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Gravitational waves in Bianchi type-I universes: The classical theory
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The propagation of classical gravitational waves in Bianchi type-I universes is studied. We find
that gravitational waves in Bianchi type-I universes are not equivalent to two minimally coupled
massless scalar fields as in the Robertson-Walker universe. Because of its tensorial nature, the
gravitational wave is much more sensitive to the anisotropy of the spacetime than the scalar field
is and it gains an effective mass term. Moreover, we find a coupling between the two polarization
states of the gravitational wave which is also not present in the Robertson-Walker universe.
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I. INTRODUCTION AND SUMMARY

A Bianchi type-I (B-I) universe, being the staightfor-
ward generalization of the Rat Robertson-Walker (RW)
universe, is one of the simplest models of an anisotropic
universe. Unlike a RW universe which has the same scale
factor for each of the three spatial directions, a B-I uni-
verse has a different scale factor in each direction, thereby
introducing an anisotropy to the system. It moreover
has the agreeable property that near the singularity it
behaves like a Kasner universe even in the presence of
matter and consequently falls within the general (clas-
sical) analysis of the singularity given in [1]. And in a
universe Riled with matter for which p = pp, p ( 1, it
has been shown [2] that any initial anisotropy in a B-I
universe quickly dies away and a B-I universe will even-
tually evolve into a RW universe. Since the present-day
universe is surprisingly isotropic, this feature of the B-
I universe makes it a prime candidate for studying the
possible effects of an anisotropy in the early universe on
present-day observations.

Curiously, in light of the importance of B-I cosmologies
the general behavior of gravitational waves (GW's) in a
B-I universe has not been fully analyzed. The propaga-
tion of a specific GW in a B-I universe has been studied
before in [3]. This analysis, however, was only done for
a single wave propagating along the symmetry axis of
the 2/3, 2/3, —1/3 axial symmetric Kasner spacetime.
More recently GW's in B-I universes were studied by
Miedema and van Leeuwen [4] within the context of a
general perturbative analysis of the B-I universe. They
found, however, certain subtleties with gauge freedom
and gauge Axing which we have not encountered. In par-
ticular, they found that an initially transverse GW will,
as it evolves with time, become longitudinal. This we did
not find and we believe that their result is due to their
gauge fixing. We shall comment further on this after our
analysis.

The purpose of this paper, therefore, is to begin the
study of GW's in general B-I spacetimes. The approach

we shall take follows that given in [5] which analyzes
the propagation of GW in the RW universe. There are,
however, certain subtleties in the propagation of GW in
B-I universes which do not occur in RW universes that
makes this analysis much more diKcult. These involve,
in part, the choice of the appropriate gauge for the GW
as well as the definition of the polarization tensors for
the wave. We find that the usual transverse-traceless
and synchronous gauge conditions that are valid in the
RW universe are inconsistant in the B-I universe. As it
is the gauge conditions which determine the properties of
the polarization tensor, modifications to the gauge condi-
tions were needed to produce a polarization tensor which
has the usual properties expected of a GW. (Indeed, if
we take the usual transverse and synchronous gauges we
would end up with a GW which is not traceless. ) Be-
cause, however, the usual gauge choice is no longer valid
in a B-I universe, additional gauge-dependent terms are
introduced into the Lagrangian which will, in general,
cause a coupling between the two polarization states of
the GW.

The second subtlety we have encountered in de6ning a
GW is in. the definition of the polarization tensors them-
selves even after a gauge choice has been made. As usual,
the polarization tensor can be expressed in terms of the
appropriate tensor product of two polarization vectors
which are transverse to the propagation direction of the
GW. There is, however, a certain amount of freedom in
the choice of these polarization vectors even after requir-
ing that they be orthonormal to one another. Namely,
one can always do a rotation of the polarization vectors,
which can be time dependent, in the plane perpendicular
to the propagation direction of the GW and the resultant
vectors would still be a valid choice of polarization vectors
for the GW. While this rotational freedom does not play
a role in the isotropic RW universe, the B-I universe is
anisotropic and we have found that an arbitrary choice of
polarization vectors will cause a coupling between the two
polarization vectors. This coupling is Bctitious, however,
and vanishes once an appropriate choice of polarization
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vectors has been made. In fact something quite similar
happens even with GW's propagating in RW universes if
we choose polarization vectors which are not orthogonal
to one another. This introduces a coupling between the
two polarization states which vanishes under an appro-
priate rotation of polarization vectors.

In general, we find the propagation of GW's in B-I uni-
verses to be very much difFerent than in RW universes. In
the RW universe the two polarization states of the GW
decouple from one another and the Lagrangian for GW
is equivalent to two minimally coupled massless scalar
fields. Neither is true for GW in B-I universes. Because of
its tensorial nature, the GW is much more sensitive to the
anisotropy of the 8-I universe than a scalar field is and
it gains an effective, time-dependent negative masslike
term. Moreover, the two polarizations of the GW now
couple to one another. As this coupling comes in part
from the gauge dependent piece of the Lagrangian, its
physical relevance is questionable. In particular, it is po8-
sible that with a more clever choice of gauge this term
will disappear. After our analysis we shall present argu-
ments for the physical relevance of the coupling terms.

The rest of the paper is divided into five parts. In
Sec. II we shall review the basic properties of a B-I cos-
mology paying particular attention to the Kasner and
Zel'dovich universes. In Sec. III we shall address the
question of gauge fixing and the choice of polarization
vectors for the GW. In Sec. IV we shall derive the equa-
tion of motion for the GW by expanding the GW in plane
waves and writing the action for the GW in momentum
space. Then in Sec. V we shall solve the evolution equa-
tions for the special case of a GW propagating along an
asymmetry axis in a Kasner universe or a Zel'dovich uni-
verse. This is the only case in which closed form solu-
tions of the equations of motion can be found. Fortu-
nately, they are the most physically relevant. Conclud-
ing remarks can then be found in Sec. VI. Finally, in
the Appendix we shall repeat the analysis in Sec. IV us-
ing a diferent gauge choice for the gravitational wave
and show that coupling terms similar to those found in
Sec. IV appear even in this gauge choice.

