
jection can change the matter temperature significantly
and can in principle be constrained through the damping
tail of the anisotropies.

Within these assumptions, the full differential equation
for the ionization fraction contains many terms in prin-
ciple, although most can be ignored. For example, the
extra terms (due to stimulated recombination, etc.) in-
cluded in [76] (or equivalently [85]) have negligible effect,
as can be seen in their comparison with the results of [74].
Although collisions are important for keeping the various

matter species in kinetic equilibrium, the collisional rates
for excitation and ionization are negligible at the relevant
densities and temperatures [78,79]. Radiative transfer ef-
fects in the Lyo. line are also negligible [86,87,77]. Fur-
thermore it was shown recently [88] that the standard
assumption of a quasistatic solution for the Lyo. profile
is good to at least 1 part in 10 . It has been suggested
[89] that the 2p and 2s states in hydrogen might not be
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FIG. 10. Hydrogen recombination. (a) Ionization history,
x (z), using the naive coefBcients o. T ~ (dotted) and more
accurate fitting functions (all of which are indistinguishable
from the dashed line). Also shown is the result of follow-
ing the kinetic temperature of the matter explicitly (solid).
The lowest dashed line has z,~ —+ oo, i.e., ignoring the effect
of the radiation on the background evolution. (b) Visibil-
ity functions [g(z) = e d7/dz] for the same recombination
approximations.
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expected to be in statistical equilibrium. This would in-
crease x by a small amount at low z, although with little
effect on the visibility function and the C~'s. However, it
is clear that the 2p and 28 states would be strongly cou-
pled by the electric fields of nearby atoms or ions at the
rapid collision rate during recombination [78,79]. Hence
this nonequilibrium efFect does not actually occur.

There is also a potential extra stimulated emission ef-

fect, pointed out by [90], caused by the nonequilibrium
between the excited states and the continuum. (These
authors perform a classical calculation of the recombina-
tion coefIicients, and do not include the Gaunt factors.
Among other things these factors take into account the
asymptotic state of the electron, which at low energies is
affected by the nuclear charge even at large distances. )
This would appear to have a measurable effect on the C~'s

through affecting the low z tail of the visibility function.
However, it would seem that such out of equilibrium con-
siderations can only be studied in detail by following the
populations of the levels in a hydrogen atom in detail [91].
We expect such effects to be potentially important at the
1 or 2 /0 level in the C~'s, but are unlikely to be larger.
We are led to the conclusion that at the present the major
real source of ambiguity comes from the assumed values
for the recombination rates, so we now discuss this in
more detail.

The single most important effect in obtaining accurate
power spectra is using the most accurate recombination
coeFicient o.. The specific coefIicient which is needed is
the sum of all direct recombinations excluding those to
the ground state, often denoted nii ("case B" recombi-
nation is when the Lyman lines are optically thick). Al-

though the rate to an individual level has o. oc T t, this
—1/2

is not at all true for the sum over many transitions (al-
though [74,76] and other authors have used this approx-

imation). A better approximation is that n~ oc T—3/4

(e.g. , [92]), but this is only good for T t, 10 K, which
is a much higher temperature than we are interested in.

There are better rates available in the literature, which
are accurate over a wide range of temperatures and even
have fitted functional forms, e.g. , [93]. Recently there has
been more work on obtaining the most accurate recombi-
nation rates. Currently the best are the values tabulated
by [94], giving a~ accurate to the fourth significant fig-
ure for temperatures all the way down to 10 K in steps
of 0.2 in logip T t There is also a fitting function given
by [95], which is accurate to ( 0.2%:

atb
o.~ ——10 cm s1+ cg"

approximation to nii of [20] or those of [96] or [93] give
essentially the same C~'s as these more accurate rates.

It is also worth updating other quantities relevant for
calculating the recombination. For example, the two-
photon rate from the 28 to 18 states has been recalculated
recently (e.g. , [97]), and is A2, ~i, ——8.22458 s i, in-
cluding the reduced mass correction. This improvement
however has an entirely negligible effect on the C~'s.

