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We consider the possibility that gravity may couple anomalously to the weak interaction and

thereby lead to a violation of the weak equivalence principle. It is shown that the contribution to the
energy of a nucleus arising from neutrino-antineutrino exchange can be calculated rigorously, and
may be the dominant contribution from higher-order weak interactions. At the level of sensitivity
that could be reached in the proposed STEP (satellite test of the equivalence principle) experiment,
detection of an acceleration difference between the test masses could lead to new constraints on the
coupling of gravity to neutrinos, and to higher-order weak interactions.

PACS number(s): 04.80.Cc, 04.90.+e, 13.15.+g

I. INTRODUCTION

Recent interest in the possibility of deviations from the
predictions of Newtonian gravity [1—5] has led to remark-
able advances in the technology of experimental searches
for violations of the weak equivalence principle (WEP).
This assumption, that the acceleration of an object in a
gravitational Beld is independent of its chemical composi-
tion (universality of &ee fall) is central to both relativistic
and nonrelativistic theories of gravity. A breakdown of
the universality of free fall (UFF) can arise in at least
two distinct ways: (a) A new long-range force coexisting
with gravity (e.g. , the so-called "fifth force" [6,7]) will
in general produce such an effect; (b) the gravitational
interaction itself may fail to respect the WEP. It is the
latter possibility that we wish to explore in the present
paper, by focusing on possible deviations from the WEP
arising from higher-order weak interactions. We demon-
strate that at the sensitivity level of the proposed STEP
experiment [8] (satellite test of the equivalence principle)
new and interesting limits will emerge on the coupling
of gravity to weak interaction energy, and particularly
to neutrinos. We show specifically that the contribution
to the mass-energy of a nucleus arising from neutrino-
antineutrino (vv) exchange can be calculated rigorously,
and may be the dominant higher-order weak contribu-
tion. Moreover, an anomalous coupling of gravity to the
weak energy arising &om vv exchange would have a char-
acteristic composition dependence, and this can be used
to isolate this contribution and to thereby set limits on
an anomalous coupling of gravity to neutrinos.

To kame more carefully the motivation for our work

*Present address: Department of Physics, Williams College,
Williamstown, MA 01267.

we briefIy review the history of precision tests of the
WEP and UFF. The experiments by Eotvos, Pekar, and
Fekete [9] were originally interpreted as supporting UFF
and WEP to a precision Aa/g 5 x 10 9, where Aa is
the acceleration difference of the two samples being com-
pared, g =

~

—VU~, and U is the Newtonian potential.
A subsequent reanalysis [6,7] of the Eotvos experiment
uncovered a systematic effect in the data which could be
interpreted as a breakdown of UFF. This in turn helped
to stimulate the recent revival of interest in such tests,
as well as in theoretical models of how a breakdown of
the WEP can come about [3].

Following the suggestion of a possible "fifth force" [6,7],
a large number of experiments have been carried out com-
paring the accelerations of different pairs of test materi-
als to various sources. Modern experiments differ from
the original Eotvos experiment not only in their design,
but in their philosophy as well. Rather than study many
pairs of materials, as Eotvos and collaborators did, recent
experiments focus on comparing the acceleration of a sin-
gle pair of materials, or at most a small number of such
pairs [1—5]. This shift in philosophy can be traced to the
classic experiment of Roll, Krotkov, and Dicke [10] and
to a paper by Wapstra and Nijgh [11]. The shift stems
from the realization that WEP cannot be valid unless
gravity couples universally to all types of energy, since
only a universal coupling can guarantee that samples of
matter composed of different proportions of mass-energy,
strong-energy, electromagnetic-energy, . . . , will fall with
identical accelerations. If gravity does couple anoma-
lously to energy of type-o. (n = strong, electromagnetic,
weak, . . . ), then a sample's type-o. energy content con-
tributes difFerently to its inertial and (passive) gravita-
tional masses. One finds that the gravitational mass of a
sample i, (m~);, can be expressed as

(m~); = (ml);+ rI (E );/c,
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where (m.l); and (E ); are the sample's inertial mass and
type-o. energy content;, and where g is a dimensionless
constant whose magnitude reflects the strength of the vi-
olation of the weak equivalence principle induced by the
anomalous coupling to type-o. energy. Since the gravi-
tational acceleration of sample i is a, = (mG);g/(ml);,
an experiment like that of Roll, Krotkov, and Dicke sets
a limit on the difference between the accelerations of a
selected pair of samples:

gravity

nucleus

+e -e loop

f&)(&
g~

g (mlc2) i (mIc2) 2
(1.2)

FIG. 1. Coupling of gravity to e+-e pairs in the field of a
nucleus. The solid dots (~ ) denote the electromagnetic inter-
action.

