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Feasibility of observing mechanical effects of cosmological neutrinos
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We reexamine mechanical eKects of cosmological neutrinos, and the possibility of their detection.
Classical and quantum-mechanical results are derived for the mean force on a spherical target
mass due to neutrinos that are either extremely relativistic, nonrelativistic but unclustered, or
nonrelativistic and clustered; results are presented for Dirac and Majorana massive neutrinos. We
find that there is no O(Gs) mean force, in agreement with earlier calculations. In addition, we
demonstrate that there are fluctuating forces O(Gz), which are more important than the mean
force except on sufBciently long time scales that we evaluate case by case. Thus, Huctuations
may act as a source of noise for any experiment seeking to detect the small, mean force due to
background neutrinos even if all other sources of noise can be eliminated. In addition, we show that
the Huctuating forces on a pair of nearby targets due to background neutrinos should be correlated,
and that interference e8'ects can lead to a short-range "shadowing force" between targets even in a
perfectly isotropic background. Finally, the rates of phonon excitation both from the ground state
and for a state with nonzero preexisting excitation are computed.

PACS number(s): 95.30.Cq, 95.35.+d, 95.55.Vj, 98.70.Vc

I. INTRODUCTION

The discovery of the cosmic microwave background ra-
diation and its subsequent study have enabled cosmol-
ogists to model the evolution of the Universe from ex-
tremely early times to the present. The detected photons
have been streaming &eely since they decoupled &om the
rest of the cosmic plasma at a redshift z = 10 . Thus we
only have direct observational information on the state of
the Universe for temperatures T ( 0.3 eV. Any inferences
about the evolution of the Universe at earlier epochs rest
on additional, generally plausible physical assumptions
which can only be tested indirectly [1].

If unclustered low mass or massless cosmological neu-
trinos could be observed, cosmologists would gain invalu-
able knowledge about conditions in the Universe at much
higher redshifts, corresponding to T & 1 MeV. If clus-
tered massive neutrinos are a major constituent of galax-
ies or galaxy clusters, then their discovery would shed
light on the nature of cosmological dark matter. Unfor-
tunately, the cosmological neutrinos couple to ordinary
matter extremely weakly, rendering their detection ex-
ceptionally difBcult.

During the past 20 years or so, several authors have in-
vestigated the possibility that mechanical efFects of cos-
mological neutrinos on laboratory targets could be de-
tectable. Early papers suggested that cosmological neu-
trinos could exert forces O(Gp) on laboratory masses
[2—4], but these papers were later shown to be incorrect
[5—7] for reasons we review below. Subsequently, it was
suggested that steady O(G~2) forces could produce de-

tectable efFects in superconducting targets [4,8], but these
suggestions have also been criticized justly [5,9,10].

Here we reexamine the problem of mechanical forces
exerted by cosmological neutrinos on massive targets.
One of the pmposes of this paper is to investigate the
competition between fIuctuating and steady forces on a
detector. A classical argument sufEces to demonstrate
why there are no steady forces O(G~) due to the neu-
trino background and how fIuctuating forces with root-
mean-square (rms) amplitudes O(Gp) may arise. From
the viewpoint of the target mass, the interaction energy
with a sea of Dirac neutrinos is of order

U(x~, t) = d x p(x) [n (xd + x, t)
P y

—n„-(xg + x, t)],
where p(x) is the mass density and p, the mass per atom
of the target, and the integral is over the volume 'V of the
laboratory detector, which is centered at xd. If n„(x, t)
and n„-(x, t) are exactly uniform in space, then U(xd, t) is
translationally invariant, and there can be no O(G~) force
on the mass. According to Eq. (1.1), the time-averaged
O(Gp) force on the target vanishes if the mean values
of n„(x, t) and n„(x, t) are uniform-; this result may be
demonstrated both classically and quantum mechanically
[5-7].

Naturally occurring gradients in n„(x, t) and n-(x:, t)
are expected to be insignificant; moreover, there is
no known way to generate artificial density gradients
large enough to result in easily measurable steady forces
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= 0.12 cm (1.2)

and

39x10 s (m((T),
2.3 x 10 sm eVs (m )& T), (1.3)

where m = m (eV) eV. For clustered (hence nonrelativis-
tic) neutrinos, E„=m and p„= mo, where o—:10 o

is the neutrino velocity dispersion; thus, for clustered
neutrinos,

t = 2.0 x 10 [m(eV)o. s] cm

O(G~) [ll]. The largest naturally occurring steady forces
due to the neutrino background are O(G&).

Equation (1.1) also suggests that density fluctuations
in the neutrino (and antineutrino) background could
result in nonsteady forces that are characteristically
O(G~). Such forces would produce displacements of mas-
sive objects that are proportional to t ~ rather than
4, which would result &om constant acceleration. On
sufBciently long time scales, steady forces must always
produce larger displacements than nonsteady forces, but
it is possible that fluctuating forces are more important
on reasonable time scales for laboratory experiments. If
so, fluctuating forces could be either a boon or a nui-
sance: They may be more readily detectable than steady
forces, but also could simply provide an irreducible source
of noise, &ustrating the detection of steady forces. In
Sec. II, we give both classical and quantum-mechanical
results for the steady and fluctuating forces on a spherical
scatterer. In the nonrelativistic limit, we derive results
for both Dirac and Majorana neutrinos.

Neutrino density fluctuations should be correlated in
space and time, with a correlation length scale t = 1/p
and a correlation timescale r„= E„/p, where E and
p„are the characteristic neutrino energy and momen-
tum. For extremely relativistic background neutrinos,
E„=p = T, where T = 1..95 K is the temperature of
the background, whereas for nonrelativistic background
neutrinos E = m and p„= 1.95 K [12]; thus, for unclus-
tered neutrinos,

consider the motion of a pair of masses in Sec. III, where
we derive the two-point correlation function for spatial
displacements onto time scales along compared to w . In
Sec. III we also consider the effect that distortions of
the wave function of a plane wave neutrino by one mass
may have on the other. As we shall see, there is a kind
of shadowing force between the masses even if they are
immersed in a perfectly isotropic background.

Finally, it is interesting to consider whether or not ex-
citations of internal modes of a complex system by back-
ground neutrinos may occur at a sizable rate. In Sec. IV,
we calculate the rate of phonon production in an atomic
lattice by interactions with cosmological neutrinos. As
we shaQ see, the rate of single-phonon excitations &om
the ground state is miniscule for any given mode, al-

though the net rate of phonon production (that is, pro-
duction rate minus destruction rate) for an already ex-
cited solid may be larger.

A summary of the basic results of our paper and a dis-
cussion of their implications may be found in Sec. V. The
bottom line may be stated succinctly: We identify no new
and promising schemes for detecting cosmological neutri-
nos, but we may have found reasons for additional skep-
ticism among those who hope that these elusive particles
may someday be observed. In this section, we briefly
discuss the implications of the standard quantum limit
on displacement measurements for the prospects of de-
tecting mechanical e8'ects of cosmological neutrinos. We
do not discuss possible quantum nondemolition measure-
ments, except to note that the familiar treatments (in the
context, for example, of measuring small displacements
of target masses by gravitational waves) are not strictly
applicable, since they consider the limitations on deter-
mining the eÃects of classical forces on a quantum sys-
tem; forces exerted by the neutrino background cannot
be modeled in this way.

Throughout this paper, we adopt units in which h =
t" = k =— 1. However, on the occasion we give veloci-
ties in kms, temperatures in K, etc. , where doing so
is appropriate. We also convert all observationally inter-
esting quantities to conventional units; e.g. , time scales
are given in seconds, days, months, or years.

w„= 6.6 x 10 [m(eV)o s] s .

It is probably &uitless even to contemplate performing
meaningful measurements of exceptionally weak forces
on time scales as short as w„ in any of the above cases.
Thus we assume below that even given a heroic experi-
mental eÃort, the eR'ects of fluctuations in the neutrino
density would only be detectable on time scales &) 7 . (In
fact, the t ~ scaling of test mass displacements quoted
above is valid only if t &) v .) However, spatial correla-
tions in the otherwise stochastic motion of a pair of test
masses subject to the fluctuating forces exerted by cos-
mological neutrinos ought to be signi6cant on small, but
still macroscopic length scales. These correlations would
be no more difBcult to detect than the independent jit-
ter of a single mass, but no easier to detect either. We

II. STEADY AND NONSTEADY FORCES

A. Classical calculation

Consider a sphere of radius B within which neutrinos
experience a uniform potential V surrounded by a vac-
uum, where the potential vanishes. Focus first on neutri-
nos incident on the sphere with momentum p at any im-

pact parameter b relative to a path that cuts through the
center of the sphere. Upon entering the sphere, each neu-
trino is deflected by a radially directed (8-function) force.
As a result, the radially directed component of neu-
trino momentum is changed from p„= —p(1 —b~/R2) ~~2

(where b = ~b)) to

(2.1)

where, to all orders in V,
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2EV
p2

2EV —V
(2.2)

for a neutrino energy E = (p + m ) ~ . Only positive
values of Q are permitted classically; if V ) 0 (as it is,
for example, for neutrinos incident on ordinary matter),
then Q may be negative for small enough values of p„.
Requiring Q ) 0 is equivalent to

62 2EV —V
2 2 (2.3)p'

which constitutes a classical impact parameter limit. We
return to this point later in this subsection.