(2)

where a—:(aia2as) ~ is the geometric average of the
three scale factors along each direction. Then the only
nonvanishing components of the Riemann tensor are
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and the prime denotes a derivative with respect to g.
Einstein's equations in the presence of matter are then
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This, aside from the term dependent on Q, is identical
to the RW case. Q is thus the physical measure of the
anisotropy of the spacetime and is called the anisotropy
factor. Taking then the difFerence between two diferent
directions in Eq. (6) we find that

II. REVIEW OF B-I COSMOLOGY

In this section we shall present a brief review of B-I
cosmologies in the absence of perturbations. In doing so
we shall follow the notational and sign conventions found
in [6]. In particular, one may always choose coordinates
for the B-I spacetime such that the metric has the form

where d,. is the value of d, at some initial time go for all

p and p and we have chosen the overall scale such that
a(go) = 1. Consequently, Q = Qp/a4 where Qp

——Q(rtp).
Equation (6) has been solved in the presence of various

types of matter [2]. We shall, however, only be concerned
with two special cases in this paper: the Kasner universe,
which is free of matter, and the Zel'dovich universe where

p = p. In both cases,

a = y/yo,2 2 2( / )sp~ (10)

where as usual Greek indices will run over the four space-
time directions while Roman indices will run only over
the spatial directions. Although we shall use the sum-
mation convention for Greek indices, for clarity we shall
not use it for Roman indices.

It is convenient to define a pseudoconformal time vari-
able g through

where y = 2gi/Qp for the Kasner universe while y
2'g+87rpp/3 + Qo for the Zel'dovich universe. pp is the
energy density of the universe at gp while ap . ——a (0) are
the initial scale factors in the various directions which,
without loss of generality, can be set to unity.

p& are parameters of the B-I spacetime which measure
the relative anisotropy between any two asymmetry axis.
As they must satisfy the constraints
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out of the three parameters, only one is arbitrary. Since
Eq. (11) describes the intersection of a sphere with
a plane in the parameter space (pi, p2, ps), we may
parametrize the allowed values of p~ by an angle on the
unit circle [7). One particular choice of parametrization
js

p1 ——3 1+cos8+ 3sin8

as well as

1 ()
a

(15)

(16)

p2 = 3 1+cosO — 3sln

ps ——s (1 —2 cos 0) . (12)

From this, we see that for the polarization tensor to be in-
dependent of hq„we must choose the synchronous gauge.
After doing so, the transversality condition reduces to

Although a priori 0 ranges over the unit circle, note that
the labeling of each p~ is quite arbitrary. Thus the unit
circle can be divided into six equal parts each of which
span 60, and the choice of p~ is unique within each sec-
tion separately. Notice that when 8 = 0, pi ——p2 ——2/3
while ps ———1/3. This is the spacetime considered by
Hu in [3). When 8 = m/3, on the other hand, pi ——1
while p2 ——p3 ——0. It can be shown that this space-
time is equivalent to the Minkowski spacetime up to a
coordinate transformation.

III. GAUGE CONDITIONS AND
POLARIZATION STATES

In this section we address the problem of gauge 6xing
for the GW and the subsequent de6nition of polarization
states. As usual, we consider the GW as a perturbation
oK the background metric by writing g„„=g „+h„„,
where gP„ is the unperturbed B-I metric given in Eq. (1)
while h„„ is the perturbation which has a gauge &eedom
to be taken care of. The usual gauge choice, which works
for both Hat Minkowski and RW spacetimes, is

(13)

and are called the transverse, synchronous, and trace-
less conditions, respectively. u~ is a timelike Killing vec-
tor which, without lose of generality, can be taken to
be (1,0, 0, 0). In the RW spacetime, the transverse and
synchronous conditions actually imply that the GW is
traceless and this condition is redundant. Unfortunately,
for a 8-I universe this is no longer true.

Let us express h„„as a plane wave{s)

I

0=)
2 2

and becomes the standard transverse-traceless condition
in a RW universe. For a 8-I universe, on the other
hand, we see that the GW is no longer traceless if we
use the usual transverse and synchonous gauges. The
usual gauge choices Eq. (13) are no longer self-consistant
in a B-I universe and must be modified.

There are two straightforward modifications that we
can make. The first is to use the usual transverse and
synchronous gauges and live with a GW which is not
traceless. This, however, introduces a great deal of com-
plexity to the problem and we shall not do so (see the Ap-
pendix). The second is to require that the GW be trace-
less, but to modify the transversality condition, namely,
to choose

o=V&h„, , o=h, „, o=h&,

which gives the following constraints on the polarization
tensor

0=) q'm,".„', 0=~,'„', 0=) ~('),'.
2 2

Notice that these equations determining m„'„have pre-
cisely the same form as the those in either a RW or
Minkowski spacetime which is the reason we shall work
primarily in this gauge.

Instead of the polarization tensor m, we shall 6nd it
conceptually easier to work with the polarization vectors

6p with

—E 6 ZV =6. 6 +6 ~

where q x = P q~x~ and s labels the polarization state.
2 2

Because g „ is a function of g only, we can always make
this choice. Our convention is that the q~ are independent
of g while q~ = g~~q~. zv~'„ is the polarization tensor for
the GW and must, by definition, be independent of the
axnplitude hz, (q) of the GW. The usual transversality
condition then gives

as long as

() ) . j ( ) ) - (~)~(~')~

2 2

Implicit in this de6nition is the added requirement that
the two polarization states be "orthonormal" to one an-

other: tv~'„m(' ~ = 28" . Notice, however, that this
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orthonormality condition is not required by the gauge
choice Eq. (19) but is rather made separately as a mini-
mal requirement for the two polarization states to decou-
ple from one another. While such a choice is suKcient for
a RW or Minkowski spacetime, we shall see in the next
section that additional requirements are needed for a B-I
spac ctime.

Equation (21) does not determine e
'

uniquely, how-
ever. There is still a rotational freedom in the plane
perpendicular to q~. Namely, we can rotate

(27)

and there is a particularly simple relationship between m
and e,

(I ) ~2,(L),(L) (&) ~2,(&),(&) (28)

jugation. We can, of course, also define circularly polar-
ized polarization vectors in precisely the same way

= E cosp+ E sing
2 2 2 )

e =. Esl—np+ E cosf
2 2 2 (22)

Finally, we note that under a rotation of polarization
vectors as in Eq. (22), e = e

e~ eP2 $U
P (23)

Then, taking e = (O, a1, 0, 0), e = (0, 0, a2, 0), e„
(0, 0, 0, as), one specific choice of polarization vectors is

gl gS l 9293

g2 1 gl 2

gq,'+q,' ' gqI+q2
''

~2 ~2
ql + q2e

where

g~ G~

V E«I'/aI'
(25)

Notice in particular that e
'

(—q) = (—1)'+ e
'

(q) so

that m & (—q) = m.
& (q) while m.

