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Evolution of three-dimensional gravitational waves: Harmonic slicing case
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We perform numerical simulations of a three-dimensional (3D) time evolution of pure gravi-
tational waves. We use a conformally Hat and K = 0 initial condition for the evolution of the
spacetime. We adopt several slicing conditions to check whether a long time integration is possible
in those conditions. For the case in which the amplitude of the gravitational waves is low, a long
time integration is possible by using the harmonic slice and the maximal slice, while in the geodesic
slice (a = 1) it is not possible. As in the axisymmetric case and also in the 3D case, gravitational
waves with a sufBciently high amplitude collapse by their self-gravity and their final fates seem
to be as black holes. In this case, the singularity avoidance property of the harmonic slice seems
weak, so that it may be inappropriate for the formation problems of the black hole. By means of
the gauge-invariant wave extraction technique we compute the waveform of the gravitational waves
at an outer region. We And that the nonlinearity of Einstein gravity induces the higher multipole
modes even if only a quadrupole mode exists initially.

PACS number(s): 04.30.Nk

I. INTRODUCTION

Gravitational waves &om the last three minutes of
coalescing compact binary systems [1] (neutron-star—
neutron-star, black-hole —neutron-star, and black-hole—
black-hole binaries) are one of the main targets of the
kilometer-size laser interferometric gravitational wave de-
tectors such as the Laser Interferometric Gravitational
Wave Observatory (LIGO) [2] and VIRGO [3]. These bi-
naries first emit quasiperiodic gravitational waves. Dur-
ing this stage, the emission time scale of gravitational
waves is much longer than that of the orbital period, so
that we may assume the adiabatic evolution of the bi-
nary. However, once two stars in the binary approach up
to 6—8 M, where M is the total mass of the binary, they
cannot maintain the circular orbit because the centrifu-
gal force cannot be balanced with the strong relativistic
gravity [4] or tidal force [5]. At this stage, the circular
orbit of the binary changes to the plunge one, and finally
they emerge and will become a rotating black hole in a
few milliseconds. In such a phase, i.e. , in the last three
milliseconds of a coalescing binary, many gravitational
waves will be emitted violently [6], and these gravita-
tional waves reBect the strong gravitational field and the
fast motion of the matter there. Hence, if we can detect
such gravitational waves by LIGO and VIRGO, we will
be able to see a strong gravitational field.

Such gravitational waves, however, have a frequency of
kHz, so that the sensitivity of the laser interferomet-

ric detectors will not be so high (the signal-to-noise ratio
is at most 10) even for advanced LIGO [2]. To confirm
the detection of such a signal of gravitational waves, we
had better prepare a theoretical template of gravitational
waves which can be compared with the detected signal of

gravitational waves. Here, any approximations in general
relativity break down to calculate gravitational waves at
the binary merging. We must solve the fully general rel-
ativistic equations, which can be done only by a three-
dimensional (3D) numerical simulation. This paper is an
efFort toward the success of such simulations.

In 3D numerical relativity, there are several points to
be developed. One of them is the choice of an appropri-
ate spatial gauge and slicing condition, and another is
the establishment of the method to extract gravitational
waves from the 3D metric. As for the spatial gauge, we
require that it should be free from an appearance of co-
ordinate singularity as well as that it deletes the spurious
gauge modes. The minimal distortion (MD) gauge was
proposed by Sinarr and York [7] seventeen years ago as
a spatial gauge which has the required property. How-
ever, to adopt it, we must solve the complicated vector
Laplacian equation and no one has tried to use it except
in spherically symmetric calculations. Recently, one of
us (T.N. ) used a similar type gauge condition (which we
call a pseudominimal shear gauge) for test simulations of
merging binary neutron stars, rotating core collapse, and
the head on collision of two black holes, and made sure
that this type of gauge condition is a good one [8].

As for a slicing condition, we require that it should
have the following two properties: the first is a singu-
larity avoidance property, and the second is that a long
time integration is possible by using it. The maximal
slice (K = 0, where K is the trace part of the extrinsic
curvature) is a mell-known slicing condition which has
the singularity avoidance property. However, to adopt
this slicing condition, we need to solve a 3D elliptical
equation that is somewhat time consuming. Shibata and
Nakamura proposed the conformal slice which seems to
be appropriate in order to see gravitational waves in the

0556-2821/95/52(10)/5428(17)/$06. 00 5428 1995 The American Physical Society



52 EVOLUTION OF THREE-DIMENSIONAL GRAVITATIONAL. . . 5429

wave zone. This slicing condition also has the singular-
ity avoidance property for the formation problem of the
black hole [9]. T. N. used the conformal slice for simula-
tions of merging binary neutron stars and rotating core
collapse, and found that the conformal slice has an excel-
lent property to see gravitational waves in the wave zone
[8]. However, as shown in Sec. IV B, this slicing condition
is not good for pure gravitational wave problems.

Recently, the harmonic slice (Ut = 0) has been pro-
posed [10]. The harmonic slice seems to have the singu-
larity avoidance property [10] and is very tractable be-
cause we only need to solve a simple evolution equation
for the lapse function. However, this slicing condition
has not been investigated much compared with other slic-
ing conditions and the detailed properties have not been
known well. We hope to clarify in what problems we can
use it.