It is straightforward to use Eq. (2.1) and the continuity
of the nonradial neutrino momentum across the bound-
ary of the sphere to compute the classical path taken
by the neutrino within the sphere. Given this path, the
point at which the neutrino emerges from the sphere can
be determined easily. At this point, the neutrino ex-
periences a second deflection; overall, the net change in
neutrino momentum is

Qp 2b(1 —~q)(1 —b /R ) ~ [1+ (1 —b /R )(v q —1)]
p R[1+ (1 —b'/R~) (q —1)]

when Q is close to one, Eq. (2.4) reduces to

2p(l —v q) '(b'/R') (1 —b'/R')
1+ (1 —b2/R2) (q —1)

(2.4)

Ap 2b fb' b2 f b2 )
p R q R') (1 —~q) —2p

~

1 —
~
(1 —~q)' .

R2 ( R2) (2.5)

„4vrB E V2 dxx
d 2~ ~ ~~~ h

2 2 2 ~

~
3

d 64p ~ —p
p p 1 x2 (2.6)

Individual neutrinos passing through the sphere give it
sideways impulses oc 1 —~q = EV/p2, but these average
to zero for a uniform beam, which samples all impact
parameters equally [13]. The lowest-order mean force is
due to the parallel component of the impulse, which is
oc (1 —~q) E V /p, . Integrating Ap over impact
parameters gives (2: = b/R)

I

This integral diverges logarithmically in exactly the same
way as Eq. (2.6), and we have introduced an identical
impact parameter cutoff.

The mean force experienced by the sphere is found
by integrating Eq. (2.6) over the flux of incident neutri-
nos. We shall assume that V is independent of neutrino
momentum, which is correct for Dirac neutrinos and an-
tineutrinos. Let Nz be the occupation number for states
of momentum p; then, the mean force is

which diverges logarithmically at impact parameters
b/R —+ 1. Cutting ofF the integral at 1 —b/R = e, we
get

F d p Nz 1n(1/e) .
2~ s p'

For extremely relativistic neutrinos,

(2.10)

p' (2 7)

There are two possible choices for e. The first is the
classical cutofl' implicit in Eq. (2.3); i.e. , for V « 1, e

EV/p . The second is a quantum cutofF: On length scales
smaller than the de Broglie wavelength, 1/p, the wavelike
nature of the incident neutrino cannot be ignored. Thus
we get

EV/p, EVR/p &) 1 (classical),
1/pR, EVR/p « 1 (quantum) . (2.8)

The condition EVR/p « 1 is just the condition for valid-
ity of the Born approximation in a quantum-mechanical
calculation of the deflection. In all cases of interest, this
will be satisfied easily, and the quantum cutoff is the cor-
rect choice [14].

Fluctuations in the force experienced by a sphere bom-
barded by neutrinos will be determined by the mean-
square impulse imparted in a time t. In order to calculate
the fluctuations, we shall need (x = b/R)

f d b~Ap~
p o 1 x

4xB2E2V
In(1/e) . (2.9)p'

2vrR V s pF = d p Np In(1/~)—,2~ s p' (2.11)

whereas for nonrelativistic neutrinos

F d p —Nz ln(1/e) .
27r s p' (2.12)

p p p 'vp——V+
p p' p'

(2.13)

which is valid for ~v~ && 1, we find

In the last two equations, we have ignored Fermi sup-
pression, consistent with the spirit of a classical calcula-
tion. We include this effect, which is due to the nonzero
occupation of neutrino final states, in our quantum-
mechanical treatment [cf. Eq. (2.28)], although it turns
out to vanish for elastic scattering (see Sec. IIB1).

We are interested in neutrino distributions which are
isotropic in a frame of reference moving relative to the
deflecting sphere at a velocity —V. For both relativistic
and nonrelativistic neutrinos, the integrals are most eas-
ily done in the isotropic frame. Consider the relativistic
case first. Here it is easiest to use the Lorentz invariance
of d p/psand Nz to efFect the transformation; substitut-
ing in addition the relation
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F = — v dp'p'N ln(1/e) .
37l 0

(2.1.4)

vrR V T21n(RT)
18

For nonrelativistic neutrinos,

(2.15)

2~R2V m s, p' —poF = d p'N„, ln(]p' —po~R),
27r 3 O' —Po~

(2.16)
I

Substituting K~ = [exp(p/T) + 1] ~, the appropriate oc-
cupation number for background neutrinos, and approx-
imating ln(1/e) = ln(RT), we find

using the Born approximation for e, where po ——mv. We
can get a rough approximation to the integral by pulling
the logarithmic factor out of the integrand and replacing
it by a typical value lnA; doing so gives

B2V2mln A po
dpp Np .

po p
(2.17)

It is straightforward to verify from Eq. (2.16) directly
that Eq. (2.17) is a good approximation when po is either
large or small compared to p, a typical neutrino momen-
tum in the isotropic kame, provided that we choose A

poB when po )) p and A pB when po && p. For unclus-
tered, nonrelativistic neutrinos, N„= [exp(p/T) + 1]
just as for relativistic neutrinos, and we find

R V T min A pg "'~ dzx —[R2V2m2 ln(RT)/6m]v (m && T/v),
—[3I,'(3)R V T 1n(mvR)/2mmv ]v (m )) T/v), (2.18)

NOR2V m OlnA 6. v
D v

~vs (~2 )
(2.&9)

using v = 370 kms ~, T/v = 0.14 eV [15]. For clus-
tered neutrinos, let us adopt N„= No exp( —p2/2m2o2)
and assume a mean neutrino velocity v relative to the
laboratory (with v = ]v]). We then find

dp2 4mR V2m dsp
N~ln 1 e

dt (27r)s p

4vrB V2mlnA 3 I N„
(2~)'

(2.23)

where

4~(z) = —v2ze ' + /7r/2erf(z)

for nonrelativistic neutrinos, where A poB for po ))
p and A pB for po && p. For unclustered massive
neutrinos, Eq. (2.23) gives

2~2z'/3 (z && 1),
O.5359 (z = i),
g~/2 (z && l) .

(2.2o)

dp 7rR V T min(RT)/6 (m « T/v),
3I,'(3)R2V T 1n(mvR)/harv (m &) T/v),

(2.24)

(2.2i)

where we have ignored Fermi suppression once
again in this classical calculation of the fluctuations
[cf. Eq. (2.29)]. Equation (2.21) becomes

d p N~ ln(l/e)

3((3)R2V Ts ln(RT) (2.22)

for extremely relativistic neutrinos and

Practically speaking, we expect v/~20 = 1 for neutrinos
clustered in the galactic halo and v/~2cr 1 for neutri-
nos in the local supercluster. Thus, in all cases, we may
choose A mcrR mvB for clustered neutrinos.