When combined with estimates of the type-o. energy con-
tent of each sample, this experimental limit implies a
constraint on the magnitude of the parameter g, and
hence, on the nature of the coupling between gravity and
matter.

Wapstra and Nijgh [11] used the semiempirical mass
formula [12,13] to estimate the nuclear and electromag-
netic energy content of such samples. Recently, more
detailed estimates of the energy content of samples have
been used to refine the interpretation of WEP tests [14].
The first estimate of the weak contribution was made
by Nordtvedt [15], and this was followed by a more de-
tailed analysis by Haugan and Will [16], who calculated
the contribution of the parity-conserving (PC) weak in-
teraction to the ground state state energies of nuclei.
They concluded that ~@pc~ + 0.01 and, thus, that parity-
conserving-weak interaction energies obey the equiva-
lence principle to better than a part in 100. Fischbach
et al. [17] lent support to this constraint by showing that
an equivalence-principle-violating coupling to the inter-
mediate vector bosons studied by Nielsen and Picek [18]
leads directly to Eq. (1.2).

The preceding discussion can be extended by observ-
ing that WEP experiments also imply limits on possible
anomalous direct couplings of gravity to various elemen-
tary particles. We note that in a Geld theory description,
a nucleus has a nonzero probability amplitude for con-
taining particle-antiparticle pairs. It follows that the in-
teraction of a nucleus with the gravitational field probes
the separate interactions of these particles with gravity.
Schiff [19]started from such a picture to set a limit on the
possibility that matter and antimatter "fell" in opposite
directions in a gravitational Geld. As we see from Fig. 1,
the amplitude for producing a virtual e+-e pair in the
field of a nucleus of charge Z is proportional to (Ze )2,
where e is the unit of electric charge. Hence the con-
tribution E& „

from such a diagram to the gravitational
mass-energy of a nucleus is of order

(1.4)

where r = ~ri —rq~ is the separation of the electrons.
(Except where otherwise noted, we set ti = c = 1.) Sub-
sequently Feinberg, Sucher, and Au (FSA) [23] recalcu-

lated V(, ) (r) in the framework of the standard model and
found

V,~, ) (r ) = G~ (2 sin 0«v + 1/2) /4vr r, (1 5)

where 8«v is the weak mixing angle, with [21] sin 8««

0.2319(5). The result in Eq. (1.5) has been confirmed re-

V

could be taken over, with the obvious modifications, to
set limits on possible anomalous couplings to neutrinos
and antineutrinos.

The focus of the present paper is the vv-exchange
contribution to the mass-energy of a nucleus shown in
Fig. 2, which can be viewed as the direct weak inter-
action analog of Fig. 1. We will show that not only
can this contribution be calculated rigorously, but it is
likely the dominant contribution in O(G&), where [21]
G~ = 1.16639(2) x 10 Gev 2(hc)s is the Fermi decay
constant. The first correct calculation of the two-body
potential arising from Fig. 2 was carried out by Feinberg
and Sucher (FS) [22] who used an efFective low-energy
four-fermion interaction involving only charged currents.
They found for the potential energy V„(r)describing
the interaction of two electrons via the vv exchange dia-
gram shown in Fig. 2:

Ep „-rn, c (Zn), (1.3) V

«GF

where n = e2/hc and m, is the electron (or positron)
mass. By combining Eqs. (1.1)—(1.3) a limit on a pos-
sible anomalous coupling of gravity to antimatter can
be inferred. This limit is of interest in connection with
current attempts to directly compare the acceleration
of matter and antimatter [20]. The Schiff argument is
particularly interesting because of the possibility that it