As for the wave extraction, recently, the gauge-
invariant wave extraction technique has been developed
by NCSA group [11]. In their method, they assume
that the numerically calculated spacetime metric in the
wave zone can be split into the Schwarzschild metric and
the metric of the linear part. Then, they calculate the
gauge-invariant quantity &om the linear part. Using this
technique, they calculated the quasinormal modes clearly
in their axisymmetric calculations of black hole space-
times. We need to check this technique for 3D calcula-
tions whether we can extract the wave form clearly.

For these purposes, we simulate the evolution of the
3D vacuum spacetime of pure gravitational waves in this
paper. To check the behavior of the spacetime under sev-
eral slicing conditions and to investigate that the wave
extraction technique works well for various situations, we
consider low amplitude gravitational waves as well as a
high amplitude one. The paper is organized as follows.
We describe the basic equations as well as the bound-
ary conditions and the numerical methods in Sec. II. In
Sec. III, we show conformally Hat and K = 0 initial con-
ditions of gravitational waves. In Sec. IV, we investigate
the property of several slicing conditions. In this paper
we adopt the geodesic slice {n = 1, where n is the lapse
function), harmonic slice, and the maximal slice. We will
show the advantages and disadvantages of them, brieBy.
In Sec. V, we Grst describe the methods for the analysis
of numerical data and then show numerical results. It is
found that the singularity avoidance property of the har-
monic slice is weak. Section VI is devoted to summary.

Throughout this paper, we use the units of c = 1, and
Greek and Latin indices take 0, 1, 2, 3 and i = 1, 2, 3,
respectively.

ds = —(n —P;P*)dt + 2P;dt dx'+ p;~dx*dx~, (2.2)

where n, P~ and p,~ are the lapse function, the shift vector
and the metric on a 3D hypersurface, respectively. Using
the 3+1 formalism, the Einstein equation is split into the
constraint equations and the evolution equations. The
Hamiltonian and momentum constraints are

R —K,,K" +K' = 0, (2.3)

D,.K'~ —D~K = 0, (2.4)

where K,z, K, B, and D, are the extrinsic curvature,
the trace part of K;~, the scalar curvature of a 3D hy-
persurface and the covariant derivative with respect of
p;z, respectively. Evolution equations for the metric and
extrinsic curvature are, respectively, written as

l9

Bt
—p,, = —2oK;, +D P, +D,P;, (2.5)

K;~ = a—(R;~ + KK;~ —2K;~K,') —D;D; n
Ot

+(D,P )K;+(D;P )K, +P D K.. .
(2 6)

t9—1n(p) = —2o.K+ 2D;P',
Ot

(2.7)

Ot
—K = n(B+ K ) —D'D;n+ P~D K, (2.8)

where R;~ and p are the Ricci tensor with respect to p;~
and determinant of p,~, respectively. Hereafter we use
P = ln(p)/12 instead of p.

Although it is possible to treat these evolution equa-
tions for numerical integration, in our numerical code we
solve p, z

——exp( —4P)p;z instead of p,~ for convenience
and define det(p;~) to be unity. We also define A;~ as

A,~ = exp( —4$)A;~ = exp( —4$)(K;~ —sp;~K) . (2.9)

We should note that in our notation, indices of A;~ are
raised and lowered by p,z, so that the relations, A'~ = A'~
and A'~ = exp{4$)A'~, hold. Using these variables, the
evolution equations (2.5)—(2.8) can be rewritten as

d — BP' BP' 2 BP'—
V*g = —2~A'g+V'i +Vgi ——

&V~ i (210)
dt Ox& Ox' 3 Bx

II. PORMULATION

In this paper, the basic equation is the vacuum Ein-
stein equation as

G„=0. (2.1)

We solve this equation imposing no symmetries except
for the equatorial plane symmetry. To solve Eq. (2.1),
we use the (3+1) formalism and write the line element

dt
—A,~

= exp( —4Q) n
i
B, . ——p;.R

~

—
l D;D~o' ——p,~D"Dgo'.

)
+n(KA, ~

—2A iA'~)

+ . 4 . + . A;+ — A;-,HEPTA QPttl2QPnl.
x x 30x (2.11)
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d 1 ( BP')—P = —
/

—nK+
dt 6 q Ox)

—K = n(A;~A'~ + s K ) —D'D, n,

(2.12)

(2.13)

F—; = 2n(f"~A;g, ~ + f"~ ~A;i, —2A 'h, (, ,

+6/ i,A"; ——K,;) —2o. A;. + /3" h,;
+(Y'i@,& + 'Y~iP, *

—s'Y'j P,i),~ (2.20)

where

(2.14)

Now let us consider B;~ which is the main source term
of the evolution equation for A;~. First we split R,~ into
two parts as

B,~ =R;~+R, (2.15)

where R,~ is the Ricci tensor with respect to p;~ and R,-.
is given as

B; = 2D, D—~. Q —2p;~D" Di, g + 4(D;P) (D~ P)

-4~', (D.&) (D"4) (2.16)

with D, being the covariant derivative with respect to
p,~. . Using the property of det(p, ~) = 1, R;~. is written as

Now, Eqs. (2.10)—(2.13) and (2.20) are the evolution
equations to be solved.