In more or less the same fashion, the growth rate of
momentum fluctuations, dp2/dt, may be evaluated by in-
tegrating Eq. (2.9) over the flux of incident neutrinos; we
find

and, for clustered massive neutrinos,

dp2 NcjR V mso lnA ( v

dt v 20)

where A mvR mfTB.
Implicit in a classical derivation of forces exerted

on a target sphere by background neutrinos is the as-
sumption that the typical neutrino momentum p„
1/R. Since both F and dp /dt increase oc R ln(p R),
the acceleration of the sphere decreases with radius
oc R ~ln(p„R) and its variance decreases even more
rapidly, oc R ln(p„R) . Ultimately, mechanical mea-
surements of weak forces involve determining accelera-
tions of test masses; the classical arguments given above
suggest that smaller masses are subject to larger accel-
erations. For very small target masses R & 1/p„, the
classical arguments are no longer valid, and a quantum-
mechanical treatment is needed to evaluate the test par-
ticle motion. As we shall see, both F and dp2/dt increase
with size for R & p, and the acceleration and its vari-
ance peak at B p
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B. Quantum-mechanical treatment:
Born approximation

assuming an unpolarized target, p(x) is the mass density,
and p, = Am„ is the mass per atom of the target. The
vector coupling constant

The Lagrangian density for the interaction of neutrinos
with a classical source is [16] (3Z —A)/2 for v, ,

(Z —A)/2 for v„and v (2.27)

j (x)vga(1+ ps)v,
2

(2.26)

where, in the rest frame of the source, jo(x) = C&p(x)/p,
I

where Z is the number of protons or electrons per particle
in the target [17]. Using this model for the interaction of
neutrinos with the target mass, we find

~(Ef E')(P' Pf)IWv(IP' —PflR)l'Nx;(1 —Nx ~)G (P' Pf) (2.28)

and

b(Ey —Ei)(p' —py) )Wv((p' —py(R)( Np;(1 —Npq)G (p' py) (2.29)

where M = 4vrpR /3 is the mass of the (uniformly dense) target,

3' (sin z —z cos z)
Z3

(2.30)

N&,. and Np& are initial and final state occupation numbers, and

p;pf + p, py (Majorana and extremely relativistic Dirac),
m /2 (nonrelativistic Dirac) . (2.31)

Note that in the nonrelativistic limit, F and dp2/dt will not be strictly zero for scattering of Majorana particles by
an unpolarized target, but will be smaller than their values for Dirac particles by a factor p2/m2. For scattering of
nonrelativistic Majorana neutrinos by a polarized target of mean electron spin (s,), we can use the results derived below
for scattering of nonrelativistic Dirac neutrinos by an unpolarized target if we make the substitution C&~ ~ Z2(s, )]2.

1. Mean force

The correction for Fermi suppression vanishes for the mean force F; this may be seen most easily by noting that the
terms responsible for Fermi suppression in the integrand of Eq. (2.28) are antisymmetric upon interchange of initial
and final states. We then find

2p
F = ™d p N~ dqq W (qR)G(p q), (2.32)

where

2p —q /2 (Majorana and extremely relativistic Dirac
m~/2 (nonrelativistic Dirac) . (2.33)

For large R, the inner integral is approximately
2R 4G(p, 0) ln(2pR), and we find

F = d p N~G(p, 0) ln(2pR) . (2.34)

Equation (2.34) is equivalent to Eqs. (2.11) and (2.12)
for Dirac neutrinos if we identify

which are the same as the well-known results derived
&om forward scattering amplitudes, as they should be,
since scattering &om a large target is dominated by mo-
mentum transfers R, which is small. These substi-
tutions are not valid, of course, for Majorana neutrinos.

Analytic results for the mean force may be found in
various limits. In general, the accelerations due to Dirac
neutrinos are of the form

G~Ci p~2/p (relativistic Dirac),
Gy Cv p/i/2p, (nonrelativistic Dirac), (2.35) G2 C2~ vPS„S (R),p2V2

(2.36)
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where S = n„v is the neutrino flux (with n„ the neu-
trino number density), v„ is the typical neutrino speed,
R = p„R, and P~(R) R for R ( 1 and PD(R)
R lnR for R ) 1; for Majorana neutrinos, the acceler-
ation is always of the form

nonrotating halo. It is easy to extend the calculations
to any value of v/a. Table I summarizes the appropri-
ate choices for v„, E„, and p„ for the various cases, and
Table II evaluates the characteristic acceleration, that
is, the magnitude of the factor multiplying XD(R) or

XM (R), whichever is appropriate.

a = S„PM(R), (2.37)

2. E/uctuations
where XM(R) has limiting behavior similar to WD(R).
The peak acceleration is at R 1 or R p„

The solid lines in Figs. 1—4 show the results of evalu-
ating X~(R), and the solid lines in Figs. 5—7 show the
results of evaluating XM(R) directly &om Eq. (2.32).
For clustered Dirac or Majorana neutrinos, we have only
evaluated the integrals for v = ~2cr, which would be
appropriate for neutrinos clustered in the galaxy in a

Fluctuating forces may be evaluated from Eq. (2.29) in
much the same fashion as the mean forces were evaluated
from Eq. (2.28). Although the correction for Fermi sup-
pression in dp /dt does not vanish in general, as it did in
the evaluation of F, it is only signi6cant when the mag-
nitude of the mean neutrino momentum, E„v, is ( p,
the characteristic neutrino momentum in the isotropic
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(2.41)

which means that the average work done on an ensemble
of identical target masses is zero. It is straightforward
to verify that Eq. (2.41) is indeed satisfied for either ex-
tremely relativistic neutrinos or clustered neutrinos (with
T = mo ). (In general, vqi, (( v„, and so the low-velocity
limit must be employed to verify this result for clustered
neutrinos. ) Strict thermal equilibrium can never be at-
tained by &ee target masses interacting with unclustered
massive neutrinos, which are well out of thermal equilib-
rium themselves. In any case, thermal equilibrium with
the neutrino background is of no practical importance
for two reasons. First, the relaxation time scale tqh for
a &ee target mass in empty space is enormously long:
For R 1, tqh p v /n„G&C&p for Dirac neutrinos

and a factor v longer for Majorana neutrinos; nu-

merically, tgh 10 yr for extremely relativistic neu-
trinos, t&h 10 yr for clustered Dirac neutrinos, and
tgh 10 yr for clustered Majorana neutrinos. Second,
target masses in the laboratory are not &ee and are con-
strained to move with the Earth through the background
neutrinos at a typical speed 10 c.

C. Mean forces vs Huctuations

Consider an ideal experiment in which all sources of ac-
celeration except forces due to the neutrino background
have been eliminated. Then, in a time interval t, the
mean force acting on a target mass produces a directed
momentum Ft, and the Buctuating forces acting on it
produce a randomly oriented momentum of typical mag-

10
I I I I I I II I I I IE

10

310
Majorana, unclustered

mv/T»1

10

10

10

10

FIG. 6. Analogue of Fig. 3, but for Majo-
rana neutrinos.
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FIG. 7. Analogue of Fig. 4, but for Majo-
rana neutrinos.
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nitude gt dp2/dt. Clearly, the Huctuations are more im-
portant at early times, and the mean force is more im-
portant at late times. The critical time t at which the
integrated impulses have the same order of magnitude is

dp'/dt
F (2.42)

An experiment expressly designed to pick out the di-
rected force due to the neutrino background must run
for a time & (S/N) t in order to distinguish the signal
due to F &om the noise due to dp2/dtat a level S'/¹
For Dirac neutrinos,

E2p2~5 2

G2 C2 p2n„~v~2
(2.43)

where 7D(R) = Q~(R)/XD(R), and for Majorana neu-
trinos,

J V~@
4 2

(2.44)

where 7M(R) = Q~(R)/X~(R); generally speaking, t,
is a factor v 2 longer for Majorana neutrinos than it

is for Dirac neutrinos. The dotted lines in Figs. 1—7 show
the results of evaluating 7D(R) and 7M(R). The charac-

@a

teristic time scale t, can be surprisingly long. At B~ 1,
where accelerations are largest, we 6nd t days for un-
clustered Dirac neutrinos with mv/T 1, t months
for Dirac neutrinos clustered in the galaxy, t 104
yr for unclustered Majorana neutrinos with mv/T 1,
t, 10 yr for Majorana neutrinos clustered in the
galaxy, and t 10 yr for extremely relativistic neu-
trinos.

Undeniably, the detection of dynamical effects due to
neutrinos or any other cosmological background would
be facilitated by a foreknowledge of the direction of the
force exerted and of its time dependence. For unclus-
tered neutrinos, the direction of F is set by the direction
of motion of the Earth relative to the cosmic microwave
background. The direction of our peculiar velocity varies
in the course of a year and is relatively well known. The
direction of our relative motion with respect to neutri-
nos clustered in the galactic halo or local supercluster
is less well known, but should also vary over the course
of a year. The fluctuating forces should not vary sys-
tematically with time to the same extent, although the
Huctuation tensor d(p;p')/dt ought to re8ect, to varying
degrees in the different cases, a preferred axis along v.

TABLE I. Energies, momenta, and speeds.

Case
Relativistic
Dirac, unclustered
Dirac, unclustered
Dirac, clustered
Majorana, unclustered
Majorana, unclustered
Majorana, clustered

T=1.95 K
m ((T/v
m)) T/v

m = 10mio eV
m ((T/v
m)) T/v

m = 10m'() eV

pv
T=195K
T= 195 K

mar
T= 1.95 K

mv

vv

1
T/m

v=10 v 3

o =10 o.