None of the standard references for recombination take
into account the earlier period of radiation domination.
This is important especially for low Oph models, since
the equality epoch does not occur very much earlier
than the recombination epoch. We found that assum-
ing the complete matter-dominated background evolu-
tion resulted in x, being systematically a few percent
lower (depending on the exact parameters), decreasing
the damping. This is because assuming z ~ ~ oo low-
ers the Hubble rate, meaning more recombination for a
given redshift. For an Op ——1 model the exact relation
H(z) = Hoa (a + a,q) ~ can be easily used.

D. Physical constant and other uncertainties

It is obviously also important to use the most accurate
available physical constants and parameters. One funda-
mental limitation to accuracy is set by the uncertainty in
the gravitational constant G, which will affect the overall
time scale. However, even this quantity is known to an
accuracy of 10 [98], and all other relevant numbers
are known much more precisely.

Compton scattering of protons is reduced by (m, /m„)
compared with the electrons, and is thus negligible. Rel-
ativistic corrections for Compton scattering off electrons
will be 10, even at redshifts 10 . There are how-
ever ambiguities O(m, /m„) in going &om O~ to n„al-
though again this is a small efFect.

Other particle physics effects could potentially influ-
ence the calculations. For example there could be non-
negligible interactions or velocities in the dark matter,
chemical potential, decays, or other extra physics in the
neutrino sector, strong primordial magnetic fields, etc.
However, it seems contrived for such efFects to play a role
at the percent level, without totally altering the picture
of structure formation.

IV. SUBDOMINANT ANISOTROP Y SOURCES

A. Neutrino Huctuations

where a = 4.309, 6 = —0.6166, c = 0.6703, d = 0.5300,
and t = T t/10 K. Although these rates are calculated
in the limit of zero density, it is apparent from the table
in [94] that for cosmological recombination the effect of
the electron density is never more than about 2'Fp, and
significantly less at the lower redshifts which are most
relevant. We show in Fig. 7 the efFect that including
the correct recombination rate, as opposed to a T
scaling, has on the C~'s. Notice that it can be several
percent over a wide range of scales. We find that the

Anisotropies may ofFer the first, albeit crude and in-
direct, probe of fluctuations in the neutrino background
through their gravitational feedback on the CMB (see
also Sec. III A). Evolving the temperature perturbations
in the neutrinos involves another "infinite" hierarchy of
l modes that must be solved. As a first approximation,
one might consider the neutrinos to be a perfect fluid
and truncate the hierarchy for l & 2, i.e. , consider only
the density and velocity (pressure) perturbations. This
approximation neglects the free-streaming damping and
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anisotropic stress contributions of the neutrinos. Both
feed back into the evolution of the perturbations in the
metric, and thus the temperature anisotropies in the pho-
tons [67]. In Fig. 11 we show that this induces an er-
ror of about 10%%uo. Since physically this dependence is
coming entirely from the neutrino monopole, dipole, and
quadrupole, it is evident that there is no need to keep the
hierarchy for I ) 2. However, free streaming monotoni-
cally transfers power to high l (a certain scale subtends
an angle on the sky which decreases with the distance
between source and observer) so naive truncation of the
hierarchy produces an artificial reflection of power to low
I's from the last I kept. This can be avoided by an appro-
priate choice of boundary conditions for the maximum I

mode of the neutrinos, using the analytic free-streaming
solution for the neutrinos, i.e. , the recurrence relations
among the spherical Bessel functions j~ may be used to
modify the coupling of the last I mode kept, once it en-
ters its oscillatory phase. This allows truncation of the
I hierarchy at very low I. While the phases of the last
I modes kept are not accurately preserved, there is no
reflection of power to lower I modes, thus the effect of
neutrino anisotropy on the C~ is correctly accounted for.
Furthermore, this boundary condition is also applicable
to the photon-Boltzmann equation during the oscillatory
phase. Using this boundary condition we do not have to
solve for the very high I modes which we are not inter-
ested in.