To solve them, we must specify a slice and spatial
gauge condition for n and P', respectively. In our nu-
merical code, any choices of the slice and spatial gauge
cond. itions are possible. However in the present paper, we
choose P' = 0 as the spatial gauge condition for simplic-
ity. In general cases such as the simulation of coalescing
binary neutron stars, we should consider an appropriate
spatial gauge condition such as minimal distortion gauge
[8]. On the other hand, we adopt several slicing condi-
tions to test them; geodesic slice, harmonic slice, alge-
braic slice similar to the harmonic slice [n oc exp(nP); n
is an integer] and maximal slice. We discuss their prop-
erties in the subsequent section (see Sec. IV).

In the numerical simulation, we use the Cartesian grid,
so the components of the metric and extrinsic curvature
which appear in the numerical code are p, p», . . . and

A», A~». . .. Since we assume the equatorial plane sym-
metry, the following relations of symmetry hold:

where, i denotes 0/Ox' and I',". is the Christoffel symbol
with respect to p,~. Following Nakamura and co-workers
[12], we split p;~ and p'~ as g,~ + h;~ and g'~ + fU, where

g,~ denotes the Bat geometry, and rewrite B;~ as

&(z)

W s(z)
A s(z)

(z)
F (z)

P(—z), n(z) = o.(—z),
~-s(-z) ~-(z) = ~-(-z)
A s(—z), A„(z) = A„(—z),
-p, (-z), A, (z) = -A, (-z),
F-(—z) F.(z) = F.( z)-—

(2.21)

4, = -', [
—~;,,ai, + h, i,i'+ h'i, i,

+f"'
i, (hi~; + hh ~

—6;~ ()

+f"'(h...„+h„,„—6;, )] —I'„,I,"; . (2.18)

where a and 6 denote x or y.
As for the outer boundary condition, we use the fol-

lowing one for p,~, F;, P, and A;~:

rQ(u) = const, (2.22)

where Q denotes geometric quantities, and we define u
as

As shown by Nakamura and co-workers [12], the first
term is the main part of the wave equation, that is, in
the linear approximation of the vacuum Einstein equa-
tion, it appears irrespective of the gauge condition. The
other terms are nonlinear terms or gauge terms in the
linear approximation; i.e. , the second and third terms
are the gauge terms or have essentially the nonlinear na-
ture. This is because the source terms of the evolution
equation for h;~ ~ are either the nonlinear terms or the
gauge terms [see Eq. (2.20)], and if we take the linear
approximation, we can set them zero. To guarantee the
nonlinearity of them as well as to avoid the appearance
of the spurious wave terms, we introduce a new variable
as

(2.19)

and rewrite the second and third terms of B;~ as E,. ~ +
F~;. Using the momentum constraint equation, the evo-
lution equation of E, can be written as

u = nt —exp(2$)r . (2.23)

More explicitly, Eq. (2.22) is rewritten as

(2.24)

where Lt is a time step in the simulation, and Lr
o. exp( —2$)At. In practice, Q(t —At, r —Ar) is obtained
by the interpolation from the nearby mesh points. We
note that this condition can be interpreted. not only as
the outgoing boundary condition for the wave, but also as
the boundary condition for 1/r potential. This is because
in the case of Q(t —4t, r) = Q(t, r) = const, Eq. (2.22)
becomes Q(r)r = const.

In numerical code, we use the second order finite dif-
ference for 8/Bx* such as
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Xi+1 Xi—1

+
+i &i—1

i+1 i

+i+1 +i

(&'+1 —&*) ~

case, we adopt a smaller time step than that for the linear
wave case for improvement of the numerical accuracy.

III. INITIAL CONDITION FOR
GRAVITATIONAL WAVES

a2

8 ~

& Q*+1 —Q' Q* —Q' —1 &

&i+1 &i —1 ( &i+1 &i +i &i 1)—
(2.25)

The grid points are determined by the rule as

In this section, we describe the initial condition for
pure gravitational waves. To give the initial condition,
we must solve the constraint equations, Eqs. (2.3) and
(2.4). Using the conformal factor @ = exp(P), Eq. (2.3)
is written as

X = X' 1 + 10(X'

1+1ii-(%-1

Zk Zk —1 + 10(Zk —1

Xg 2 7

—V, —2),
—Zk-2),

(2.26) Zy =1[kg —(A; A~ — K)q-], (3.1)

where m is a constant with m & 1. The grid cov-
erS —Xm~ & Z & Xmax7 ymax y + ymax 7

and
0&z&z . Wefixx, y, andz as4 6ro,
where re is a width of the wave packets (see Sec. III). As
for the grid numbers, we take (N, N„, N, ) = (59, 59, 30)
mesh points typically. In this case, we use a YHP 715-
50 work station. We also perform simulations on the
FACOM VP-2600 (in data processing center of Kyoto
University) taking (121, 121, 61) mesh points in order
to see the dependence on the grid number and resolu-
tion, but the results do not change so much. In the typ-
ical case, the memory required is about 35 Mbytes and
the computational time on a YHP 715-50 work station is
about 10 h for 2000 time steps.