T/m
v=10 v
cr = 10 o.

T=(4/11) I x2.73K.
Solar system speed through cosmic microwave background is v 370 kms 1.2 x 10
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TABLE II. Characteristic accelerations, Buctuations, and time scales.

Case
Relativistic
Dirac, unclustered~

(mv/T « 1)
Dirac, unclustered

( v/T » 1)
Dirac, clustered
Majorana, unclustered

(mv/T « 1)
Majorana, unclustered

(mv/T » 1)
Majorana, clustered

Acceleration '

(a„/v )m

a„/v

ac&

Fluctuation"

(f„/v)m

(f„/v)m

v/m

f„vm

Time scale"

t„v /m'

t„v'm4

tc
t v/m

t„vm4

a„= 1.4 x 10 cm s (Cv pv s/p ), where p is in g cm
a~ = 9.2 x 10 cms (Cvpp„, o.o]v s/p, a 3mzo), where p„= 0.01Moo pc p~, o.o'j.

f, = (2.5 x 10 ) cm s (Cvm~og op, o.oi/p ).
't = 4.1 x 10' s (p /Cvp v 3).
t, = 7.7 x 10 s (moog —3p, /Cvp p, o.o~v 3).

sm = mv/T = mv o/0. 17 eV.

When fluctuations are more important than mean forces,
the already dificult task of uncovering the tiny effects of
cosmological neutrinos could be still harder than previ-
ously thought.

D. Classical vs quantum

Even though the classical and Born approximation re-
sults for F and dp /dt are identical for Dirac neutrinos
interacting with large targets, the nature of the interac-
tion is difFerent in the two limits. Classically, the im-
pulses given to the target result from a particle influx
at a rate mB n„v; each incident neutrino gives the
target an impulse determined precisely by its impact pa-
rameter b. Because b is distributed uniformly over the
projected area of the target, the distribution of impulses
per neutrino with incident momentum p has a rms value
Ap, ~, G~Cvp/pv„and a mean value of magnitude
lApl (Ap, ,) /p„oriented along p„. On the other
hand, in the Born approximation, the target presents a
cross section much smaller than vrR to incident neutri-
nos; the interaction rate is

G~Cv M dsp; dspf
p2(2x)s E E

x(lp' —pf IR)G-(p' pf) ~(Ef E ) ~ (2.45)

For a large target, Eq. (2.45) implies I'„
(Gy Cv pR/pv„) vrR n„v, which is far lower than the
classical interaction rate when the Born approximation
is valid. However, the rms and mean momentum trans-
fers are correspondingly larger: Ap, , 1/R at large R,
with lApl (bp, ~,)2/p„as before.

The classical interaction rate is approached for either
very large targets or exceptionally well-localized inci-

dent neutrinos. For Dirac neutrinos, "very large targets"
means G~C~pR/pv„) 1 or R ) 4000(pv /Cvp) km,
which is huge by laboratory standards even for clustered
neutrinos, with v 10 [19]. "Well-localized" neu-
trinos must have wave functions with a spatial spread
Ax (( B and a momentum spread Lp &( p upon enter-
ing the target. It is obviously impossible to satisfy both
conditions for small targets (R & p„~). In principle, neu-
trino localization could play a role for larger targets, but
in practice this will not be so. To see why, let us con-
sider the spreading of a wave packet freely propagating
from neutrino decoupling. Concentrate on unclustered
neutrinos; for clustered neutrinos, the overall spreading
will be larger still. The comoving extent Ax of a wave
packet with comoving momentum spread Ak about a
mean value k evolves according to

d+x k +k~/a + m &k/a
dt (k'/a'+ m~)'/' (2.46)

where b,k~ = Ek —kk. Ek and a(t) is the cosmological
scale factor, which is de6ned to be one at the present
time. Assuming that Ak~ g 0, most of the growth of
Ax occurs while the neutrinos are still relativistic [since
the right-hand side (RHS) of Eq. (2.46) is Ak~/ka
for k/a )) m and Ak/ma for k/a « m], and for
neutrinos that are nonrelativistic today, we estimate

AktLx —Lxg ~
a

(2.47)

where t is the age of the Universe when k/a = m,
g, = g, (t ), and ~x~ is the spatial extent of the wave
packet at neutrino decoupling. [For neutrinos that are
stall relativ~stzc today, replace Ak by Ak~, t by to, and
a by 1 in Eq. (2.47).] Since lAxgl lAkl, Eq. (2.47)
implies that the minimum lAxj is of order
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f t ) f t ) ~2 y/4 ~ (T/ma, ~) if T/ma, „)1,
(T/ma, ~) / if T/ma, q & 1, (2.48)

where 00 is the cosmological closure parameter, ho is
the Hubble constant in units of 100 km s Mpc and
a,o 4 x 10 (Aoho) is the scale factor when non-
relativistic and relativistic energy densities were equal in
standard cosmology; thus, T/a, ~ = 40oho eV. For neutri-
nos that are still relativistic today, the minimum spread
is orthogonal to k and of order

«o& (to 1
«/2 1/2

—10 no
«3 -«/2

ikr &T)
(2.49)

(2.50)

for Dirac neutrinos and

where to 10 ho yr is the present age of the Universe.
These minimum values of ~Ax~ show that localization of
cosmological neutrinos cannot be relevant on the scale of
laboratory experiments.

For sufBciently long times t, I' t )) 1, enough collisions
between cosmological neutrinos and the target mass have
occurred that the distribution of cumulative impulses
given to the probe is approximately Gaussian with a
mean Ft and a variance t dp /dt At tim.es t ) (S/N)2t„
the Gaussian becomes sharply peaked, with a mean value
a factor S/% larger than its width. This general sequence
of events is plausible as long as I'„t, & 1 (and preferably
I'„t )) 1 for the central limit theorem to hold rigorously
on time scales t, ) It is stra. ightforward to evaluate I „
numerically; we rewrite Eq. (2.45) as

E. Other geoxnetries

Throughout this section, we have assumed that the
laboratory target mass is spherical. We have done so
mainly as a matter of convenience: The resulting expres-
sions for F, dp /dt, and I depend on the size of the
detector only through a single parameter, R = pB. It is
easy to recover Born approximations to these quantities
for detectors of arbitrary shape by replacing the vector
form factor for a sphere, Wv. (~p; —py~), introduced in
Eqs. (2.28) and (2.29) by the more general

Wv(p; —pt) = |v d r e' ~'—
M (2.53)

where the integral is over the target volume V; indeed, it
is also easy to include nonuniform target density profiles
in Eq. (2.53). For example, if the scatterer is a uniformly
dense rectangular solid whose sides have lengths L«, L2,
and L3, then it is easy to see that

I

get scattering rates of order one per day, detectors with
R 1 may be used for either clustered Dirac neutrinos
or unclustered Dirac neutrinos with mv/T 1, detectors
with B 50 must be used for either clustered Majorana
neutrinos [B= 0.02R/m(eV)cr s cm] or unclustered Ma-
jorana neutrinos with mv/T 1 (R = 0.12RT/mv cm),
and detectors with B 10 must be used for extremely
relativistic neutrinos (R = 0.12R cm).

G2 Q2 2~

P EvP„
(2.51)

sin[(p, —pf )L /2]

( — )L /2cx= 1)2q3

for Majorana neutrinos. In both cases (n = D or M)

I'.t. =
i

"
i

7Z (R)7 (R);vv) (2.52)

the dot-dashed lines in Figs. 1—7 show 7Z (R)7 (R) as
a function of R, and Table III lists values at selected R.
At small R, 7Z (R)7 (R) = const, whereas at large R,
7Z (R)7 (R) R / lnR (in the Born approximation).
Even for R 1, I'„t, & 10 (except for unclustered neu-
trinos with mv/T )) 1); I „t, )) 1 even for moderately
large targets (e.g. , R & 10). Typical scattering rates
at R 1 are I'„(days) ~ for unclustered Dirac neu-
trinos with mv/T 1, I' (days) ~ for Dirac neu-
trinos clustered in the galaxy, I (10 yr) for un-
clustered Majorana neutrinos with mv/T 1, I' (10
ys) ~ for Majorana neutrinos clustered in the galaxy, and
I' (10 yr) ~ for extremely relativistic neutrinos. Ob-
viously, these time scales are too long for practical de-
tection schemes except for clustered Dirac neutrinos or
unclustered Dirac neutrinos with mv/T 1. For tar-

(2.54)

TABLE III. Selected values of 'Ro(R)7n(R) and
74M (R)7M (R).