& (—q) = —m & (q) .
The polarization tensors defined in Eq. (24) are for

linearly polarized GW. We shall also consider circularly
polarized GW defined through

(L) 1 (+) . (x)
CV ~

A,
— tA7 .

I + Z tA7

2

and e
'

will still satisfy Eq. (21). In particular, P may
also be q dependent. Moreover, once a specific choice of
polarization vectors has been made rotational symmetry
will be broken. While this breaking of rotational sym-
metry is of no consequence in the RW universe, which
is isotropic to begin with, it is of great consequence in
the anisotropic B-I universe. In particular, any specific
choice of polarization vectors will tend to break the ex-
pected exchange symmetry 1-2-3 among the labels of the
axis of the spacetime. We shall also find that the equa-
tions of motion for the GW will be greatly simplified if we
make a special choice of polarization vectors. For these
reasons we shall work as much as possible with a gen-
eral set of polarization vectors and shall delay making a
specific choice of polarization vectors until forced to.

To find a specific representation of e-' we first define

a local coordinate system using the vierbeins e'„,

IV. THE ACTION

In this section we shall derive the equation of motion
for the GW. The approach we shall follow was first used
by Ford and Parker [5] in their analysis of GW's in RW
universes and involves the expansion of the GW in plane
waves. To lowest order the action for the GW is

I = — —gd x V'„h~ V'"hp + 8m p —p h~ hp

—2Rph h —2R" ~„h h —2V'ph" V'~h

(29)

which differs from the one used in [5] for GW's in RW
spacetimes by the addition of a kinetic term. This is be-
cause our gauge choice Eq. (18) is different from the one
they used as in Eq. (13). We should also mention that
even if we did use the usual transverse and synchronous
gauges, our action will have additional terms d.ependent
on h" which no longer vanishes in this gauge for a B-I
universe. Indeed, any choice of gauge for the GW in a
B-I universe will introduce additional terms to the La-
grangian. The form that these additional terms take is
dependent on the choice of gauge one makes, however,
and at first glance the physical relevance of these terms,
since they are seemingly gauge dependent, is question-
able. We shall see, however, that although the explicit
form of these terms changes with the choice of gauge,
they all have the same root physical cause. Namely, they
are due to the fact that in a B-I universe one cannot de-
fine a polarization state for the GW which will not change
with time. Consequently, these terms are physically rel-
evant.

It is straightforward to show that due to Einstein's
equations, the second and third terms in Eq. (29) can-
cel one another. We are then left with three terms to
consider:

(&) 1 (+) . (x)
G7 ~ k — ~ G7

g2
(26)

w1th m(~)( —q) = ~(~)(qg = m( )(qg and m( )(—q)
m(+)(q) = m( )(qQ and the overbar denotes complex con-

4d4 ~ hPP~ hn (30)
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where I = I~ + I~ + Ig. We next expand h,„ in plane
waves,

h„„=) ) ~( )h. (q, *),
q 8=+, X

(31)

where h, (q, x) = h-, e'~' with the reality condition given
by

2
I

) j (1) (2)2 (37)

h,+(q, x) = h,+( q, x—), h„(q, z) = —h, „(—q, x). (32)

Turning our attention first to IR, we use Eq. (31) and
find that

IR = ——) ) f 2 d T„R( ))2( j4, )ljR(qj, R), (M)
q ss'

where

where it is important to note that we have not as yet
chosen a specific polarization vector e.' .

We next consider the gauge term which becomes

) f 24e4R ~(')~()' v2)v j,, .
q 88

T...(.) = RP -"~()~( ')

In terms of polarization vectors,

(34)

T++(e) = T)& && (e) = —2 ) R' "'e, e,
'

e e„) (35)
ijkl

while

for plane waves. The first two terms involve the
term m(')„'(7 h, (q, g) which vanishes identically due to
Eq. (19). The last term does not, however, and if we
define

T+x(e) = Tx+(e) = 0, (36)

due to the antisymmetry properties of the curvature ten-
sor. Next, using Eq. (4), we find that

~2 ~p (s') ~ca (8)&
88 . PP CX

I
1)~i (1) (2)+i (2) X (1)+j (1)p' (2)+j (2), Q 2 ~{+)

z 2 2

2
I

2 X ~ (1)~i (2) + (2)+i (1) g ~ (1)+j (2) p' + (2)+j (1)p g j (x)jxx / i p, i p, f' j '2
2 2

j)(2 ) (
(1)V' (1) (2)V' (2) (2)Vj (2)l (2)Vj (l)l ' (4-)* j ( )1( ..

while K+x ——N„+ and we have used V'"e„' = 0. Notice,
in particular, that in general N+~„g 0 and this gauge
term introduces a coupling between the two polarization
states. In addition, %+2+ g N~2„. Notice also that each
of the N are related in a simple manner to the trace
of the polarization vectors which would vanish under the
usual choice of gauge Eq. (17).

Finally, we turn our attention to the kinetic piece, the
most difFicult one to work with. Proceeding exactly as
before, we find that

Ilj = —) /2 4( R ) (2 )4.'((2)2, —) M', h. , (2.
8 88

I

where

( ')~D„ I — 2' P V„ZV )

(42)

This can be reduced to manageable form by using polar-
ization vectors

2 = 2M++ ——M„x

) ~ (4)) 4(7P (s) P
2( (1)~ (2) &) (

(1)~P (2)

—2) DR... )4. (j2(l.l,
88

(41)
(43)

where we have used ep e = —b„, while M+x = 0.(s') (8)p
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Similarly,

(44)

which vanishes identically while

This term will not vanish in general, however, and we see
that the kinetic piece of the Lagrangian also introduces a
coupling between the two polarizations. Notice also that
the only nonvanishing term in D~ is Do+~ = D+&&.