For the numerical time evolution, we put p;z, I';, P, and
o, on t, t+At, t+24t, . . . and put A,z and K on t+0.54t,
t + 1.54t, . . .. For the case of the low amplitude wave,
the nonlinear terms in the evolution equations are negli-
gible, so that the numerical method of the time evolution
becomes essentially equivalent to a leapfrog method [13].
For the case of the high amplitude wave, the method does
not become leap&og because the nonlinear source terms
in the evolution equation are not negligible. Thus, in this

where 4 = DA, D" is the I aplacian with respect to p,~

and B = Rkk. Using D; instead of D;, Eq. (2.4) is also
rewritten as

D;A'~ —sg D~K = 0, (3.2)

where A'z —vgsA'z. Note that indices of A'z are raised
and lowered by p'~ and p;&, respectively.

One of the simplest choices to set the initial condition
for vacuum Einstein equation is to consider a conformally
Hat, p,.~ = g;z, and K = 0 initial condition. In this case,
we only need to consider the initial form of the trace-&ee
extrinsic curvature (i.e., A,~) and the conformal factor.
Nakamura and co-workers derived such initial conditions
as well as the general solution of the linearized vacuum
Einstein equation [12] to compare the numerical solution
with the analytical one. (Hereafter we call the solution of
this type the TT wave. ) The solutions of the linearized

TT wave for A;~ are composed of two independent modes,
even and odd parity modes. In this paper, however, we
consider only the even parity mode of the TT waves,
which is written as

( almYim

A;, =)
im otic

&i,6

glmYlm +

firn

Wlm
llm +Em)y

firn&im
(gl Yi —fl Wl ) sin e )

(3.3)

where an asterisk denotes the relations of symmetry. ai, bl, gi, and fi are functions of r and t which is described
as

, , /1 O lt'Pi (t —r)+Q, (t+ r)
al =r' glm, — +im,(r Op) r

l(l+ l)r Or
'

(l —2)(l+1) Br l(l+1) Or )
where P and Q are arbitrary functions. Yi is the spherical harmonic function, and X'l and Wl are given as

(3 4)

O CO f O2 O 1 O2 &

~i —2
(

——cote
I

Yi Wl =
I 2

—cote ——
q 2 )

Yi (3.5)
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We use A;z at t = 0 as the initial condition.
In this paper, we only consider the quadrupole mode (l = ~m~ = 2) for initial conditions. Even in this case, various

choices for Pqq, Pq q and Qqq, Qq q are possible. As one choice, we select

C 32~ 8 ( (r —t)') C 32~ 0 f (r+t)')
P22 P2 —2

—exp
I
—,

I Q2& Q&—&
—exp

I4 15 Bt q 2r~~ ) ' 4 15 Bt q 2r~~
(3.6)

where C and ro denote an arbitrary amplitude of the TT wave and a width of the wave packet. For simplicity,
hereafter, we set ro ——1, i.e., we fix the unit of the length scale to the width of the wave packet. In this case,
components of A,z at t = 0 are written as

A = Cqqexp( —r /2)[12 —8y —16z +2z +z (x +3y )+y —x y ],
A„z ——Cqq exp( —r /2)[ —12+ 8z + 16z —2z —z (3x + y ) —z + x y ],
A» = C» exp( r /2)(x —y )(—8+ 2z + x + y ),

A~„= Cqq exp( —r /2)xy(x —y ),
A, = Cqq exp( —r /2)xz(12 —2r + x —y ),
A„, = Cqq exp( —r /2)yz( —12+ 2r + x —y ),

(3 7)

where Cqq ——C/12. We also consider another set of P and Q as

C' 32vr 0 (r —tl' ( (r —t)' )
P22 P2 —2

—
I I

+ 1 exp
/2 15 Bt ( ro )

C' 32~ & &r+tl' ( (r + t)'l
22= 2 —2=

2 15 ~t ( ro
+1 exp

2"o )
(3 8)

where C' and ro also denote an amplitude and a width of the wave packet. Vile also set ro ——1. Then, components of
A;~ at t = 0 are written as

A = C~z exp( —r /2) (—60 + 124z + 12x + 68y —4z —17y + x y
+z'(5z' —21y ) —30r'z' + 2r z' —r'(x' —y') (y' + z') ),

A = C~z exp( —r /2) (60 —124z —68x —12y + 4z + 17z —z y

+z (2lx —5y ) + 30r z —2r z —r (x —y )(x + z )),

A„= C,'~ exp( —r /2)(x —y )(56 —17r —9z + r + r z ),
A y

—C,', exp( —r'/2)xy(z' —y')(r' —9),
A, = Czz exp( —r /2)zz( —84+ 30r —2r + (r —9)(x —y )),
A„, = C~~ exp( —r /2)yz(84 —30r + 2r + (r —9)(x —y )),

(3.9)

A,~.A'~, (3.10)

where Lg q is the Laplacian with respect to g;~. This
equation is solved under the boundary condition

where CI z —— C'/12. Hereafter we call the former
[Eq. (3.7)] and the latter [Eq. (3.9)] initial conditions
models (A) and (B), respectively. Since exchange be-
tween z ++ y corresponds to exchange C(C') ++ —C(C'),
it is sufhcient to consider the cases of C, C' & 0.

Once A;~ is obtained, we can solve the Hamiltonian
constraint as follows:

—6A~=/ A;, . (3.12)

g =1+—+O(r '), (3.11)
2r

where M is the gravitational mass of the system. Nu-
merically, we use the following standard method. (1) We
put the trial value of @ in the right-hand side (RHS) of
Eq. (3.10). (2) We solve the Poisson equation for a given
source term by the Incomplete Choleskii 0 Conjugate
Gradients (ICCG) method [14]. (3) We put new g in the
RHS of Eq. (3.10). We continue these procedures until
a sufficient convergence is achieved After g i.s obtained,
A;z is given by
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IV. SLICE CONDITIONS

We have tried to calculate the dynamical evolution of
the TT wave using several slicing conditions. We sum-
marize their properties in this section.