Case
Relativistic
Dirac, unclustered

(mv/T « 1)
Dirac, unclustered

(mv/T )) 1)
Dirac, clustered
Majorana, unclustered

(mv/T « 1)
Majorana, unclustered

(mv/T » 1)
Majorana, clustered

R = 0.01
0.866
22.0

2.00

8.73
31.3

3.00

11.2

B= 1.0
10.0
55.7

2.33

23.9
1.43 x 10

32.5

B= 100
2.94 x 10
7.26 x 10

3.59 x 10

5.42 x 10
3.33 x 10'

3.95 x 10

7.63 x 10

Obviously, the evaluation of steady and nonsteady forces
is more complicated in rectangular geometry than in
spherical geometry, since the extent of the source in each
of three dimensions may dier from the other two, and
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the final results will depend, in general, on L z, L 2, and L 3
separately. For comparable dimensions L~ L2 L3,
we expect our spherical results to be adequate within ge-
ometrical factors 1. We can recover the oft-studied
[6—8,10,11] "slab geometry" by assuming that two of the
lengths, say, Lz and L2, far exceed the third, say, L3, and
are also much larger than typical values of the neutrino
momentum in the 1,2 plane [20]. In this limit, it is easily
shown that F, dp3/dt, and I' are all proportional to the
slab area, A = LqI2. Thus the characteristic time scale
for the signal due to F to exceed the noise due to dp2/dt
is proportional to 1/A and may be small. Note that this
behavior is not unlike the (R lnR) i scaling obeyed by
t for spheres with large B.

For clustered Dirac neutrinos, we find

XD (L, v) = L(,) i
+ dx x sin (xL)

exp[—
2 (z —v) ]

and

(2.57)

(2.58)

Figure 8 shows the results of numerical evaluation of
Eqs. (2.55) and (2.56) for v3 ——~2(T. Note that at small

values of L3, X~ (Ls, vs/rr) L3, and gD (L3 v3/0)
const and that at large values of I3, XD (L3 v3/cr)

(8)

L3 lnL3, and g~ (L3, v3/0) . I3 lnL3.

and

G2 C2 "&"(L / )
P 0

(2.55)
III. CORRELATED MOTIONS OF A PAIR OF

TARGET MASSES

A. Two-point correction function for accelerations

dv 2G~Cir p„m(T (,)
t p,

D 3) 3 ) (2.56)

where L3 = maL3, v3 ——e3 . v is the component of the
mean neutrino velocity v along e3,

Let us consider a simplified model for the interaction
of either extremely relativistic or nonrelativistic Dirac
neutrinos with a pair of targets i = 1, 2. If (t);(x, t) is the
field operator that destroys target i centered at position
x, and Q„(x, t) is the analogous neutrino operator, the
Hamiltonian is

2

EI=Hj+) jd~ :,,d' dtx(x xt)d);(xt)U;(x —, x') d)( txt) (dx', t),
i=1

where Hf„, is the Hamiltonian for the free fields and U;(x —x ) is only nonzero inside the volume occupied by target
i It is s.traightforward to find the time evolution equations for (t;(x) and @„(x)from Eq. (3.1), and it follows that
the force experienced by target i is the expectation value of the operator

(3.2)

I I I I I I I li I I I I I I I I I I I I I

Dirac, clustered

slab geometry
1/avg=2 cT

FIG. 8. Dimensionless acceleration
(Ls, v/cr) (solid line) and Suctuation

Qr) (I3, v/o ) (dashed line) for slab geometry,
assuming v/cr = ~2.

.01

.001
.01

I I I I I I III I I I I I I III
1

ma L3
10

I 0 I I I I I I

100



52 FEASIBILITY OF OBSERVING MECHANICAL EFFECTS OF. . . 5471

From Eq. (3.2) we deduce that F; = (F;) = 0 for a
uniform gas of neutrinos to 6rst order in the interaction
potential, as we have seen in Sec. II, just as was shown by
Cabibbo and Maiani [6] for a similar interaction Hamilto-
nian and in a time-average sense by Langacker, Leveille,
and Sheixnan [5]. The lowest-order nonzero F, is due to
perturbations of the neutrino wave functions by the tar-
gets themselves. It is suKcient to employ unperturbed
states for the targets, which we henceforth take to be well
localized at positions x;.

The steady accelerations of target masses by back-
ground neutrinos are extremely small; moreover, fluctu-

ating accelerations could dominate on reasonable labo-
ratory time scales. For a single-target mass, the fluctu-
ations constitute an irreducible source of noise, present
even if all other sources of random impulses have been
eliminated. We expect, though, that the fluctuating ac-
celerations of a pair of nearby masses should be correlated
with one another, with a correlation length scale p„
(The steady accelerations, which point in the same direc-
tion, are obviously correlated. ) These correlations could
facilitate detection of the fluctuating accelerations.

The two-point correlation function for the force is the
expectation value of the operator

2

Fi2 =, . d xi d xz(C(xi +»i, tl', »2+»2t t2))
Xi Z2

(3.3)

where (0) (for any operator D) is computed in the neutrino background; the density fluctuation (C(2:i,x2)) is
computed in the Appendix. Introducing Fourier transforms, we And, for a pair of inequivalent spherical targets,

(gi'2) O'G~Cv, iCv, 2
d qd 0 q W(qadi)W(qB2)[e'(

' )n (q, fT) + e '(~ ln (—q, —o')],
MqM2 PqP2

(3.4)

where x—:xi —x2 and t = ti —t2, n (q, 0) is given by Eq. (A6), and ( = v 2 for extremely relativistic neutrinos
and ( = 1/~2 for nonrelativistic Dirac neutrinos. If t is large compared to the correlation time scale for density
fluctuations in the neutrino background, we can replace n2 (kq, ja) with n2(kq, 0) in the integral; we then find that
the correlation function for a pair of targets is approximately

—8(tl t2)a12(»1 »2)(&i2)
MgM2

(3.5)

where

vr 2G2C C
eee(x) = ' ' f d qq W(qfte)qf(qfte)(e'e "ee (q0) +e ''e'"n (tt 0)] .

P1P2
(3.6)

A semiclassical, heuristic argument may also be used
to derive Eq. (3.6) and suggests its generalization to Ma-
jorana neutrinos. Let

SF(x;, t) = Cv; d x f(»;+x, t)2 ~(»)
pi

(3.7)

be the fluctuating force on mass i centered at position
w;. Introduce the Fourier decomposition

time scales long compared to the correlation time of den-
sity fluctuations in the neutrino background, we may ap-
proximate

(f(q', t') . f(q, t)) = b" (q+ q')~( —t')f'(q) (3 )

and so the correlation function for the fluctuating accel-
erations of a pair of masses (1,2) is

(ba(xi, ti) . ba(»2t t2)) = 8(ti —t2)ai2(»i —x2), (3.11)

f(x, t) = f dtq f(q, t)ee'(3.8) where

into Eq. (3.8); the fluctuating acceleration of the target
is then

ha(x, , t) = — d q
e'+' ' f(q, t) Wv;(q),

pi
(3.9)

where Wv;(q) is the vector form factor for target i. For
I

ai2(r) = d qe'~'f (q)Wvi(q)Wv2(q) . (3.12)
P1P2

When 1 and 2 are actually the same target mass [i.e. ,

Wv, l (q) = Wv, 2(q) = Wv (q) and r = o], ai2 (r) must

reduce to dv2/dt; moreover, since ai2(r) and f (q) are
both real, f2(—q) = f2(q). With the aid of Eq. (2.29),
we deduce that
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satisfies both requirements. For either relativistic neutri-
nos or nonrelativistic Dirac neutrinos, Eq. (3.13) is iden-
tical to Eq. (3.6).

In Fig. 9, we show numerical results for ai2(r) for ex-
tremely relativistic neutrinos interacting with a pair of
spherical masses of difFerent composition but identical
radii R. The correlation function is evaluated to zeroth
order in v 10; corrections are O(v2). This spe-
cific case illustrates two general features of ai2(r): (1)
Correlations are largest for small spheres (R « 1) sep-
arated by small distances (2R & i « 1); (2) at r" )) 1,
~ai2(r)~ r" [In. fact, ai2(r) & 0 for extremely rela-
tivistic neutrinos at large i; if the resolution were better
in the figure, the cusps evident for R =

8 and 4 would
in fact be seen to be zero crossings. ] For nonrelativistic
neutrinos with mv p, ai2(r) will depend in general on
the angle between v and r. Majorana neutrinos interact-
ing with polarized targets whose net electron spins are
(s, ;) should have ai2(r) oc (s, i) . (s, 2).