However, for completeness we also show in Fig. 12 the
present day anisotropy spectrum of the massless neutri-
nos. Although this spectrum is a clear prediction of the
standard hot big bang model, we do not expect it to be
tested in the near future. Despite the fact that there are
more than 300 background neutrinos per cm, they are
extremely low energy and therefore essentially impossible
to detect. And measuring fluctuations in the background
at the level of 10 will be somewhat harder. The spe-
cific calculation shown in the figure is for the parameters

20
Neutrino Spectrum

15

»~~»il i i iii~»l » iii~»l » iii»il
10 100 1000 104

FIG. 12. The spectrum of anisotropies for the background
neutrinos themselves in a standard CDM model. The ampli-
tude (i.e. , the value of AT/T) at small l is the same as for the
photon anisotropies. Scales which enter the horizon during
the radiation-dominated epoch have an add. itional integrated
Sachs-Wolfe contribution. The spectrum will be roughly Hat
until l 10 .

of standard CDM, with three species of light neutrinos.
Although plotted dimensionlessly, the large-angle ampli-
tude of the fluctuations is exactly the same as for the
photons. [This is true for AT /T, while AT, measured
in, e.g. , p,K, would be (4/11) ~ lower in each species. ]
At small I the anisotropies come from the familiar Sachs-
Wolfe effect from potential fluctuations. For the largest
I' s, there is an extra contribution from the integrated
Sachs-Wolfe effect, since potentials decay after they come
inside the horizon during radiation domination. This ef-
fect is the same for all suKciently small scales, with an
amplitude which is 25(l + —

s p /p~)
2 = 18 times

greater than at large scales. (This is the same size as
the extra kick that the photons get, as in Sec. IIIA,
except that there it refers to the oscillation amplitude. )
The characteristic scale of the step is I 500, which
corresponds to the angle subtended by the horizon size
at the epoch of matter-radiation equality. We are confi-
dent that we have fairly accurately traced the flattening
of the curve, but since it is computationally expensive
to run to very high I, we cannot be sure that all of the
structure is genuine. However, the small wiggles may
be attributable to the oscillating density of the photon-
baryon fluid, which is most important before equality.
Note that the roughly Rat l(l + 1)C~ does not continue
to infinite I (thus maintaining finite total power), since
there will be a cutoff corresponding to the diffusion-scale
at neutrino decoupling, I 10 .

10 100 1000

FIG. 11. The angular power spectrum calculated includ-
ing the neutrino anisotropy explicitly (solid) and treating the
neutrinos as a perfect Quid only, i.e., truncating the hierarchy
after l = 1 (dashed).

B. Polarization

Polarization is generated at the last scattering surface
by Compton scattering of anisotropic radiation because
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the Thomson cross section depends on angle as ~sy

where ey and e; are the final and initial polarization vec-
tors, respectively. Furthermore, polarization feeds back
into anisotropies. Averaging over incident and summing
over final polarizations leads to an angular dependence:
1+cos 0. Since the scattering of linearly polarized radi-
ation will in general have a different angular dependence
than this, the scattering term in the Boltzmann equation
for temperature perturbations will be modified by po-
larization. (A pedagogical treatment has recently been
given by [99], and an analytic treatment in [100]). More
specifically, the quadrupole moment of the temperature
distribution leads to linear polarization in the microwave
background (e.g. , [101,102]) and vice versa [16]. The pre-
cise level of the temperature anisotropies therefore is not
recovered by neglecting polarization (as has also recently
been emphasized by Bond and Steinhardt). In fact, po-
larization leads to an increased damping of anisotropies
[102].

The easiest way to see how polarization aKects temper-
ature perturbations is to (artificially) extend the tight-
coupling approximation through last scattering. Recall
that in the tight-coupling approximation only density
and velocity Quctuations are present (higher terms are
damped) and the matter and radiation behave as a Quid
described by density and pressure. Specifically any tern-
perature quadrupole is strongly damped. Since polariza-
.tion is a source of quadrupole anisotropies, this represents
a breakdown of tight coupling due to the generation of
viscosity [102]. The corresponding effective increase in
the photon "diffusion scale" leads to an increase in the
damping angle by 4—

5%%uo and an increasingly larger error
in C~ with /, due to the near exponential behavior of the
damping, as shown in Fig. 13. In low O~ models, as is
required by nucleosynthesis, the di8'usion scale is already
large at last scattering and. the additional efFect of polar-
ization leads to smaller anisotropies even near the first
peak.

The power spectrum of polarization anisotropies was
shown in the second panel of Fig. 1, for the SCDM model.
Note that in reionized scenarios the polarization can ex-
tend to much larger scales due to the increase in the
horizon scale at last scattering. It is also worth pointing
out that circular polarization is not generated through
scattering, unless there are large coherent magnetic fields
or other exotic phenomena. Finally, as a computational
note, if only the temperature feedback efFect is of inter-
est, the polarization evolution equations may be dropped
after last scattering with no loss of accuracy.