A

6

From Eqs. (2.13) and (4.5), we obtain

(4.5)

A. Geodesic slice: a = 1

Nakamura and co-workers have already solved the evo-
lution of the low amplitude TT wave up to t x
successfully using the geodesic slice [12]. However, the
geodesic slice has been well known as an inappropriate
slicing condition because it does not have the singular-
ity avoidance property for black hole formation problems
[15]. We here show that for a long time integration, it is
also inappropriate to compute the dynamical evolution
of the TT wave even if the amplitude of it is low. Let us
explain this using the variable K as an example. In the
case of the geodesic slice, n = 1, Eq. (2.13) becomes

+D'D;o. (4.6)

(4.7)

Let us consider the case of the linear TT waves, and
expand geometric variables as

(4.1)

For low amplitude waves, A;~ is regarded as gravitational
waves, so even if they initially exist in the central region,
in a little while, they must disperse to infinity. Although
K = 0 initially (at t = 0), K becomes positive for t ) 0
due to the term A,~A'~ ) 0. After gravitational waves

(A;~) disperse, K obeys the equation as

t9K 1

Ot 3
(4.2)

The solution of it is immediately obtained as

3K'
3 —Kg(t —tg)

' (4.3)

where Kq denotes K at t = tq & 0. From the above
argument, Kq will be positive, so that K will diverge at
t tq + 3/Kq. Clearly, this indicates the appearance
of the coordinate singularity. Therefore, we can conclude
that the geodesic slice is not appropriate even for the evo-
lution of the low amplitude TT waves [see also Fig. 3(a)].

where e is a small parameter. Then, for the lowest order
in r(O(e )), Eq. (4.6) becomes

(4.8)

For n ( 0, Eq. (4.8) becomes a 4D elliptic type equation.
In this case, we can expect that the system is unstable for
numerical time evolution. This is because the local dis-
persion relations for homogeneous equation of Eq. (4.8)
become

/n/k. k
6

(4.9)

(4.10)

where the Fourier expansion of n( ) by exp(i~t —ik .
r) is assumed. Since unstable modes [i.e. , Im(ur) ( 0]
always exist, any slicing conditions with n & 0 will not
be appropriate to evolve the spacetime numerically. This
fact can be also applied to the conformal slice [9]

B. Harmonic slice and similar algebraic slices where g = exp(P) —1. In this case, the evolution equation
in O(e ) is written as

Next, we consider the slicing condition such as

n = a.p(r) exp(nP), (4.4) (4.11)

where n is a constant and np(r) is an arbitrary function
of r which is set initially. In the case of n = 6, the slice
becomes the harmonic slice with P' = 0 [10]. Substitut-
ing Eq. (4.4) into Eq. (2.12), we obtain

or

(4.12)

Note that if we choose an appropriate K initially, this co-
ordinate singularity may be escaped.

Since Eq. (4.12) is the same as Eq. (4.8) with n = 2 and
the RHS of Eq. (4.12) does not vanish even if we use
the Hamiltonian constraint, it is unstable for long time
numerical evolutions. Therefore, the conformal slice is
not appropriate for the time evolution of the TT wave.
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For n & 0, Eq. (4.8) is a hyperbolic equation with
-(1) -(1)the source term, —Azj Azj In particular, in the case of

n = 6, i.e., for the harmonic slice, it becomes the wave
equation of the phase velocity = the light velocity. In
contrast to n ( 0 cases, the slice with n ) 0 seems to
allow the stable long time evolution in numerical simula-
tions adopting Eqs. (2.11)—(2.14) and Eq. (2.20). Indeed,
we try to calculate the time evolution of the TT wave for
a variety of initial conditions and for various n(= 2, 6, 12),
and see the stable time evolution of the TT wave. Prom
the various calculations using different n(& 0), we do not
find noticeable differences of results (but, the slice with
larger n seems to have a stronger singularity avoidance).
Therefore in this paper, we mainly use the harmonic slice
as an example.

Even if we fix n = 6, another freedom remains; choice
of no(r). For a low amplitude TT wave, its choice is not
important, but in a case of higher amplitude TT waves,
in particular, for the cases in which the collapse of the TT
wave by its self-gravity leads to the high density peaks in
the central region or the collapse of the TT wave results in
a black hole formation, its choice seems to be important.
In Sec. V, we mention the importance of the choice of
no(r) in more detail.

where

M = M (t) = lim — V', ndS' .
v —+oo 4~

(4.16)

V. NUMERICAL RESULTS

A. Method for analysis

To see some density of gravitational waves, we make
use of the curvature invariant as

(3) We continue the above procedure until n converges.
We try to test the convergence for several numerical

simulations of the evolution of the TT wave. For the low
amplitude TT wave, the convergence of the relaxation is
fast. (Note, however, that even in this case, the computa-
tional time is about ten times as long as that by means of
the harmonic slice for our typical simulations on a work
station. ) For the higher amplitude TT wave, the conver-
gence of the relaxation becomes slow. This seems due to
the first and second terms in the RHS of Eq. (4.14). To
overcome this, we need to find a more suitable method
to solve Eq. (4.13). For these reasons, in the following
calculations, we mainly consider the harmonic slice.