B. "Shadowing force" due to scattered waves

A particular consequence of Eq. (3.2) is that the first-
order forces F,. are identically zero for an incident plane
wave. The second-order forces are nonzero because,
loosely speaking, the scattered waves that result &om
the interaction of the incident neutrino with the targets
result in small gradients in the neutrino density. The
interaction of target i with its own scattered wave is re-
sponsible for the O(G&) forces evaluated in Sec. II. The
interaction of target i with the wave scattered by j g i
leads to a kind of second-order "shadowing force, " that
is, a relative acceleration polarized with respect to the
vector separation of the targets, r = rq —r2. This force
may be either attractive or repulsive, as we shall see.

For the purpose of computing the perturbation of an
incident neutrino by the localized targets, it suffices to

replace the targets with static potentials and to use sta-
tionary perturbation theory. Doing so, we find that the
force felt by target 1 due to the scattered wave &om tar-
get 2 is

0
F12 V(rl r2)

t9rq
(3.14)

(3.15)

and (Ei, = Qk2 i m2)

d'k
4(K) = — Ni, Eg cos(k K —kR) .

27r 3 (3.16)

For isotropic N „iV(r) = V(r) and the force is central,
but for anisotropic Ng the force depends on the angle
between r and the mean neutrino momentum; in all cases,
F2i = —Fi2

For any Np, isotropic or not,

C(R) = —" (3.17)

for p„R (& 1, where p„ is the neutrino energy density. For
a pair of small spherical targets, we find that, at small
separations,

(, ('Gy +v, 1+v,2M1M2pv
p )

7l py p2T
(3.18)

where M, and p,. are the total mass and mass per atom
of target i. Shadowing forces are weaker than the gravi-
tational forces between the targets by the dimensionless
factor

where, for targets bathed in a neutrino phase space dis-
tribution Ng,

V(r) = —— d 2;id f2&i (xi)U2 (x2) 4 (r + xi —x2)
1 3 3

110 I I I I I
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10

& 10

10'

ni 10
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FIG. 9. Two-point correlation function for
Quctuating accelerations ai2(r) due to ex-
tremely relativistic neutrinos calculated to
lowest (zeroth) order in the peculiar ve-
locity v. The various solid curves are
for pairs of spherical targets of identi-
cal radius RT = 8) 4) ~ 1 2 4 8 The
dashed line shows the asymptotic scaling
ai2(r) oc (rT) valid at large values of rT.
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( GFCviCV2pv I 3.5 x 10 CviCv2/pip2 (extremely relativistic),
vrpip2 1.7 X 10 CviCv2p„p pi/pi@2 (nonrelativistic, Dirac), (3.19)

3( GFCv, 1Cv, 2 p2 pv
Qy 24~ P1P2Pz

(3.20)

For clustered Dirac neutrinos, Eq. (3.20) is comparable to
the peak value of Eq. (2.36), but for extremely relativistic
neutrinos, Eq. (3.20) exceeds the peak value of Eq. (2.36)
by a factor ~v~ 10 .

On larger scales, V(r) diminishes rapidly with distance
and may even become repulsive. To see how this comes
about, focus on isotropic phase space distributions, for
which

1
4'(R) =

2 2
dk kNgEg sin(2kR) .4' 2R2

(3.21)

The integral may be done analytically for two interest-
ing cases: (1) extremely relativistic neutrinos, for which
NI, = (e"~+ + 1) i, and (2) nonrelativistic Dirac neu-

2 2
trinos with NA,

——Noe ~ / ». For extremely relativistic
neutrinos, we find

where p,; are in units of the proton mass and p„
0.01p 0 oy Mo pc . Nevertheless, shadowing forces for
small targets within a distance r p of one an-
other may be comparable to or perhaps larger than the
forces on individual, more widely separated targets: &om
Eqs. (3.14) and (3.18), we find accelerations on such
scales of order

of both the slab and small object are small compared to
z, then the shadowing force on M is

GFCV, 1CV,291M2»n(2kz)F= —e, dk kEA,.NA,.
27l py p2

(3.26)

2('GF Cv, iCV2yi M2 pF= —e
py p2

(3.27)

For extremely relativistic neutrinos, Eq. (3.26) implies

GFCV, iCV 2yiM2T 'RER(2Tz)F = —e. )
7l py p2 z

(3.28)

where 'RER(y) is given by Eq. (3.25), and for nonrela-
—k 2tivistic Dirac neutrinos with Ni, = Npe " ~2"o, Eq. (3.26)

implies

&F&v, i&v, 2yiM2 p„F= —e e
PiP2

(3.29)

for an isotropic neutrino gas; in Eq. (3.26), we have la-
beled the slab 1 and the mass 2, and yq is the column
density of the slab (i.e. , for a uniform slab of density pi
and thickness I i, yi ——piLi). When pz « 1, Eq. (3.26)
implies a force

T
@(R)=, ,&ER(2B),

where R = TR and

1 7r3 7r3
+ER ———3+ . 3 +

ys sinh (vry) 2 sinh(vry)

(3.22)
Once again, we see that the shadowing force may be
either attractive or repulsive (although it is always at-
tractive for nonrelativistic Dirac neutrinos), is very weak
compared to gravity [with a relative strength given by
Eq. (3.19) at separations « 1/p], and is short range (with
a characteristic length scale 1/p).

7' y/120 (y « 1),
—1/~' (»») . (3.23)

IV. EXCITATIONS OF INTERNAL MODES OF A
SOLID

clearly, V(r) is repulsive at large r and proportional to
r . For nonrelativistic Dirac neutrinos, we find

Nm 2

@(R) = 'RNR(2R), (3.24)

where now R = poR and

'RNR(y) = Qvr/2ye (3.25)

in this case, the potential is always attractive, but de-
creases extremely rapidly at large r.

Equations (3.15) and (3.16) can also be used to eval-
uate the shadowing force for nonspherical masses. For
example, consider the acceleration of a small object rel-
ative to a large, thin slab; let the object be at position
ze relative to the center of the slab. If the thicknesses

II' = —(GFCv ) h~ ~ (x —x~) . (4.1)

For this interaction Hamiltonian, the rate of single
phonon excitations of a particular normal mode of the
lattice &om the ground state is

A complex system such as a solid will possess internal
modes which may be excited by cosmological neutrinos.
Generically, we expect only acoustic modes to be excited
in a solid or metal, since the characteristic &equencies
of either optical or plasma modes is much higher ( eV)
than the characteristic neutrino energies [21]. In this sec-
tion, we focus on the interaction of either extremely rela-
tivistic or nonrelativistic Dirac neutrinos with a discrete
atomic lattice containing N atoms whose unperturbed
positions are x . Let the interaction Hamiltonian be

2
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m&G C dp dp'
RkA

—— Np(1 —Np )8(Ep +(ukA —Ep) ) (l, kyrie' ~"' + ' iO)
PldkA 27t 27I

2

(4.2)

where we have substituted x~ = x + u~. For small displacements, we can expand each exponential in the sum to
g«(9= P —P')

iq ) e'~ "' (1,kA)u, fO), (4 3)

where the displacement operator is [22]

u, = ).(2p~kA)
' '[ukA(»I')okA + ukA(»,")ukA] ' (4 4)

in Eq. (4.4), akA and akA are the annihilation and creation operators for mode kA and ukA(» ) are the classical
displacement eigenvectors, which satisfy the orthonormality condition

) uk'A' (» ) ' ukA(» ' ) ~k,k((4, A'
(o) (o) (4.5)

Computing the matrix elements, we find that

(1 —N, .) l(p —p') . V„"„(p—p') I'~(E~. + ~kA —E,)P (dkA 27' 27l
(4.6)

where

&kA(q) —= V 0/p). e ' u»(», ) . (4.7)

Since ~@~ x(interparticle spacing) && 1 for all likely momentum transfers q, we can turn the sums over j into volume
integrals by replacing g ~ (p/p) jd x; in doing so, we can define continuous eigenvectors

u„'„—= (p/p)' ukA(»), (4.8)

which obey the normalization condition

d xu„*,„,(») . ukA(») = bkk bA A
~

~ (4.9)

In the continuum limit, the excitation rate becomes

p, ldkA 2' 2jl
(4.10)

where

v(')(q) J p ( )( )
. (4.11)

henceforth, we drop the superscript c.
Exact values of R&& will depend on the spectrum of(o)

normal modes and therefore on the symmetries of the
solid (which determine the number of independent elas-
tic moduli) [23]. On intuitive grounds, we expect that the
largest response at a given wave vector k will be for longi-
tudinally polarized normal modes, since the driving force
is the gradient of a potential. In a real crystal, of course,
none of the three modes at a given k is precisely lon-
gitudinal or precisely transverse, but usually one of the

modes is nearly longitudinal. To keep the evaluation of

R&& as simple as possible, we shall idealize to an isotropic
medium, in which one of the modes is precisely longitu-
dinal (with a dispersion relation u&~i

——k2ci2) and the
other two are precisely transverse (and degenerate, with
uk' ——k ci). For an isotropic mediuin, uk' = k Vbki,
where hki(») is the density contrast in the longitudinal
mode. We consider two difI'erent possible boundary con-
ditions on the density: "free" boundary conditions, for
which b'ki(») = 0 on the surface, and "fixed" boundary
conditions, for which n. V6'ki(»)0 on the surface. More
complicated choices are possible (some surfaces fixed,
others free), but we expect that considering these two al-
ternatives should suKce for determining whether or not



FEASIBILITY OF OBSERVING MECHANICAL EFFECTS OF. . . 5475

the excitation rates depend sensitively on boundary con-
ditions.