Combining these three pieces together, we finally arrive

m2-I = ) a d z —) ~

V'„h, V'"h, — 'h, h,
2 ( a J

+" (h+h„+ h„h+)
2

(46)

where

m, (e) = a (M+++ T+g —N„) . (47)

Once again it is important to note that we have not, as
yet, made any specific choice of polarization vectors.

At this point we can see the differences between the
propagation of GW's in a B-I universe versus a RW uni-
verse. Ford and Parker has shown that in a RW universe
the two polarizations of the GW decouple from one an-
other and each, separately, is equivalent to a minimally
coupled massless scalar field. Neither is true for the GW
propagating in a B-I universe, however. Here the GW
picks up an effective mass term due to it being a spin-2
field and is much more sensitive to the anisotropy than
a scalar field is. What is even more surprising is the
apparent coupling which is present between the two po-
larization states of the GW.

The physical relevance of this coupling term is some-
what questionable at this point, however. They could
have arisen from an inappropriate choice of polarization
vectors or, since the second such term comes from the
gauge piece of the action, because we made an inconve-
nient gauge choice for the GW. For example even in a
RW universe a coupling term between the polarizations

D+&&(e) = 2P'+ D+&, (e), (48)

while

would appear if we had chosen polarization tensors which
were not orthogonal to one another; an "inappropriate"
choice of polarization tensors. To begin to separate the
truly physical effects of the anisotropy on the GW &om
the arbitrariness in defining the GW, we have to develop
a better understanding of the effects of the anisotropy on
the GW. This is best done by considering the behavior
of the polarization vectors instead of the full tensors.

Consider the triad (j~,e, e ) which form a local or-
thonormal coordinate system. Because we are in the B-I
universe, these three vectors are not fixed, but rather
changes with g. Since they are constrained to lie on the
unit sphere, their motion consists of two rotations; one in
the plane perpendicular to q which is spanned by e and

, the other parallel to q. Let us consider the two ro-
tations separately. Rotations parallel to q occur because
the direction of propagation of the GW, q~, is always
changing with time [see Eq. (25)]. This is because the
medium through which the GW is propagating, the B-I
universe, is anisotropic and always changing with g. In
particular, notice that in a RW universe, where such cou-
pling between polarization states is not present, q~ does
not change with time and there are no rotations along
this direction. Rotations in this direction are therefore
caused by a physical effect of the anisotropy on the GW.

Rotations in the e~ ~-e~ ~ plane, however, are not phys-
ical. They can occur even when q~ does not change direc-
tions as in a RW universe. Remember that the definition
of e.' is somewhat arbitrary. One still has the &eedom
to do a rotation as in Eq. (22) of the polarizatiori vectors
in this plane even if this rotation is g dependent. Re-
turning to Eq. (45) we see that D+„——2e„V'os~~~
—2E'~ WOE'~ ~ depends explicitly on the velocity V'OEg of
the polarization vectors in this plane. Consequently, the
presence of the D+x coupling term is due solely to the
rotation of the polarization vectors in the plane perpen-
dicular to j~. A D+.x g 0 therefore only means that we
have not chosen the "correct" polarization vectors: one
in which the polarization vectors do not rotate about q~.

To demonstrate that such a choice of polarization vec-
tors always exists, we preform the g-dependent rotation
of the polarization vectors given in Eq. (22). Under this
rotation we find that

m+(e) = m+(e) —4(P') —8&(') e,.
' V'oe

—a (N++ (e) (cos 2P —1) + N+„(e) sin 4P + N„„(e)sin 2P},

—a (N++(e) sin 2P —N+„(e) sin 4P + N„„(e)(cos 2P —1)},
N+„(~) =

~ [N„„(e)—N++(e) j sin4$+ N+„(e) cos4$ . (49)
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Clearly, one needs only to choose, for any given e-(-')

1
D+x(e)dn'+ 4o,2 (50)

, I

———
I dn +do

" kki3
ii +i2 (ai a2 j (51)

and the coupling term proportional to D+&& (e) vanishes.
Po is an arbitrary, constant angle and its presence means
that we still have a degree of freedom to choose our po-
larization vectors. For the specific choice of polarization
vectors given in Eq. (24),

de~ ~ I ~

~i,(i)~,(i)
d7/ G~

2 2

~ d ". I
(2)& 2 ) 2 (2)~ (2)

Gj
2 2

(54)

The difference of these two terms is just —a N++ ——

g m(+) a'/a~ while their sum is just the g &~a'. /a~ de-
fined in Eq. (A2) of the Appendix. For the choice of
gauge Eq. (18) it plays no role. The infinitesimal change
to the orthogonality condition is measured by the linear
combinations

f- (~) =)."(~ )""(~) (52)

Notice also that Eq. (51) does not have a symmetry under
exchange of 1-2-3 which is a reHection of the fact that
once a specific choice of polarization vectors has been
made rotational symmetry is broken. Other choices of
e.' will only result in diff'erent forms for P, but D+x will
still vanish.

While D+x vanishes after an appropriate choice of po-
larization vectors is made, this still leaves the coupling
term proportional to N+x. This term came &om the
gauge dependent term of the original action, however,
and is different for different choices of gauge. It is possi-
ble that under other, more clever gauge choices this term
will no longer be present. Its physical relevance is there-
fore questionable at this point. There are two ways to
address this problem. The Brst is to redo this calcula-
tion with a different gauge choice and see if the coupling
terms are still present. This we have done in the Ap-
pendix. This method, however, has the shortcoming in
that one can never be sure there. is still some other gauge
choice for which the coupling terms vanish identically.
The second way is to develop a physical argument for
or against the relevance of the physical terms. The fi-
nal conclusion of this argument should therefore be valid
with any gauge choice. This is the approach we shall now
take.

Consider the function

) (1)~ i + (2)~ i '

2 ) - i (i)~ (&)

dg dg ) az

which is just aNX2„—= Pm(") a'/a~, and

. (g~ ~

e(i)~ 1 e(2)
d'g d'l7 )

= D+x (56)

We thus see that each of the terms which may cause
a coupling between the two polarization states, N++,
Nx „,N+x, and D+x, have their roots in the time rate of
change of the polarization vectors. Since the polarization
vectors change with time due to the anisotropic rate of
expansion of a 8-I universe, we therefore conclude that
the presence of these coupling terms is a natural conse-
quence of the physical properties of the spacetime. In
particular, we see that a coupling between the two polar-
ization states will be present so long as we are not able
to consistently define a polarization state which is valid
at all times. They will be present in some form no mat-
ter what gauge conditions one chooses and the coupling
terms are physically relevant.