C. Maximal slice I = 8E,jE'~ + 4PjgP'~",

The maximal slice, K = 0, is well known because of
the singularity avoidance property for various problems
[15,16,11,17]. In the case of the maximal slice, the equa-
tion for o. becomes

where

E,j =B;j+KK;j—K;yK j,
P,.~I, ——DjK;k —D;K~I, . (5 2)

An + 2D; PD'n = n exp(4$)A, ~A'~ . (4.13)

We solve this equation by the relaxation method as fol-
lows. (1) We rewrite the equation as

(2) We first substitute the trial value of n in the RHS of
Eq. (4.13), and by ICCG method we solve the Poisson
equation with the boundary condition as

4s~tn —— (f'~n;) —
~

—2p'~P;. n ~ + n exp(4$)A, ~A'~ .

(4.14)

I is the so-called Bel-Robinson energy density. Since I
is a gauge-invariant quantity as well as positive definite,
it will be able to extract a physical energy density of
gravitational waves.

To see the wave form of gravitational waves, we use
the gauge-invariant wave extraction technique, which
has recently developed by NCSA group [11]. Following
their method, we assume that the numerically calculated
spacetime metric near the outer boundary can be split
as

= n~ +(~
+0( '), (4.15) where („=gi („„and

( HoimYim HiimYim
&i

~OLm +1m,8
~1lm +Lm, O

r (Ki Yi +Gi Wi )

l~Olm +1m, y
~1lm +1m, y
r GI, Xi

r2sin 0(Ki Yi —Gi Wi ) )
(5.4)

In the original method of NCSA group, they choose the background metric as the Schwarzschild metric because they consider
the spacetime in which a black hole exists in the central region. In this paper, we choose the background metric as the Hat one
because we apply this method only to the spacetime without black hole.
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and Ho~, Hi~, H2~, ho~, hq~, K~, and G~ are functions of r and t. These variables are calculated &om the
numerical data of metric tensor as

Ho& — dn Y

H2~~ —— dO Y&* exp 4

1
d«xp(44)

l +i,e'Y e+ . 2l l+1
1

2(l —1)l(l + l)(l + 2)
dO exp(4$)r

I
W(* '7 + 2Xl*, 2 g

1
K~ = — dO Y&* exp(4$)p+r

2

(5.5)

where dO = sin 0 d0 dp, Y&* denotes the complex conju-
gate of Yj~) and

~V'tlat'
Q+ —+88 + . 2 ~

sin 0
(5.6)

Note that Hi) = hp) = 0 in the present gauge con-
dition. In practice, p„„,p„g, . . . are transformed from

) /gay ) ~ ~ ~ ~

Using these variables, the gauge-invariant quantity for
gravitational waves can be written as

2

(l —1)l(l + 1)(l + 2)

x (4k2( + l(l + 1)kq) ), (5 7)

where

kg)~ = K)~ + l(l ~ 1)G)~ + 2r —2
Op T

1 0
(r(K) —+ l(l+ 1)G) )) .

2 OT

H2lm

2
(5.8)

We note that B~ (t, r) obeys the flat-space wave equation
as

model, the ratio of the mass to the extrapolated mass
formula becomes less than 50%%uo for C' & 0.5.

In Fig. 2) we show the time evolution of hyy: pyy 1
and h„= p„—1 for C = 0.01 of model (A) at a coor-
dinate point, (4.2, 0, 0). This calculation is performed
using the harmonic slice with no(r) = 1. In order to
see the numerical accuracy, we show both numerical and
analytical results in the figures. The solid and dotted
lines denote the numerical and the analytical results, re-
spectively. Here, the analytical result corresponds to a
solution of the linearized Einstein equation. We can see
that both results agree well. We also find that after wave
disperses, 6;~ remains zero except for the small numer-
ical errors for a long time. Thus we can conclude that
the harmonic slice works well for a long time integration
of the low amplitude TT wave. Next, in Figs. 3(a) and
3(b), we also show 6» and h„ for C = 0.01 of model
(A) at (4.2, 0, 0), but by means of the geodesic slice
and the maximal slice. For the case of the geodesic slice,
h, ~ gradually deviates from zero after the wave disperses,
and the deviation becomes larger and larger. This bad
behavior seems to come from the property of the geodesic

(O2 1 O, O l(l+1)&———"—+
~

R, (t, r) =0. (5.9)Ot' r' Or Or r' )

0.1

B. Results

We consider the various initial conditions with 0.01 &
C & 7 for model (A) and 0.01 & C' ( 1 for model (B).In
Fig. 1, the relations between the gravitational mass, M,
and C(C') are shown for models (A) and (B). In the case
of model (A), the relation M = MoC2 holds for C & 0.3,
where Mo is a constant 0.145. For C 2, the mass is
about 50'%% smaller than the extrapolated value 4Mo, so
that we can expect that for C & 2, the nonlinearity of
the TT wave plays an important role in the dynamical
evolution. In the case of model (B), the relation M =
MOC' also holds for C' & 0 1) and Mo 2.6. In this

0.001

100.01 0. 1

C or C'

FIG. 1. The relation between the amplitude of the TT wave
(C) and the gravitational mass (M) at t = 0 for models (A)
and (B). The solid and dashed lines denote the gravitational
mass and M = MOC, respectively. The open squares are the
data points by numerical calculations.
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FIG. 3. The same as in Fig. 2 except for the slicin concep or e s icmg condition; (a) for the geodesic slice and (b) for the maximal shee

drawback of the harmonic slice because it can be escaped
easi y by choosing an appropriate initial a.o(r). However,
it also shows that we should carefully chaose no(r) for
the highly distorted spacetime such as the high ampli-
tude TT wave.