To be precise, let us assume that the solid is a rect-
angular solid with side lengths L, L„,L, which need
not be the same. I et the solid extend over x = [0, L ],
y = [0, L„],and z = [0,L,]; we may take

for &ee ends. Note that for large q, if all components of
q are comparable, ~iq Vi,i(q)~ k /q V and k /q V
for Axed and &ee ends, respectively, and so we do not
expect anomalous contributions &om the power law tails.
Below, we compute the excitation rate for

g8/Vcos(k x) cos(k„y) cos(k, z) (fixed),
k

f /8/Vsin(k x) sin(k„y) sin(k, z) (free),

iq V»(q) I' = (2&)'k' ) ~(q' —k')
t=&~'JJ~Z

= (2vr) h( ) (q —k), (4.16)

where V is the volume of the solid and in both cases
k = n m/L, k„= n„vr/L„, and k, = n, vr/L, with n,
n„, and n positive integers. It is then straightforward
to show that

L, 4q; siss(s(q; —k, )I;]
)iq Vi) q =k

't=Xig iZ z

(4.12)

for fixed ends and

q' I,, 4k;siss(qk(q; —k;)I,;])=
k . .... (. —k'. )L,

'L =Z )tI ) Z

(4.18)

{0) 4++F+v ~+v dz x
8((~)V'«r, qzT e +1 ' (4.17)

where k, = n;m/L;, with n; a positive or negative inte-
ger. Equation (4.16) corresponds to periodic boundary
conditions in the same limit as the preceding two equa-
tions. Results for fixed or free surfaces (or combinations
thereof) may be obtained by summing either different
rates computed using Eq. (4.16) with appropriate substi-
tutions for (k;) and dividing the result by 8.

We present results for either extremely relativistic or
clustered Dirac neutrinos, taking the anisotropic of the
distributions in the laboratory rest &arne into account
only where qualitatively important. For extremely rela-
tivistic neutrinos, we Gnd

for &ee ends. In each case, the quantity in brackets is ex-
tremely sharply peaked at q; = +A:;, where it approaches
one; if we neglect the tails of these functions, we may
approximate

where we have also used the fact that ci (& 1 to simplify
the remaining integral. For clustered neutrinos we 6nd

(p) z i/2 Gz~| vzpp„(k+ mv k+ 2m«)
exp

8 p pci 8p
liq Vi i(q) I' = ~'k'

4=X)Q)Z

[b(q' —k') + ~(q'+ k')]
(4.18)

(4.14)

for 6xed ends and

4
(iq. Vi,g(q)[ = m. — [b'(q; —k;) + b(q, + k;)]

$=Z)Q)Z

(4.15)
I

where p = mo; typically, «10, so that m«/p =
«/o (( 1 can be neglected. In both cases, the excitation
rates are approximately constant for k & p„and cut ofF

rapidly, A: & p„; in no sense may we regard the excita-
tion rates as "coherent" since they do not depend on the
volume of the solid. Moreover, the rates per mode are
pitifully small: Their peak values are

1.3 x 10 s C&p/p «s (relativistic),
~kI~p 1 9 x 10 s CsiIppqs, p pi/p ci,smipo s. (clustered Dirac) (4.19)

where ci ——10 ci 5 and m = 10mqo eV. In a large solid,
the number of modes susceptible to excitation could be
substantial, approximately p„V/6a2 or 10 V (ms) for
relativistic neutrinos and 2 x 10 (mipo' s) V (m )
for clustered neutrinos. Even so, the expected rate of
excitation of modes &om the ground state is miniscule.

Usually, a target solid will not be in its ground state
and there will be Ngp phonons in a particular mode of
the unperturbed system. The excitation rate for (kA)
is oc 1 + Ngg, raising the possibility of considerable en-
hancement above B&& for modes "pumped" to large N».
However, interactions of the solid with background neu-
trinos may destroy phonons as well as create them, and
the net reaction rate is the diBerence between the rates

R],„=R~(q) (1 —Ni, p [exp((u' „/T) —1]) (4.20)

for extremely relativistic neutrinos and

Rkg = R~~(l —Ngp[e p((x~/4Imio ) —1]) (4.21)

for clustered Dirac neutrinos, where

I »+ (4.22)

I

of upward and downward changes in N». It is easy to
show that for a laboratory solid moving through the neu-
trino sea at a velocity v, the net rate of single-phonon
production is
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is the excitation energy in the frame where the neutrinos
are isotropic. For ~v~ 10 and cq 10, ~k v~ & uk',
and u&& may be positive or negative; if the latter is
true, Rgp & 0 (phonon production dominates), and if
the former is true, Rgp ( 0 (phonon destruction dom-
inates). For extremely relativistic neutrinos, however,

~k . v ~/T 10 and ~Rgq
~

only exceeds Rk& substan-—3 (0)

tially if Nkp & ~v~ 10 . For clustered Dirac neutri-

nos, ~k. v~ mo' and ~Rkp~/R&&~ Nkp in general. If
Npp is large for many different modes, then the net rate of
phonon production could be significantly increased over
the ground-state excitation rate.

V. CONCLUSIONS

In this paper, we have examined a variety of differ-
ent mechanical effects of cosmological neutrinos in some
detail. We began by reconsidering the acceleration of in-
dividual target masses by neutrinos, a problem that has
been treated elsewhere, both correctly and incorrectly.
Our calculations corroborate the claim of previous inves-
tigators that the lowest-order steady forces on a target
mass are O(G&), in spite of the fact that incident neutri-
nos are deflected by a potential oc G~ upon entering and
exiting the target. We have demonstrated that this result
is really not intrinsically quantum mechanical in nature
by showing that it also follows from a purely classical cal-
culation of the behavior of a target system bombarded by
low-energy neutrinos.

Because the neutrino background density is only uni-
form on average, a target mass experiences fluctuating
forces which may be larger than the steady forces it feels.
If the steady force is F and the fluctuations are governed
by a diffusion coefficient dp /dt, then the cumulative im-
pulse due to steady forces will exceed the accumulated
impulse due to fluctuations by a ratio S/N only after
a time (S/N) t, has elapsed, where t, =

~

F
~

dp /dt.
The required time scale for separating steady acceler-
ations from velocity fluctuations due to the neutrino
background may be surprisingly long; for example, for
a spherical target of optimal size (R p ), t, months
for clustered Dirac neutrinos (or clustered Majorana neu-
trinos scattering from polarized targets) and t, 10
yr for extremely relativistic neutrinos. Even if all other
sources of noise can be eliminated from an experiment de-
signed to measure accelerations due to the neutrino back-
ground, these fluctuating forces due to the background it-
self must remain. It may be that the fluctuating accelera-
tions themselves can be distinguished from other sources
of noise since the ffuctuation tensor d(p;p~)/Ch is gener-
ally anisotropic, with a preferred axis along the peculiar
velocity of the Earth through the background. If so, it
may be possible to exploit the fluctuations themselves in
a,n experiment to detect cosmological neutrinos mechani-
cally. However, this continuous description of the motion
of a target mass in the cosmological neutrino background
must be used carefully. As we have shown, the rate at
which cosmological neutrinos are scattered by targets of
size R 1 only exceeds t, by a factor of 10 or so. (See
Table III.) The perturbation felt by a massive probe is

impulsive, and only when a large number of bumps has
occurred will the actual displacement converge to its ex-
pected value. Practically speaking, this requires the use
of fairly large target masses, with radii B considerably
larger than one, in order to guarantee substantial scat-
tering rates, say, of order one per day. Unfortunately, the
larger the target mass, the smaller its expected displace-
ment, since a R ln(R) and dv /dt R 41n(R).