To further illustrate the connection between the rate
of change in the direction of the polarization vectors and
the coupling term, let us look at the conditions under
which theses coupling terms will vanish. For the special
choice of polarization vectors given in Eq. (24),

where gi is some fixed time and e(') (gi)
g (gi)e '

(~i))i. Clearly, f„(I)ri= —S„and thus f„
is a measure of how the orthonormality of the polariza-
tion vector changes with time. Next, considering f„as
a function of g only, we expand ez(g) in a Taylor series
in g about gi and find that, to Grst order,

(ai a
D = —2„+x— i, +i, (, ai

2 hajj (
a 6+&3 t'ai a2)

—~i I

———
I
+ ~2 I

———
I(a2 a3 p (a3 ai )

f.. (i)) = -b.. + ) e( )'
dg

(~ —ni) + ". (8 —~')~3 &a'i

&i + &2 kai a2)

Since gi is arbitrary, we see that the infinitesimal change
in the normality condition is measured by

We caution the reader that while D+x is invariant under
constant rotations of the polarization vectors, N+x is not
and our arguments are valid only within this choice e

' .
We see that all coupling between the two linear polar-
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+ hRhl + hRhl,
P'(e) — &'(e)

a a (58)

izations will vanish if either ai ——a2 or if q~ = 0 along
some direction j. Although the first condition seems to
break the 1-2-3 exchange symmetry in the labeling of the
anisotropy axis, this simply means that we were fortu-
nate enough to choose the "canonical" polarization vec-
tors for the GW which decouples the two polarizations.
Any other choice of polarization vectors will produce @n

N+„g 0, but can always be made to vanish with a con-
stant rotation of the polarization vectors. D+&&, on the
other hand, vanishes for all such choices of polarization
vectors.

Referring to Eq. (24) we see that when ai ——a2, e.(2)

lies in the 1-2 plane and, more importantly, its direction
does not change with time; V0e is once again parallel

to ~& ~. Thus any direction we choose for this polarization
will always lie in this direction and will not change with
time.

Suppose, now that ai g a2, but q3 = 0, then all the
coupling terms between the two polarization states van-
ish. In this case q~ lies in the 1-2 plane but more im-
portantly we may always choose one of the polarization
vectors to lie in the three-direction perpendicular to this
plane. Once again we see that the direction of this po-
larization vector does not change and we can once again
have a consistant definition of polarization vectors for all
time.

We now see explicitly that the coupling terms vanish
as long as the direction of one of the polarization vec-
tors does not change with time. This also can be seen
in the definition of N+~ which depends on the direc-
tional derivative of the polarization vectors. Physically,
it means that when this happens we can consistantly de-
fine the direction of at least one of the polarization vec-
tors at all times. The second polarization can be found
by taking the cross product of this polarization vector
with the direction of propagation of the GW. Although
this can be done in certain special cases, it is not true in
general and there will in general be a coupling between
polarization states of the GW no matter which gauge one
picks.

Finally, we note that, for circularly polarized GW,

polarizations are equal,

m (e) = 3[m+(e) + m (e)]

a' g,
' 2

j)k 1

2

+ [N—++ (e) +' N&& && (e)], (6I)

as well as
gii+i2 ka' ~') (62)

0=6 V 6 —6 Vp 0 p, 0

u3) 2 /u3 ui'l
ii I

——-—
I
+ rI2 I

———
I+3) k+3 +i)

(~i —~3)6
~

ai (63)
&i + &3 kui u2)

must both vanish separately. This can only happen when
the GW propagates along an asymmetry axis and the
spacetime is axially symmetric in the plane perpendic-
ular to t;his axis. For example, the coupling term will
vanish if q3 ———1 and ai ——a2. This is a much more
stringent condition than for linearly polarized GW's and
is because although the two linearly polarized GW's may
decouple &om one another, they will still have different
mass terms and this introduces an additional coupling.
Thus we have the peculiar situation that while the linear
polarized states may decouple &om one another, the cir-
cularly polarized states need not. This once again under-
scores the fact that in a general B-I universe one cannot
consistently define a polarization state at all times.

but we pay for this symmetry through the addition of
a complex coupling term between the two polarization
states. This coupling term will only vanish when both the
real and imaginary parts of P(e) vanish. If, however, they
vanish for one choice of polarization vectors, they will
vanish for any other choice from Eq. (59). Consequently,
we may use the polarization vectors given in Eq. (25),
and find that

0=E~ iV6 +6 V

where hR = (h+ —ih&&)/~2, hL, = (h+ + ih&&)/~2,

&(~) = e"'&(e)

wit;h

P(e) = l[e V e +E— V

+i(e(i) /l e(i) e(2) /Pe(2) )] (60)

and P defined through Eq. (50). We have thus eliminated
the D+x with this choice of polarization vectors. Notice
that for circularly polarized GW the mass terms for both

V. SOLUTIONS OF EQUATION OF MOTION

The evolution equation for GW in an arbitrary B-I
spacetime cannot be solved in terms of known functions
in general, especially when there is a coupling between
the two polarization stat;es. Consequently, we shall only
consider GW's propagating in either the Kasner or the
Zel'dovich spacetimes where solutions can be found in
certain special cases.

From the action equation (46) the evolution equation
for a linearly polarized GW propagating in a Kasner or
Zel'dovich spacetime is
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0=
f

d2h- 1 da dh- 3

dy a dy dy

dhq++2D+x —a N+xhq+
dy

(64)

d2hq+ 1 da dhq+0= +2—— + & ) y "'q +.m+ &hq+
dy2 a dy dy j=l

dhqx
+2D+x —a N+„hex,

dy

hq+ will be different &om that of hqx due to the addi-
tional masslike term in its equation of motion. It is only
when we are propagating along the asymmetry axis of
an axially symmetric B-I universe will the two polariza-
tions have the same behavior. Since the solution for hq+
can be obtained from that of hqx by setting az ——aI, in
the mass term we shall concentrate our attention on the
solution of hqx.