FIG. 2. Interaction of two neutrons via neutrino-anti-
neutrino (vP) exchange. The heavy (light) lines denote neu-

trons (neutrinos).
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cently by Hsu and Sikivie [24] using a different formalism
from FSA. In Sec. II we rederive Eq. (1.5) using the for-
malism of Schwinger [25] and Hartle [26,27], which lends
itself naturally to a study of the many-body neutrino-
exchange potentials. Owing to the fact that neutrino-
exchange gives rise to long-range forces, the many-body
potentials could lead to observable eKects, as we discuss
in greater detail below. In Sec. III we derive the ex-
pression for the two-body contribution W( ) to the weak
energy W of a nucleus arising Rom neutrino exchange.
Particular attention is devoted to analyzing the charac-
teristic composition dependence of W{ ), which is also
a consequence of the long-range nature of the neutrino-
exchange force. We also calculate the four-body con-
tribution TV{ ) and verify that it is small compared to
W{ ), as expected naively. We demonstrate, however,
that many-body neutrino-exchange efFects could be large
in other systems, such as neutron stars or white dwarfs,
and the implications of this are discussed. Our results
are summarized in Sec. IV.

V~=e /r, (2.1)

which leads directly to the familiar expression for the
Coulomb energy W~ of a nucleus with radius B contain-
ing Z protons [12,13]:

3 2

Wc = —Z(Z —1)—.
5 B (2.2)

Zl" (x) = a„L„(x)N„(x),
2
"" (2.3a)

&. = '~(*)~.(1+~.)~(*) (2.3b)

In fact we demonstrate explicitly in Sec. III below that
W~ and the two-body weak contribution W( ) given in
Eq. (3.9) can be derived using the identical formalism.

Following Refs. [22,23,26,27] we assume that the low
energy neutrino-neutron coupling can be written in the
form

Here @(x) is the neutrino field operator, E„(x) is the neu-
trino current, a is the neutrino-neutron coupling con-
stant, and N& ——i4'(x)p„4'(x) is the vector current for
the neutrons, which is the only component which con-
tributes to the static spin-independent two-body poten-
tial. In the standard model the constants a, ap, and
a„which describe the coupling of neutrinos to neutrons,
protons, and electrons, respectively, are given by [21]

Il. THE TWO-BODY' NEUTRINO-EXCHANGE
POTENTIAL

(2.4a)a
2

az ————2sin 0~ ——0.036,=1 -2
P 2

a = —+ 2sin 0~ ——0.964.=1 2

2

(2.4b)

(2.4c)

Using Eqs. (2.3) and (2.4), the weak energy W aris-
ing from neutrino-exchange among neutrons can be ex-
pressed in terms of the Schwinger formula [25—27]:

The exchange of vv pairs among neutrons (n) and pro-
tons (p) in a nucleus gives rise to two-body n n, p-p, -
and n-p potentials. Because of the long range of the
neutrino-exchange force, interactions involving electrons
should also be considered, but these are relatively smaller
as we discuss in Sec. III. For the sake of definiteness we
consider the n-n potential which will emerge as the dom-
inant contribution. Following an argument due to Fermi
[28] we note that the effects of a long-range force can be
approximated by the classical (spin-independent) contri-
bution which increases approximately as N, where N
is the number of neutrons. The vv-exchange potential
between neutrons, V (r) is thus analogous to the two-(2) ~

body Coulomb potential

OO

W = —Tr dE ln 1+ N„p„(l+ ps)S& (E)2~ — 2
(2 5)

Here S+ is the operator whose matrix element in con-(o)

figuration space, S& (x, x', E), is the Fourier transform

of the usual free Feynman propagator S+ (z, z'):

~iIEI {IHI+ie)S"(z, E) = p. g 4~ [x~+ a.
—= p. gA~(x, E),

(2.7)

S~(z, *') = . ~~' *'&S~(z-, z', E—). -
2' (2.6)

where

(2.8)

In our metric conventions [29—31], S& (z, 0, E)
S+ (x, E) is given by

As usual, the trace (Tr) in Eg. (2.5) is then understood
as denoting both an integral in configuration space and
a trace over Dirac indices.
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Expanding Eq. (2.5) to O(G&), the two-body energy
TV is given by

W = —
!