C. Gravity waves

I I I I I I I I I I I I I I I II

Tensor Spectrum

In addition to the scalar modes with which the previous
discussion has been involved, there is the possibility that
inQation excites tensor (i.e. , gravity wave) perturbations
as well [103]. Most of the points mentioned above ap-
ply also to the calculation of tensor perturbations. (Note
that vector perturbations only have decaying modes, and
so are unimportant if the fluctuations were generated in
the early universe. ) Early work on tensors and the CMB
was performed in [104—108]. There exist several semi-
analytic approximations of varying accuracy, the most
recent and accurate being due to [109]. To calculate the
tensor spectrum numerically one uses the formalism of
[110] as first worked out in detail in [58]. This leads
to another set of Boltzmann equations, independent of
those for the scalars, which follow the temperature and
polarization anisotropies of the tensors. The final result
is then C) ——C) + C) where the relative normal-(~ot) (S) (T)

ization of the tensor and scalar components depends on
the details of the perturbation generation scenario.

The tensor modes evolve completely independently

I I I I I IIII I I I I I IIII I I I I I IIII I I

0.8

Pol/No Po ~ 0.6

0.4

0.9— I I I I I I II

io 100

I IIII I I I I IIIII

i0 i00
I I I I I IIII ] I I

i000

FIG. 13. Polarization. The ratio of C~ for a standard CDM
model where polarization is explicitly followed, relative to a
calculation where it is neglected. Notice that the polariza-
tion anisotropy has a non-negligible feedback effect for the
temperature anisotropies.

FIG. 14. Gravity wave spectrum. l(l + 1)CI vs I for a liat
spectrum of tensor-generated anisotropies with the parame-
ters of the standard CDM model. In general this spectrum is
added incoherently to the scalar one (Fig. 1), with the rela-
tive amplitude determined by the specific inflationary model.
Since the tensor spectrum drops rapidly for I & 100 most
of the effects described in this paper are not important for
obtaining sufFiciently accurate calculations.
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the two models have r 15%, with x, = 1 out to z = 30
and x = 0.5 out to z = 48.

g. The Vishniac egect

In linear theory, fluctuations on scales smaller than
the width of the visibility functioxi ( 5 arc min in
standard recombination) are strongly damped. Refer-
ence [119]showed that there are second-order efFects for
which this is not true, due to the geometry of the can-
cellation process. One such second-order contribution,
coming &om a product of velocities and densities, domi-
nates over all others [17,18] and is known as the Vishniac
effect ([35], see also [120,36,121]). The contributions are
entirely negligible for standard recombination scenarios,
since second-order terms are necessarily small and baryon
velocities are suppressed by Silk damping. However, if
the Universe was reionized at some late epoch, infall into
CDM wells and the growth of fluctuations in the interven-
ing period allows for a significant contribution. Indeed,
the Vishniac contribution is so highly peaked toward late
times that Gunn-Peterson constraints require some con-
tribution &om this effect. For a fully ionized universe,
the Vishniac effect is larger than the primary signal cal-
culated here at l 3000 [44]. The effect itself peaks at
l 7000 and has l(l+ 1)C~ 0.025 (units of 6C2) at the
peak for a fully ionized, Cosmic Background Explorer
(COBE) normalized model and decreases only gradually
as the ionization redshift is lowered. Note that since the
Vishniac effect is second order, its amplitude relative to
primary anisotropies depends on the normalization em-
ployed.

8. The Bees-Sciama efl'ect

Even in an Oo ——1 universe, the nonlinear growth of
structure will cause time variations in the gravitational
potential which lead to anisotropies via gravitational red-
shifts [67]. Most studies of the magnitude of the efFect
(e.g. , [122—135]) have concentrated on analytic results for
single structures, and are therefore of limited use in ob-
taining accurate predictions for CDM-like models. Two
effects can be identified: one is due to the growth of the
potential during the photon transit time across the fluc-
tuation [136] and the other is due to a spatially varying
potential crossing the line of sight. By ray-tracing tech-
niques through N-body simulations of CDM, the two ef-
fects have been shown to be comparable in magnitude
and contribute to AT/T at the level of a few x10 (i.e. ,

0.01—0.1% in C~) at degree scales (l 200) [137]. It
is possible that the effect increases significantly toward
arcminute scales in some models as a result of nonlinear
evolution [138]. Recently however calculations based on
N-body results have shown that this effect only domi-
nates the primary fluctuation at l & 5000 for CDM [139].