We should also notice that for C = 7 of madel (A) and
c' —ifor C = 1 of model (B), i.e., in the case that the TT

wave collapses by its self-gravity, the harmonic slice even
q. ~ ~ es not have the singularity avoidance

property: The 3D hypersurface seems to hit the singu-
arity (or approach very near it) soon after the colla se

of the TTo e wave. As we mentioned above, we also per-
form simulations with other a.o(r), but the results are
essentially the same. Bona and Masso [10] proved that
the harmonic slice avoids the singularity. In their proof,
t ey assumed that the behavior of o. near the singularity
is a.(7) (w, —w)&, where w and r„respectively, denote
the proper time of an observer on the normal l' da ine an

a when the spacetime hits the singularity. From the
physical reason, they assumed p & 1, and in this case, the
harmonic shee has the singularity avoidance propert b-

use the singularities cannot be reached in a finite coor-
inate time. However, in this case, we find from Eq. (4.5)

Then, we can easily expect that the
other uantities su hq

' '
such as A,~ also diverge because in the

sc
(

K 1) (5.11)

or

evolution equation of them, K is included [see Eq. (2.11)].
In the numerically generated spacetime, we cannot treat
he large value accurately because of a restricted preci-

sion of the computer, so that the harmonic slice will not
be available near the singularity in a practical simulation.

Furthermore, the harmonic slice seems to have another
drawback. In Figs. 5(a) and 5(b), we shaw the time evolu-
tion of o. and K near the singularity for C' = 1 of model
(B) as an example. In the figure, we see that at early
time, o. does not become small quickly and it becomes
small only just before the time slice approaches the sin-
gularity. We suspect that the reason for this behavior is
due to the structure of the equation for n [see Eq. (4.5)];
if K ) 0, o; becomes small, but if K ( 0, o. becomes
arge. Since K can become both positive and negative

even in the case that the amplitude of the TT wave is
high I see Fi . 5~b~ ] o.

'
g. ~~ ~~~, is not guaranteed to approach zero

idea to escape this property may be to adopt following
improved slicing conditions instead of the harmonic slice'
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(5.12)

where n is an arbitrary factor 1. The reason why this
choice is good is that if K ) 0, n becomes small and even
if K & 0, n does not become so large, and also in the case
that the amplitude of the TT wave is low (i.e., ~K~ && 1),
the property of these slicing conditions is expected to be
essentially the same as that of the harmonic slice. In any
case, the singularity avoidance property of the harmonic
slice seems to be weak. This point should be clari6ed by
means of several other calculations in future works.

Next, let us investigate the wave form of the TT vrave

at an outer region. In Figs. 6(a)—6(d}, we show R~ (t, r)
for C = 0.1, 2 of model {A) and for C' = 0.03, 0.3 of

model (B).We note that the wave extraction performed
at p = 3.9ro iil Figs. 6(a) and 6(c), and r = 4.6To ill
Figs. 6(b) and 6(d). In these figures, the solid, dot-
ted, dashed, long dashed, and dotted-dashed lines de-

ot (I, ) = (2, 2 ), (2, 0), (4, 4 ), (4, 2 }, d {4,0)
modes. 2+ and 4~ denote the combination of mode like

(Yj2 + Yj 2)/~2 and (Yj4+ Yj 4)jv 2. Note that in the
initial slice, only the (2, 2+) mode exists. For C = 0.1
of mode (A) and C' = 0.03 of model (B), (2, 2~) mode
dominates over the other modes throughout the whole
time. This is quite natural because the nature of the TT
wave is linear and the nonlinear couplings vrith the other
modes are negligible. To check whether the wave extrac-
tion vrorks well or not, in Fig. 7 we also write the gauge-
invariant wave form of gravitational waves at r = 3.9ro
by the analytical calculation, which is written as

FIG. 4. The contours of the Bel-Robinson's energy density I in the equatorial plane. (a) For C = 0.1 of model (A) and for
t = 0, 2.25, 4.5, 6.75. (b) For C = 2 of model (A) and for t = 0, 1, 2, 3, 4, 5, 6, 9. (c) For C = 4 of model (A) and for t = 0,
1, 3, 5, 6, 8, ll, 14. (d) For C = 7 of model (A) and for t = 0, 4, 6, 7. In this calculation, the 3D hypersurface seems to hit
the singularity at y +1.5 and t & 7. (e) For C' = 0.3 of model (B) and for t = 0, 1, 2, 4, 6. (f) For C' = 0.5 of model (B)
and for t = 0, 1, 2, 3, 4, 5, 6, 8. (g) For C' = 1 of model (B) and for t = 0, 4, 6, 7, 9. In this calculation, the 3D hypersurface
seems to hit the singularity at x +0.4 and t & 9.