It is straightforward to see that the solution to Eq. (67)
are Bessel functions J and Y„. Using the parametriza-
tion of the pz given in Eq. (12) we Bnd that

where we have not chosen a D+x ——0 and we have
taken yo ——1 for convenience. In the above, the tilde
denotes the fact that we have scaled the corresponding
quantity by either 4QO or 4(81rpo/3 + Qo) depending on
whether the spacetime is a Kasner or a Zel'dovich uni-
verse to make the resulting quantity dimensionless. For
example, P = qs/4/Qo for the Kasner universe while

q = qs/4/(81rpe/3+ Qe) for the Zel'dovich universe. We
see that due to the coupling term between the two po-
larizations, even if the GW is initially plus polarized, a
cross polarization will be generated. Unfortunately, even
in the case of the Kasner universe Eq. (64) cannot be
solved generally. We shall instead have to look at limit-
ing conditions.

SuPPose, for convenience, that P1 ) Ps ) Ps. I et us
now consider a general q for which each of the compo-
nents of q do not vanish. If we then take the limit y —+ 0
we 6nd that qi ———1 while q2

——q3
——0. With the choice

of polarization vectors given in Eq. (22),

m =0, m„= —
(

———
) (65)(as as)

where the prime now denotes the derivative with respect
to y. N+x ——D+x ——0 and there is no coupling between
the two polarizations. Similarly, when y —+ oo, qi ——q2 ——

0 while q3
———1. Now

1—
2 COS ~—

2 SXIl1 /3

(1 —
s cosg —

2 sing)

( — 1—
z~ cos 8—~s sin 8

( 1 ——cos 8 ——sin 8)

( 1—
s cos8+~s sin8

h(2)(- )
'q, ' A(2) J

(1 —
2 cos 8 + ~2 sin 8)

f 1—
s cos8+~z sin8

i 1 —
2 cosg+ —sing)

1+cos 8

h„(q, x) = e'q' A„J„,
~( 1+cosg)

@(s)y
~

qsy

( 1+cosg)

where

~3cosgp v3sing~
V~ =

~ 7

2 —cos8 ~ ~3sing

&s=v3 / sing[
1+cos0

(68)

(69)

m+ —0, m
(a] as ) (66)

0
d2h-+

dy2

d2hq„

dy

1 da+2——
a dy
1 da+2——
ady

dh-q+ + 1 3@i~hy q) q+ ~

y
dhqx

dy
I I 2

+ y "'qi —
I

———
I

1-S„,~
aI ) (67)

where l P j g k. Notice that in general the behavior of

In these two limits the behavior of the GW simpli6es
dramatically and can be solved in closed form. More
importantly, these two limits, which corresponds to the
behavior of the GW near the initial singularity as well as
the large time behavior of the GW, are the most physi-
cally signi6cant.

It is therefore sufBcient to consider a GW propagating
along one of the symmetry axis; say in the Lth direction.
Then in Eq. (64) hq+ and hq&& decouple into two equa-
tions:

while A„and Bx are integration constants. The super-

script h „signi6es that this is a GW which propagatesqx

along the jth direction. The h-+~ solutions are obtainedq+
from the above by replacing the Bessel functions of var-
ious orders with Bessel functions of order zero but with
the same arguments.

Of particular interest are the small and large y lim-
its to Eq. (68). The large y limit determines whether or
not the GW (which is a perturbation of the metric) in-
creases or decreases in magnitude. It thereby establishes
whether or not the Kasner and Zel'dovich universe are
stable under small perturbations. The small y limit, on
the other hand, determines the behavior of the GW near
the initial singularity. To do so, however, we shall have
to 6nd a way of comparing matrices. We therefore define
the norm

//T„„// = max fT„[, (7o)

where the max is taken over all components of the ten-
sor. This norm has the advantage of having all the nice
properties associated with a norm [8).
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Taking erst the y —+ oo limit, we find that

2 —cos 8 —asm 8 (2 pppg ~spine)/4 (l)
qzvr

(2—cos 8—~3 sin 8)/2

2 —cos 8 —~3 sin 8

vr ( 1&——
I
~++ —

I2( 2y

(2—cos 8—~3 sin 8)/2
+ Bx sin q~y

2 —cos 8 —~3 sin 8
++ 21 (71)

while

(3) q, '2( 1 + cos 8) (i+, , s)/2 A(s) qsy'+-'
q 1+cos8 2 I 2)

2q3y
1+coso

vr ( 11——
I
»+ —

I2 l 2) (72)

with 6 „being obtained from h by taking 0 m —0 andqX qX
replacing (1) with (2) everywhere. It is then straight-
forward to show that the amplitude of (~h„'„~~/~~g„„~~ de-
creases with increasing y. Consequently, we see that the
perturbation h~ of the metric decreases with increasing

Taking now the small y limit, we And that

I (&) —
2 f

cos0—~& sin8j
qX )

h(3) —~3 sin e
qX y (73)

where once again 6 - is obtained from 6- by takingqX qX
8 ~ —8. Equation (73) holds as long as the degree of
the divergence in h(-„does not vanish. When it does,

that 6 will have a logarithmic divergence. We there-qX

fore find that as long as p2 g ps, (~h„~ ~(/~~g»~~ 1
from GW's propagating along the one- or three-direction
while [~h~(") (~/~~g„~~ 0 for a GW propagating along the
two-direction as y -+ 0. Similarly, [[h&(+„)))/))g~„)( lny
for a GW propagating along the one- or two-direction
and ~[h~(+„) ~[/)~g„„~[ ~ 0 for a GW propagating along the
three-direction. We thus see that along the one- and

I

two-directions the perturbation of the metric becomes
unboundly large near the singularity.

For the special case of p2 —— p3, we Gnd that
~[6~(„)~(/~~g„„~~ 1 for GW's propagating along the two-

or three-direction while )(h„"„[)/))g„„(( lny for a GW
propagating along the one-direction. Similarly, we find

that ~[h~(+„) ~~/~)g„„[) lny for a GW propagating along

the one- or two-direction, while [)h„()/])g„„[)~ 0 for
a GW propagating along the three-direction. Thus, in
this special case the perturbation of the metric becomes
unboundly large along all three directions. The case con-
sidered by Hu, which corresponds to 0 = 0, belongs to
this category and the results we have obtained agree with
his.