The cluster Sunyaev Zel'dovich eQect

As pointed out by Sunyaev and Zel'dovich [140], clus-
ters can also induce anisotropies on the CMB from

Compton scattering ofF electrons in the hot cluster
medium. These hot electrons transfer energy to the mi-
crowave background, leading to temperature anisotropies
and spectral distortions in the CMB. Thus the tem-
perature fluctuation will not only have an angular but
also a frequency dependence, unlike primary sources of
anisotropies. A large amount of work has been done to
try to estimate the fluctuations caused by SZ fluctuations
(e.g. , [141—151]) with varying conclusions.

Recently [152] have employed an empirically based
model for clusters. They find that in the Rayleigh-Jeans
regime, where the Sunyaev-Zel'dovich effect leads to a
constant brightness decrement, the anisotropy at arcmin-
utes is on the order AT/T & 10 7. So we expect an efFect
on the Ct's of order &0.01—0.1% at l +1000. Moreover,
the signal is in large part due to bright and easily identi-
fiable clusters. If such known clusters are removed &om
the sample, the anisotropy drops to an entirely negligible
level.

Clusters can also provide anisotropies since their pe-
culiar velocity leads to a Doppler shift of the scattered
photons. This process leads to no spectral distortions to
first order and is of order AT/T r,v, /c for an individ-
ual cluster, where the optical depth through the cluster
is typically of order w 0.1—0.01 and its peculiar veloc-
ity is vp —500 1000 kms . Again there is hope that
the signal can be removed by identifying bright clusters
and perhaps even by first detecting the thermal efFect. In
any case the background fluctuations due to this efFect
are likely to be small [153].

5. Gt'agitational lenaing

Gravitational lensing processes the primary aniso-
tropies by redistributing power in l. The magnitude and
sense of the efFect is somewhat dependent on the model
for structure formation, including the assumptions for
nonlinear clustering. This has led to some seemingly in-
consistent results in the literature (e.g. , [154—165]). Re-
cently [166] has shown that for CDM, and indeed most
realistic scenarios of structure formation, the effect is
small on arcminute scales and above. Nonetheless, it
is comparable to some of the minor corrections consid-
ered here. Lensing smooths out the primary peaks on
the order of 5% at the third peak and becomes increas-
ingly important toward smaller scales. Note, however,
that since lensing conserves power, broadband measure-
ments of anisotropies would not be able to measure this
smoothing, unlike other efFects considered here.

8. Other scattering effects

The standard Boltzmann equation includes only
Thomson scattering as a source term. In principle, there
could be other scattering effects. If spectral distortions
are present, due perhaps to some energy injection into the
CMB, double Compton scattering, and bremsstrahlung
sources must be included and act to thermalize the dis-
tribution [167,168]. Rayleigh scattering off neutral hy-
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drogen is unlikely to be important except for A & 0.05
cm [10,169]. Similarly there could be efFects caused by
molecules. It has been pointed out that I iH can lead to
rescattering damping (analogous to reionization damp-
ing) of anisotropies in the Rayleigh-Jeans region. Thus
this efFect would have a distinguishable spectral signature
[170]. Due to uncertainties in the primordial Li abun-
dance and moreover the formation and survival of I iH,
its significance is unclear. As the authors note, the argu-
ment is best reversed: the CMB may be a sensitive probe
of high redshift molecule formation.

Scattering and. absorption by dust will also be an efFect
at the angular scale of galaxies and clusters (perhaps up
to a few arc minutes), but will generally have a distinctive
effect on the spectruin [171,147]. So the effects of extra-
galactic dust are unlikely to be important on the scales
relevant for the primary anisotropies, although they may
be the major source at arcsecond scales. Of curse there
are also potentially great complications caused by con-
fusing foreground sources in the Galaxy.