EVOLUTION OF THREE-DIMENSIONAL GRAVITATIONAL. . . 5439

FIG. 4. (Continued).
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(e)

FICx. 4. (Continued).
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F&Q. 4. (Continued).

S6~ S ( (r+t)')
exp ~—

~ (—3 —3r2 —3r +r —3rt —3r t+15 rs
q 2

+3t +3r t +6r t +3rt +4r t +r t )+exp~ —
~

(3+3r +3r —r —3rt —3r t+4r t( r —t)') 2 4 6 3 5

2 )

-3t —3r't' —6r't'+ 3rt'+ 4r't' —r't') (5.i3)

In this figure, the solid and dotted lines denote the
numerical and analytical data, respectively, and Fig. 7
shows that they agree well. Therefore, we can consider
that the wave extraction technique works well. (We note
that the wave form is diferent from that at infinity. To
see that with an accuracy less than 1%, we have to
take the grid up to r a few x10ro, but this point is not
important in this paper. )

For C & 2 of model (A) and C' & 0.3 of model (B), the
nonlinearity becomes important; (2, 0) mode has a high
amplitude. The ratio of peak amplitudes for (2, 0) mode
to (2, 2+) mode is about several x 10% for C = 2 of model
(A) and C' = 0.3 of model (B). Thus the excitation of
the higher multipole modes is expected as the amplitude
of the TT wave becomes large.

Let us apply the above analysis to the wave form of
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.25— 0

0 10 0
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FIG. 7. RR22+ at r = 3.9@0 for C = 0.1 of model (A)
by means of the analytical and numerical calculations. The
so i and dotted lines show the numerical and analytical
[Eq. (5.13)] results, respectively.

merging compact binaries such as binary neutro t
an inary black holes. At the merging of such binaries,
t e amplitude of gravitational waves at the Schwarzschild
radius of the binaries will be of order unity In reality,
Newtonian 3D numerical simulations [6] showed that its
value is about 0.3 ffor quadrupole gravitational waves. In~ ~

the present calculation, this value corresponds to that
for the cases of C 1 or C' 0.3, th t ffi-so t at a suffi-
cient excitation of the higher multipole modes by the
quadrupole mode may occur. This implies that the per-
tur ation analysis [18] may not be appropriate for emis-

rom e mergingsion pro ems of gravitational waves fro th
inary unless the merged object is swallowed inside the

event horizon rapidly enough.

VI. SUMMARY

4In this paper, we have simulated the dynamical evo-
lution of the vavacuum spacetimes of pure gravitational
waves. As the initial condition of gravitational waves,
we use a conformally fIat and K = 0 t lini ia condition.

both the low and high amplitude TT waves to see t;he
property of several slicing conditions in many t fany ypes o
the spacetime and to show that the gauge-invariant wave

s or e s icing con-extraction technique works well. As f th l
itions, we reached the following conclusions.
(1) Geodesic slice: This slice is not appropriate to sim-

u ate the evolution of the TT wave for a long time even
if its amplitude is low.

(2) Harmonic slice: This slice is appropriate to simu-
ate the evolution of the TT wave f l t' lwave or a ong time unless

the amplitude of the TT wave is too high. However, in
t e case in which the amplitude of the TT wave is so high
that it collapses t;o a black hole, this slice seems inappro-
priate: Our simulations indicate the following behaviors.
( & T ime slice approaches very near the singularity,a T e time l
so that values of geometric variables become very large

th
e.g. , K -+ oo and numerical calculation cannot f ll

e subsequent evolution. (b) The lapse function does
no o ow

not become small quickly even when the TT wave be-

s icing condition in which time slice does not approach
the singularity too closely as well as the lapse function
approaches zero quickly when the TT wave begins to col-
apse.

(3) Maximal slice: This slice will have a suitable prop-

case in which the black hole is formed &om the high
amplitude TT wave. (This was shown by axisymmetric

~ ~

)

method to solve it, this slice will become a us f 1 l' '

con ition.
e also investigate whether the gauge-invariant wave

extraction technique works well or not, and make sure
~ ~that it is good. By using this technique, we also see

the u
the non inearity of the Einstein equation' E 'f l

e quadrupole mode of gravitational waves exists ini-
tia y, the nonlinearity of the Einstein equation induces
t e other multipole modes. This means that in the case
of the merging of compact binary, nonlinear excitation of

may be expected. Hence detection of the signal of the
last phase of coalescing binary may lead to see the non-
linearity of the Einstein gravity.

In this paper, we have described the numerical results
of the dynamical evolution of gravitational waves with
even parity and with one wave packet. As a subsequent
work, we plan to investigate the dynamical evolution of
odd parity gravitational waves or the collision between
two wave packets of high amplitude gravitational waves.
These subjects can be studied by the present numerical
code, so we will be able to report these results in the near
uture. As in the case of C = 7 of model (A) and C' = 1

of model (B),high amplitude gravitational waves collapse
gravitationally, and probably a black hole is formed. To
make sure of it, (1) we must construct the numerical code

)

(2) we must find an appropriate slicing condition which
as the singularity avoidance property. As for (2), the

slicing conditions described by Eqs. (5.11) or ~5.12' dor . j an
e maximal slice may have possibilities. Investigation of

these slicing con itions remains as an important f tu ure
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