The case where 8 = vr/3 is quite special since this cor-
responds to p2 ——p3 ——0 while pq

——1. Supposedly, this
case also falls within the above analysis and we would
still obtain the same small y behavior. When pp = 0 this
is the Rindler spacetime, however, which is known to be
equivalent to Minkowski space and supposedly the prop-
agation of GW's in a Minkowski spacetime does not have
a singularity. To address this problem, we now perform a
more detailed analysis of the solution in this special case.

Going back to the equation of motion, we see that,
when 8 = m./3,

~(+)(q„*)—= ~(+) (q, )~(,')

(
S 3 2 2 ) A(i) iqq(a +tplnt/tp) ~ B(i) iqq(p: —tplnt/tp)+ +

h.(+) (q„*)—= ~(+) (q, )h,"
= (e e —e„e ) A+ Jo (q2t) + B+ Yo (q2t) e' '

h.(+)(q„*) = ~(+)(q,)r +")

= (e„e„—e„e„) A+ Jo (qst) + B+ Yo (qst) e' ' (74)

where we have put back in the polarization tensors explicitly, to ——2'/3 and we have used y = (t/to) / for the
Rindler spacetime. Similarly,
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g( )(q,

r ("„)(q., *)

( )(q )g( )

(
2 3 + 2 3) ~( ) iq1(~ +tglnt/to) ~ gg( ) iq1(~ —taint/to)
p u v p, J X x )

( )(q )z( )

—(e e + e e ) A~ Jq (q2t) + R„Yj (q2t) e' '

( )(q )z( )

—(e e + e e ) A„Jq (qst) + R„Yj (qst) e' '

and we can see explicitly the singularity in the solutions
when t -+ 0.

Let us now do a coordinate transformation into
Minkowski spacetime. When 0 = vr/3, the metric is

ds = (dt) —
~

—
~

(dx ) —(dx ) —(dx ) . (76)
(t&

To map this into the Minkowski spacetime, we make the
coordinate transformation

T = t cosh(x'/to), X' = tsinh(x'/to),

X =x, X =x
Notice, however, that because h~ is a tensor, it trans-
forms as

Bx Ox~

OX& BX" (78)

(79)

and the equation for the x mode has the same form. No-
tice that Eq. (79) is a solution of the wave equation in
Minkowski spacetime, as a GW in a Minkowski space-
time should. In this sense it is a GW in the Minkowski
spacetime, but it is not plane wave and satisfies di8'er-

where Mh„„ is the transformed GW. Note, however, that
Ox /8X" is block diagonal and mixes the 0-1 compo-
nents of the GW while leaving the 2-3 components alone.
For GW propagation in the two- or three-direction, this
means that the transformed ~he„g 0, although qMh;z ——

0 still and it will still be traceless. Consequently, for
GW's propagating in these two directions, the trans-
formed GW will not satisfy the usual synchronous gauge
and is not what one usually calls a GW in a Minkowski
spac ctime.

For GW's propagating along the one-axis, however, the
situation is a little difFerent. Notice first that the polar-
ization matrices will not be changed by the transforma-
tion and that they are, in fact, precisely the polariza-
tion matrices for a GW propagating in this direction in a
Minkowski spacetime. Next, using the coordinate transe-
formation Eq. (77), we see that

I

ent boundary conditions. Consequently, we see that after
a coordinate transformation into a Minkowski spacetime,
the GW in the Rindler spacetime will not be transformed
into what we usually refer to as a GW in the Minkowski
spacetime.

VI. CONCLUDING REMARKS

To conclude, we have begun the analysis of the prop-
agation of GW's in B-I universes using the method de-
veloped by Ford and Parker. We find the behavior of a
GW in a B-I universe to be very much diferent than a
GW in a RW universe. The two polarization states are
not equivalent to two minimally coupled, massless scalar
fields. Rather, each polarization state gains what is eQ'ec-

tively a time-dependent mass term due to the tensorial
nature of the GW. Namely, the GW is a spin-2 parti-
cle instead of a scalar particle and is consequently much
more sensitive to any anisotropy in the universe. We have
also found the two polarization states to be coupled to
one another. This coupling term depends explicitly on
the gauge one picks for the GW and varies as one varies
the choice of gauge. No matter what gauge choice one
makes, however, a coupling between the two polarization
states will always be present and the coupling is not a
gauge artifact.

The reason for this is fairly straightforward. We can
consider the propagation of a GW in a B-I universe as the
propagation of a wave through an anisotropic medium.
Although the polarization and direction of propagation of
this GW is initially arbitrary, as it propagates through
the anisotropic medium the medium itself will tend to
change the direction of propagation, and thus the direc-
tion of polarization, of the wave. This can be seen explic-
itly in a Kasner universe where the anisotropic medium
gradually forces the wave to propagate only along one
of the asymmetry axis. The anisotropy of the medium is
constantly changing with time, however, and thus the po-
larization state that the medium wishes the GW to adopt
also constantly changes. This is done through the cou-
pling term between the polarization states and is caused
by changing of the polarization vectors with time.

We would therefore expect a coupling between the two
modes of the GW to be present in any anisotropic ex-
panding universe. Indeed, such a coupling has also been
found by Ezawa and Soda [9] who analyzed the effects of
the topology on the propagation of GW's. They consid-
ered GW's propagating on plain symmetric spacetimes



5456 H. T. CHO AND A. D. SPELIOTOPOULOS 52

with two of the spacetime directions compactified into
a torus and also found a coupling between the plus and
cross modes of the GW.

Hu considered a 8-I spacetime for which pq ——p2 ——2/3
while ps ———1/3 (we have changed slightly the notation
used in [3]). Moreover, he only considered a GW propa-
gating along the cylindrical axis. We have seen, however,
that the behavior of GW s in this spacetime is quite spe-
cial and atypical. In fact, it is only for a GW propagating
in this manner in this spacetime that the two linear as
well as circular polarizations decouple from one another.
Propagation along any other direction in the spacetime
will introduce a coupling between the two polarization
states.

Miedema and van Leeuwen have also analyzed the
propagation of GW s in B-I universes within a general
analysis of perturbations of a B-I universe. Looking at
the GW component of the perturbations, they found
that while a GW can be de6ned as being transversal
at any given time, as the wave evolves in time non-
transversal components of the wave will begin to appear.
They thereby conclude that GW's in B-I universes are
in general nontransversal. The longitudinal components
of the wave, however, were considered to have no physi-
cal meaning since they can be gauged away at any given
time. We did not encounter any such subtleties in our
analysis. We have instead found that with the correct
gauge choice the GW will always be transverse.