"! d x1d x2 dE
21r g ~2)
xtr(p„(1+ps)S~ (r12, E)
xp~(1+ ps)S~ (r 2„E))N„(x,)N„(x2). (2.9)

Np (x1) —xp 18~4 t N„(x2)= ip2h 4, (2.12)

where p1 ——p2 ——p is the number density of neutrons.
Combining Eqs. (2.11) and (2.12) we see that the term
containing p5, whose trace is proportional to e„p~,makes
no contribution. The remaining terms give

no net polarization), the neutron currents are given in
our metric conventions [29—31] by

Here r12 ——(x1 —x2), N„(x1)and N„(x2)denote the ex-

ternal neutron currents at x1 and x2, and S& (r;~, E) is
given by Eq. (2.7) with x ~ r;z and )7 ~ rI(ij). The over-
all minus sign arises from the expansion of in[1+ .

] in
Eq. (2.5), and tr denotes the trace over the Dirac matri-
ces in (. ). The factors of (1+ps) can be anticommuted

past S& and, using the relation

ttt(2) ( )
~

r l ~g fvr )t 2 )
xtr [P P4ypy4] q (21)Ay (r21, E))7p(12)
xA~(r12, E).

Using

(2.13)

(1 + ~.)' = 2(1 + ~.), (2.10)
tr(p p4ppp4] = 4(2b 46p4 —8 p), (2.14)

we have

tr (. .) = 2tr (sr (r21 E)p„sr (rig, E)p (1+p~)) .

(2.11)

the expression. in curly brackets in Eq. (2.11) can be writ-
ten as

((2.11))= 4[21)4(21)rI4(12) —g(21) . 1)(12)]
= 4[E' —(912 821], (2.15)

Since we are interested in computing the self-energy of a
static collection of neutrons (which are assumed to have

where c)12 = c)/(9r12. Combining (2.15) and (2.13) we
have

~Et~ ( » rr»+is+)
y

r12r21 )

OO

vr ( 2 )
x(E )tF(r2lt E)AF(r12t E) (912 r)21+1r(r21t E)+F(r12t E))

OO.
~ fp, ~., fp,d.tf ~z

ei ~(E~ (r»+r»+ir)
x! —

! E
(41r ) r„r„ (2.16)

We note from Eqs. (2.7) and (2.8) that the operators t912

and 021 act on the respective coordinates rq2 and rq1 as
if these were independent, notwithstanding the fact that
r"12 + rq1 ——0. This applies as well to all the derivative
terms that appear in the many-body amplitudes.

Following Hartle [27] the integral over E can be eval-
uated by considering the functions I (z) defined by

integration gives

2i
Ip(z) =

z+ie (2.18)

and differentiating Eqs. (2.17) and (2.18) with respect to
z leads to

f q~ ~- *wit*+-t

2 j dE E" e'~(@((~+") = I~(z) even n,
0 odd n,

(2»)

.dIp(z) —2

dz (z+ ie)2

Continuing in this way we find [27]

n+ln
I„(z)=

(2.19)

(2.20)

where z = r12 + r21. Since !E!is an even function of E,
I (z) is nonzero only for even values of n. An elementary

Combining Eqs. (2.16) and (2.20) allows W(2) to be writ-
ten as
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2

~{) d d
1 G ployed by FS to extract the long-distance behavior of

V~ l(r) introduces no additional mass parameters.

X
r12r21(+12 + &21)

1+ 12 921
2 F12+21(+12 + +21) ) (2.21)

III. EVALUATION OF R'&~&

A. General formalism

The quantity in curly brackets in Eq. (2.21) is, evidently,
the two-body potential V~ l(r12):

2

~2 ) r12r21(r12 + r21)
1+ —12

2 r12r21(+12 + &21)
(2.22)

Since r = r12 ——r21, first term in square brackets in
Eq. (2.22) reduces to 1/8@5. In the second term we note
that the gradients act on a function which depends only
on r12 aIld T21 aIld hence we can write