V. PHYSICAL APPROXIMATIONS AND
CALCULATIONAL TECHNIQUES

A. Gauge and initial conditions

Our calculations have been carried out using two en-
tirely independent Boltzmann codes. One of us (N.S.)
has developed a code which was written using variables
defined in the gauge-invariant formalism [172—174] in
the total matter rest frame representation. Another of
us (M.W. ) more recently wrote a code based on the
synchronous gauge [175—177]. Obviously, all observable
quantities, in particular the C~ s for l & 2 are gauge in-
dependent. Even for (I = 0) density and (/ = 1) velocity
perturbations, only superhorizon scale perturbations al-
low gauge ambiguity. However, there has been some con-
fusion in the literature about unphysical gauge modes
(see [178,63,64] for discussions), so it is not entirely obvi-
ous that calculations carried out in two different gauges
will agree perfectly, due to stimulation of such modes by
numerical errors.

Such concern is perhaps enhanced by the fact that ap-
parently different equations are evolved in each gauge
(see, e.g. , [20]) and involve difFerent numerical techiiiques
to ensure stability. In particular, the initial conditions
for density perturbations take on a simpler form in some
gauges than others, i.e., those defined with constant time
hypersurfaces that follow the total matter or CDM. Fur-
thermore, they must be established by a detailed balance
of component fluctuations that stimulates the growing
mode only, so that any gauge modes that exist are elimi-
nated. This is especially important for isocurvature con-
ditions where cancellation between component densities
exist in the initial conditions. In practice, this is achieved
by employing analytic solutions for the relevant gauge at
early times when the fluctuations are outside the horizon.

A first important test of the robustness of anisotropy
calculations is to demonstrate that two independent cal-
culations can reproduce the same results for exactly the

same input parameters. We found that when we tried to
ensure that the only difFerence between the two calcula-
tions was the choice of gauge and numerical techniques,
we could obtain results consistent to better than 0.5% in
power for the first three peaks, better than 1% in power
(0.5% in temperature) for t & 2000, and rising to a few
percent in the damping region. This level of agreement
was found to persist as improvements in our initial as-
sumptions were incorporated. A test of conformal New-
tonian versus synchronous gauge techniques can be found
in [20].

B. Tight coupling

Before the recombination process lowers the free-
electron density, the Compton scattering rate is suffi-
ciently rapid that the photons and baryons are tightly
coupled. This means that anisotropies in the photon
distribution cannot be generated and the infinite hier-
archy of I, modes may be replaced by a photon-baryon
fluid approximation (the inodes with I & 2 are expo-
nentially damped). Providing one switches from tight
coupling to explicit evolution early enough (z 7000, or
better, well before the photon diffusion length overtakes
the wavelength of the perturbation), and keeps higher
orders in the expansion in the Compton scattering tinie
(e.g. , [177]), one obtains identical Ci s with a significant
improvement in speed. By sacrificing some accuracy, the
semianalytic approach of [5] exploits this fact by keeping
a second-order tight;-coupling approximation all the way
through last scattering.

Note that even ignoring recombination, as is appro-
priate for early reionization scenarios, the tight-coupling
limit eventually breaks down due to the drop in the
free-electron density from the expansion. Thus, tight-
coupling approximations should not be used to calculate
reionized scenarios.

C. Free streaming

After last scattering, photons free stream to the
observer on null geodesics, projecting power in the
monopole and dipole at last scattering onto anisotropies
today. It would thus seem unnecessary to numerically
solve the whole hierarchy in l until the present. This
picture is complicated by the fact that photons still suf-
fer nontrivial effects of time-dependent gravitational red-
shift [67], often referred to as the integrated Sachs-Wolfe
(ISW) effect. In Fig. 17(a) we show the simplest ap-
proximation possible. Here we neglect the ISW contri-
butions and furthermore consider all contributions from
the rms ffuctuation to project as a monopole (pure inho-
mogeneity) at last scattering. This results in two types
of severe error. The ISW effect contributes strongly to
anisotropies near the first peak thus boosting the net
power in anisotropies. Furthermore, the presence of a
dipole due to the bulk motion of the photon-baryon fluid
at last scattering alters the projection due to the angular
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FIG. 18. Low pass filter smoothing of the C~ 's. Clockwise
from top left: (1) noisy spectrum due to "sparse" sampling in

A:; (2) Fourier transform power; (3) low pass filtered FFT; (4)
smoothed spectrum obtained by i'FT of (3). Note that this
figure is illustrative only. More complicated sampling of the
x axis allows better reconstruction of the high l peaks, as in
Fig. 1.