The difference between our two results can be found in
the gauge conditions that we have taken. Miedema and
van Leeuwen have chosen to work in the synchronous and
traceless gauges (see Eqs. (38) and (108) of [4]). They
then attempted to enforce the usual transverse condition
on the GW (Eq. (114) of [4]). As we have shown, these
three gauge conditions are incompatible and one of them
must be modified. By imposing the synchronous and
traceless conditions on the evolution equations for the
GW (Eq. (135) of [4]), they cannot then choose the usual
transverse condition. This inconsistency may be the root
cause for the generation of the longitudinal components
as the wave propagates that they observed.
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APPENDIX

In this appendix we shall repeat the analysis found in
Sec. IV using the usual transverse-synchronous gauge in
order to show that coupling terms between the polariza-
tion states are still present in this gauge. Indeed, we
shall see that the problem gets worse, not better, with
this gauge choice.

Let us denote the polarization tensor for the GW in
this gauge by & .k . Then, so as to keep a basis with whichgk

we can compare m. k with m. k, we shall not change the—(8) ~ (8)

definition of the polarization vectors. Rather, we shall

once again express m. k in terms of e.' by taking

() I+l/p() . /p()jk = jk ~k (A1)

where

(i) (i) (2) (2)
7~k =6 6k +C. 6k ) (A2)

-(+) (+) ~

67 k
= cos PG7-k —sin(P7~k )2 2

= —sin p cos 6 m. k
—cos y cos 8 w~k + sin 6 m. k

(x) (+) (x)
gk gk ~k

(A4)

where

I

) —w~—:g cos y sin 6,a.
I

) —~' m~+l = g sin y sin 8,2

I

) —'m~" ~ . —:g cos 6,a.
2

(A5)

and

(+)~ -2j
2

I

)
(A6)

For a RW universe, 8 = x/2 while rp = 0.
At this point, we make a few observations. First, the

angles 8 and y are determined precisely by linear combi-
nations of the terms found in Eqs. (54) and (55). Second,
these terms, which measure the infinitesimal change in
the orthonormality conditions for the polarization vec-
tors, did not disappear when we changed to this gauge
choice. This underscores the fact that they are physically
relevant. Third, the trace of the polarization tensors no
longer vanishes,

) m~+l~ = 2sin(p, ) &~"i = 2cos (pc s6o, (A7)

which will introduce additional terms to the GW La-
grangian.

and n~'l, P~'l, p~'l are coefEcients which are to be deter-
mined. Clearly &.k still satisfies the spatial components
of the transverse condition. We still require that the two
polarization tensors for the two polarization states of the
GW be orthonormal to one another and this gives the
constraint

1 = ( ")'+(&")'+(~")'. (A3)

The 0-component of the transversality condition in
Eq. (17) can now be used with Eq. (A3) to determine

(s) uniquely:
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In this gauge, the Lagrangian for the GW now becomes Then

I = — g—gd x V' h~ V'"hg + 8sr (p —p) h~ hg4 a P rx P

—2a~h I I f.' —2a».„I„a~

—V'ph, V'P h —h,B""h„„

M++ ——M++ —VPV V'V —sln2V H+ sin'VD+2x

M~~ = M++ —Vp8V 6 —cos 8V'ppV' p
+ cos 8 sin 2yH —sin 28 cos pG
+ cos 8 cos pD+~
+(2 sin pV'~8 —cos rp sin 267'~y) D+„,

where h = h"„is the trace of h„„which does not vanish
in this gauge and we are denoting the difFerent choice of
gauge with a caret. Once again we can divide this action
up into three terms, the only difference being that the
form of the gauge dependent piece is now diKerent:

M+ „——sin 8V'p8VPp —cos 2p cos 6H —sin 8 sin pG
—(siny sin6V'~y + cos icos 6V~8) D~+x

+ 2 slIl 2p cos 'l9D+ ~ (A12)

While Dp++: Dpx)& 0 still,
Ig = — Q—gd x( V'phd—'~h —hR""h„) .g (A9)

Dp+ x sin 8 cos pDp+ Q + cos 8V pp (Ala)
Proceeding in exactly the same way as before, we And
that In a similar fashion, we find that

Im= —) f a d T ) Vph, V~h, , —) M..h.h, IR = ——) ) f n'd, '+TED 4, , ,. .
q ss'

—2) Dp„h, V'~h, ~,
as'

(Alo)
with

T++ —cos 2p T++ )

where M„and Dp„are de6ned in exactly the same

way as M„and Dp„I but with &~' replacing m„' in
Eq. (42).

It is straightforward to show that

T„„=(sin 8 —cos Icos 2y) T++,

T+ )&
= —cos 'l9 sin 2p T++, (A15)

~~V ~(+~"
v p p,

Vpv."VP~„

V ~( ~~VP~
p v p.

V m(+)~VP~
p v p

—V ~&~(+~ =0
—2M++ —2D+
—2G = —4V' ( ) V'"e( )

P v

—2H

—2 V E(1)Vp, (1)v V E(2~ V'+6(2) v
P v P v

(All)

where we have used

(+)m k 0 ~ ~ij (x}m kkm~ i j — ) Z km i j
ijkm i jkm

) R'~, ~;~," = T++. (A16)—
ijkm

Finally, we have the gauge term

I = —— a d x a7(s)a7(' )V' h, V h, + 2%7(')V' zv(' )h, V' h,2-,qas

(A17)

where &~'~:—&~') "/~2 and is given in Eq. (A7). Combining the three terms together we obtain

I = —,) f a'z'*( (s.. —e~ ~e~'~) v, r v~h. .,

qss'

(Als)
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We can now see explicitly that instead of eliminating the coupling term, this choice of gauge merely makes things
worse. In fact, the kinetic term for the two modes are now quite different than what we would expect and additional
coupling terms now appear. It is, however, important to note that these additional terms have the same origin as
those obtained by using the previous gauge. Namely, they all come Rom linear combinations of Eqs. (54)—(56) and
arise from the fact that the directions of the polarization vectors are continually changing with time.
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