Some of the new experimental difIiculties posed by fluc-
tuating forces may be less severe for nonspherical tar-
gets. Although we have only studied spherical detectors
in detail in this paper, we expect that the results remain
qualitatively the same for nonspherical targets whose di-
mensions are roughly comparable in any direction. How-
ever, from our limited exploration of slab geometry in
Sec. IIE, it appears that t A for targets with large
surface area A in a plane, but modest thickness Ls (( ~A
perpendicular to that plane; moreover, the target accel-
eration is independent of A. Thus one may not have to
sacrifice acceleration to get acceptable t for slab targets,
in sharp contrast to the situation for spherical detector
masses.

Neutrino background density fluctuations are corre-
lated in time and space, so that the accelerations felt by a
pair of nearby targets are not independent of one another.
Perhaps more interesting from a qualitative viewpoint is
that the distortion of incident neutrino wave functions
by one target can result in a nonzero acceleration of its
neighbor, so that the pair of targets creates a mutual
shadowing force. The range of the force is only p
and although its effective potential is oc 1/r at small sep-
arations, the shadowing interaction is far weaker than
gravity. Ideally, its presence could be uncovered as a
composition and separation dependence of the Newto-
nian coupling constant G. In practice, the effects are
well below the accuracy of state of the art Cavendish ex-
periment [24j. Slab geometry offers no new hope for de-
tecting shadowing forces, which remain far weaker than
gravity and short range for nonspherical targets.

Finally, we have moved upward in complexity from a
two-body system to a many-body system and calculated
the rates of excitation for normal modes of an atomic lat-
tice (in the continuum limit). Although it may have been
expected that the excitation of internal modes would be
coherent, we found that in fact the rates per mode are
independent of the volume of the solid. The total rates of
excitation from the ground state, summed over modes for
a reasonable target size, are so small that we can be con-
fident that such excitations will never be detected: For
a volume of order 1 m, the total rate of excitation by
clustered Dirac neutrinos is only about one per Hubble
time. The corresponding rate for relativistic neutrinos
is considerably smaller. For solids with a range of nor-
mal modes "pumped" to large occupation numbers, the
net rate of phonon production (or destruction) may be
considerably larger, but to achieve rates as large as one
per year would require large numbers of modes to have
large occupation numbers (e.g. , 10~o phonons in each
of 10 modes for excitation by neutrinos clustered in
the galaxy).

There are a number of interesting issues which we have
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not addressed here. One is the suggestion that photo-
emission from electrons in a metal coherently scattering
cosmological neutrinos could be detectable [25]. In view
of the results of our simpler evaluation of the excitation
rate of normal modes of an atomic solid, we are skep-
tical that any coherent effects are actually possible and
expect that a detailed calculation that includes the re-
sponse of the metal properly would give results below
even the most pessimistic estimates of the photoemis-
sivity triggered by background neutrinos [26]. We have
only computed the weak interactions of neutrinos with
material targets and have not explicitly considered the
possibility that neutrinos possess anomalous magnetic
moments which can enhance their low-energy couplings
substantially [25].

Most importantly, perhaps, we have not discussed at
all whether or not there could be general arguments that
the tiny mechanical effects derived in this paper cannot
be detected in principle. To get an idea of the magni-

f &[ ( )I)
(»sQi(t)) kt. ) 3 i .) . (5.1)

For Dirac neutrinos,

3G&C&p n ivy ~4 (R)
(5.2)

where the dimensionless functions gLi(R) and F~(R)
were defined in Sec. II; &om the various limiting results
for these dimensionless functions given in that section, it
is straightforward to show that Mian t, is a decreasing
function of B. Numerically,

tude of the diKculty of detecting cosmological neutri-
nos, let us compare the expected motions of targets of
various masses M with the standard quantum limit [27]
AxsQi, (t) = gt/2M on the observation of displacements
in a time interval t,. From the results of Sec. II, we And

4'IrP @„v„5x 10 p /C&p v 2 (extremely relativistic),
3G+CvPsn~ivi4 0 3P mioo' 2/CvP P~o oi (clustered Dirac), (5.3)

where the various symbols have the same meanings as
throughout the paper: p and p are the mass density (here
in units of g cm ) and mass per atom of the target and
Cv is given by Eq. (2.27); for unclustered neutrinos, v
is the velocity of the solar system through the neutrino
background and v 2

——10 ~vi; for clustered Dirac neu-
trinos, mip is the neutrino mass in units of 10 eV, 0 3
is the velocity dispersion in units of 10 c, and p p py

is the local halo mass density in units of 0.01M0 pc
[Naturally, these units have been chosen so that all of
the parameters appearing in Eq. (5.3) are typically, or,
in the case of Dirac neutrinos clustered in the Galaxy,
hypothetically, of order unity. ] If tsQi, is defined to be
the value of t at which (ix(t)~)/»sQL(t) = 1, then
since Eq. (5.3) implies that Mian t, ( 1 for R 1
in each case (and (( 1 for large targets, R & 1, for
which tsQi, is smallest), we find that, for R & 1, tsQi, =
(Mian ) ~, which is a decreasing function of R. For
Dirac neutrinos clustered in the galaxy, we find. that for
B = 10, which is equivalent to B = 20m]Q 0 3 cm,

tsQQ 0.8mio 0 —2 P /Cv PP, o.oi y a ' r a ge R5/3 5/3 4/3 4/3 2/3

tsQi, oc R i (lnR) i . Although tsQL may be only of
order years for clustered Dirac neutrinos, the values of
tsgg for detection of extremely relativistic Dirac neutri-
nos are typically much longer: For B = 10, which is
equivalent to T = 1.2 m, tsQi, = 0.8 x 10 p, i /C& pv

yr, and for large R, tsQi, oc R i (lnR) i, which de-
creases so slowly with increasing B that tsqp )) years for
any practically attainable values of B. Of course, exper-
imental detection schemes that rely on quantum nonde-
molition (QND) observations could be far more sensitive.
However, standard estimates of the accuracy of QND ex-
periments designed to measure weak classical forces do

not strictly apply to the observation of mechanical ef-
fects of cosmological neutrinos [28]. This is because the
interaction of the neutrino background with a target can-
not be modeled as a continuous, classical force, since it
involves stochastic and perhaps large deflections of indi-
vidual quanta, in stark contrast with the interaction of a
many-graviton gravitational wave with a massive probe.
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APPENDIX: DENSITY FLUCTUATION
SPECTRUM [29]

Define the density fluctuation operator for plane wave
states to be

. k —I'
bn(x) = —) akak e' "

krak'

(A1)

C(2 i ) 2 2) —
2 [Ca(&1 i &2) + Ca(&2 ( 2 i)] (A2)

where the unsymmetrized density fluctuation operator is

C (xi, 2:2) = bn(2:i)bn(2:2) . (A3)

where 2: = (x, t) and k = (k, wi, ) and the dot product
is of the four-vectors x and k, using normalization inside
a box of volume V. The correlation function of density
fluctuations is the expectation value of the operator
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[It is C (xx, x2) rather than C(xx, 2:2) that actually ap-
pears in scattering problems. ] For a homogeneous, time-
translation-invariant gas, we find

For extremely relativistic neutrinos with Nx, = (e"/+ +
1) x, Eq. (A6) gives

n2(x) = (C (xx, xx+x))

) Nx, (1 —Ng )
e'("

krak'
(A4)

O(q —I~l)
-

dp p(p —~)e( —.)/

(2~)'q (+.)/2 (e"' +1)[e'" ' + ll

(A7)

where ( ) is evaluated in the neutrino background. Define
the Huctuation spectrum by

For clustered neutrinos with Nx, = No exp[ —lp-
po['/2p ], Eq. (A6) gives

n'. (x) = J d'qe"'n.'(q);

combining the continuum version of Eq. (A4) with (A5)
gives

n (q) = Nx, (1 —Nx, )b( )(k —k' —q) .
(2xr) (2xr)

(A6)

p„(q/2 —p, q+ m~/q)'

(AS)

where p„ is the neutrino mass density. In deriv-
ing Eq. (A8), we have neglected the "correction for
Fermi suppression. " Integrating Eq. (A8) over rr gives
n /(2xr), which in turn implies the equal-tixne spatial
correlation function n b( ) (xx —x2).
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