in &equency by a region near v = 100 where little power
exists. This separation corresponds to the gap between
the l to l variation of the noise and the size of the small-
est physical feature in the power spectrum. The bottom
right panel shows the low-pass filtered FFT. Bottom left
is the angular power spectrum obtained by FF transform-
ing the bottom right panel. Note that the noise has been
eKciently removed. Comparison with models in which
more k modes are run to remove the noise shows that it
is possible to recover the underlying spectrum to much
better than 0.5%. This plot is shown for pedagogical pur-
poses only, and is not the best possible smoothing. In
practice we sample the spectrum with diferent weight-
ings in l in order to recover the diferent parts of the
spectrum.

There are probably optimal ways of choosing the spac-
ing of the k modes in order to recover the most accurate
anisotropy spectrum with the minimum redundancy. We
have not investigated this fully, although somewhere be-
tween log k and k spacing seems to be best. Since to
obtain suKciently small k for the low l multipoles would
require many linearly spaced k's, it is better to change
the spacing from logarithmic to linear with increasing k.
Simple logarithmic spacing is also adequate. Similarly
there are better or worse ways of choosing the spacings to
use in the FFT (going from log 1 to l / or 1 works well),
and perhaps mere sophisticated methods of smoothing
which adequately preserve the structure in the C~'s for
the smallest number of k calculations. However, these
are not a serious consideration for the current level of
achievable accuracy.

Thus as long as sufficient k modes (usually 500)
are kept to ensure that the noise varies on scales smaller
than the real minimum-width features of the power spec-
trum, this results in accurate reconstruction of the un-

FIG. 19. A: range. We show the ratio of C~ difFerence to our
fiducial model (with A:rlo

——5000) for a set of calculations with
the highest k kept at 800—4500 (reading left to right). Plotted
(dashed) on top are the actual C'I's to show the position of
the damping and other features.

derlying power spectrum, as can be checked by increasing
the number of k modes evolved.

Of course, these k modes are chosen to span a range
corresponding to the desired angular limit of the calcula-
tion. The projection of spatial scales on the last scatter-
ing surface (or more generally at the epoch of anisotropy
generation) onto angles on the sky today, leads to a re-
lation between the maximum k mode of the calculation
and the maximum I| mode at which accurate values for
the anisotropy are required. We fi.nd it is necessary to
keep k up to 2l/go to get sufFicient accuracy, where go
is the present conformal time, which is 60006 Mpc for
Op = 1. The error made by truncating the calculation at
high k is shown in Fig. 19. Here we have calculated the
power spectrum using more and more k modes, compar-
ing the result to a calculation wh ch has a maximum k
of 0.8h Mpc

In summary, for full accuracy in the damping region, a
large range of k modes is required. However, these modes
are numerically very expensive to compute and such in-
vestment in computing time may not be worthwhile, since
extra physical efFects make the high-/ anisotropies uncer-
tain regardless.

E. Tilt

Since all k modes in linear theory evolve independently,
the evolved k-space power spectrum can be factored into
the initial power spectrum times a transfer function that
accounts for the evolution. The full transfer function for
the photons must of course be two dimensional to ac-
count for the angular power in l (see, e.g. , [6]). However,
since most of the eBect is a projection of a particular lin-
ear scale onto an angular scale, the transfer function is
nearly a one to one mapping between l's and k's for fluc-
tuations originating at a single epoch, e.g. , the last scat-
tering surface. It is thus possible to estimate the efFect
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FIG. 20. Tilt. The ratio of the C~'s using the tilt approx-
imation described in the text, to the exact calculation, for
n = 0.85, 0.9, 0.95. This approximation is adequate for com-
parison with today's experiments, but not accurate at the 1'Yo

level.

VI. CONCLUSIONS

Calculations of CMB anisotropies by numerical in-
tegration of coupled Boltzmann equations can be per-
formed with high precision. However, there is a great
deal of physics which goes into these calculations. We
have examined how different choices for these inputs can
afFect the accuracy of the calculations, endeavoring to be
as comprehensive as possible. Due to the angular depen-
dence of many of the physical efFects, as well as other
complexities, it is hard to provide a summary other than
through a series of plots.

However, some things are clearly crucial for accuracy

of varying n in an Oo ——1 universe by applying a trans-
fer function in / alone. In Fig. 20 we approximate tilt
by multiplying the Ci(n = 1) by the Sachs-Wolfe I' func-
tion formula, which approximately takes into account the
width in the l to k mapping [179]. This approximation
works at the & 5% level for n + 0.9. Multiplying the Ci
by l is only slightly worse. For cases where the ISW
term contributes significantly and anisotropy generation
is spread out significantly in time, these approximations
break down entirely. An alternative approach has been
discussed in [7] which works better for A models.

Note also that the effective slope n is not necessar-
ily constant over the relevant range of l: the [ln(k/kp)]
correction which occurs in some inflationary models de-
viates from an n = 0.945 (best fit) spectrum at the 2%
level over 3 orders of magnitude in k (or I). So even this
"minimal" departure from n = 1 may give an observable
effect. There is also the possibility of detecting some
more nontrivial deviation from power-law initial condi-
tions by measuring accurate C~'s.

at even the 10% level: proper inclusion of the neutrinos,
following the linear polarization, and not using a free-
streaming approximation. Uncertainties in the photon
temperature and helium fraction are less important, al-
though could affect the results to 1%. It is also worth
bearing in mind that predictions for specific models can
be uncertain at the 10% level if the values of Hp or B~h~
have reasonable levels of uncertainty.

The recombination process needs to be followed fairly
accurately, which is straightforward to do. The main
point here is to use accurate values for the hydrogen re-
combination rates. Helium recombination has a small but
non-negligible effect, and even relatively recent reioniza-
tion is likely to be significantly at the few percent level.

We have also discussed the tensor fluctuations, and
showed for the first time the predicted anisotropy power
spectrum for the neutrinos. There are a number of fur-
ther effects which can be thought of as processing the
primary anisotropy spectrum (lensing, time-varying po-
tentials, second-order fiuctuations, etc.) at small scales.
We have broadly surveyed the current status of work on
these topics. It seems clear that such effects are negligi-
ble at the first peak, but could rise to a few percent at

1000.
We verified that the numerical results are independent

of the choice of gauge. There are also some issues which
are of computational rather than physical interest. First,
it is adequate to follow only the monopole and dipole at
the earliest times (tight-coupling approximation). It is
also possible to employ a speci6c boundary condition to
the neutrino hierarchy, so that only a small number of
l's need to be evolved. Highly accurate results can be
obtained by calculating a relatively small number of A:

modes, which have a sensibly chosen range and separa-
tion. Careful smoothing then has to be done to recover
accurate C~'s. We also investigated some approximations
for obtaining results for tilted spectra, which are gener-
ally not adequate.

In this paper we have only considered one class of mod-
els, namely the standard cold dark matter model. Nev-
ertheless, we expect that the sizes of the efFects will be
fairly general so that the spirit of our conclusions will
apply to other models, e.g. , the inclusion of a cosmolog-
ical constant, open models, isocurvature fluctuations, or
cosmological defects. It is entirely possible that in such
models some of the effects we have talked about could be
either more or less important. However, one can carry
out such tests for any other specific class of theory, and
we hope that our results will be a guide to the kinds of
efFects which need to be considered if theorists are to per-
form calculations to the level of accuracy that the new
generation of experiments are demanding.

The potential power of future experiments is truly awe
inspiring. It will be possible in principle to measure all
Ci's up to I 500 to the cosmic variance limit (i.e. , accu-
racy 1/Ql). In practice it may be possible to achieve
close to this ideal, depending how restrictive foreground
contamination proves to be. The amount of information
coded in the C~'s is enormous. In order to obtain con-
straints on the standard cosmological parameters Oo, O~,
6, A, n, T/S, etc. , it will be necessary to consider in de-
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tail all of the effects discussed here. Moreover, there will
be the possibility of extracting information about more
subtle physical effects, e.g. , the number of relativistic
species, or the curvature of the primordial power spec-
trum. At the highest l's (where extracting foregrounds
may be the most difficult), there will be multiple, compli-
cated effects. It will be a great challenge to disentangle
the various physical processes out toward the damping
region, to get at the reionization history, the nonlinear
evolution, etc. We hope that our work here has been a
step towards obtaining anisotropy power spectra that are
accurate enough to enable us to be up to the task when
the next generation of data are available.
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