From Eq. (2.21) the two-body vv-exchange contribu-
tion W~ ~ can be obtained by carrying out the integrals
over zi and z2 after writing r = F12 ——~xi —x2 ~. The eval-
uation of these integrals can be simplified by considering
the function 'P(r) which gives the normalized probabil-
ity density for finding two points randomly chosen in a
sphere to be a distance r = r12 apart. The functional
form of 'P(r) has been obtained by a number of authors
[32—34] and is given by

8 ) ( 8
Br12 ) ( Or21)

t9 0
r12 ' T21

9T12 9r21

t9 |9
OT12 OT21

(2.23)

Using Eq. (2.23) the expression in square brackets in
Eq. (2.22) can be written as

R3 2 2R 2 2R (3.1)

The average value (g) of any function g(r) taken over a
spherical volume is then given by

[Eq. (2.22)] = 1 5 1
(2.24)

where

(g) = «'P(r)g(r)
0

(3 2)

and hence,

G2a 1V~2l(. ) =+ (2.25) f
2R

dry (r) =1.
0

(3.3)

Equation (2.25) gives the original FS result [22—24] when
we set a = 1, which is the value appropriate to the
charged-current model of the weak interaction assumed
by Feinberg and Sucher. We note that Eq. (2.25) applies
separately to the exchange of each of the species v v,
v~v~ aIld v~v~.

For later purposes it is interesting to note that the
functional form of V~2l (r) can be inferred on dimensional
grounds, as noted originally by Feinberg and Sucher [22].
The only dimensional quantities upon which a static
neutrino-exchange potential can depend are G~, r and
(possibly) the masses of the external particles. However,
in the nonrelativistic limit appropriate to a static poten-
tial, bilinear covariants such as u(p )pg(1 + ps)u(p) are
independent of the mass of the fermion characterized by
the spinor u(p). Thus the only relevant diinensional pa-
rameters are G~ and r and, since the two-body operator
is proportional to G+2, it follows that V~2l(r) oc G~&/rs
Implicit in this argument is the assumption that no other
dimensional parameters are present and, since the stan-
dard model is renormalizable, this will indeed be the
case. This argument holds even in the &amework of the
(nonrenormalizable) charged-current model originally as-
sumed by FS, since the regularization procedure em-

Returning to the Coloumb problem we wish to calcu-
late (e /r) by this method. From Eq. (3.1),

2R
e (1/r) = e dr

~

0 (Bs
gas 3rs ) 1 6 e2

4B4 16Bs) r 5 R

(3.4)

The result in Eq. (3.4) gives the Coulomb energy for a
single pair of charges spread out through a spherical vol-
ume, and for a nucleus containing Z charges there are

(3 5)

such pairs. Hence the final expression for the Coloumb
energy R'c is given by

1 6e 3 e
W~ ———Z(Z —1)——= —Z(Z —1)—

2 5R 5 R (3.6)

in agreement with Eq. (2.2).
The vv-exchange contribution can be calculated in

an identical manner, the only difference being that the
nucleon-nucleon hard core radius r must be included ex-
plicitly. We find, for (V~ l(r)),
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2R
V' r = drPr V~' r

&c

2R
dr r

and for R we use [36]

R=1.24x10 ' cmB / (3.13)

The function ((z) in Eq. (3.8) now becomes a function
of B given by

where

(3 7) 0.593 0.117 0.008
Bl/3 B2/3 (3.14)

((x) = 1 —3x+ 3x —x; x = r, /2R. (3.8)

In analogy to the Coulomb case, the final expression
for W~ ~ is then obtained by multiplying the result in
Eq. (3.7) by N(N —1)/2 which gives

(2) 3 KN(N —1)
R3r2

3 (G~a„) N(N —1)
]6~3 ~ R r2

where a factor of hc has been reinstated. Equation (3.9
gives the desired expression for the contribution to W&

from the n-n vv-exchange potential. Evidently the p-p
and n peon-tributions can be obtained from Eq. (3.9) by
replacing a by a„ora a„respectively, and at the same
time replacing N(N —1)/2 by the appropriate combina-
toric factor. For p-p this factor is Z(Z —1)/2 while for
n-p it is NZ. Hence the contributions of p-p and n-p
relative to n-p are given by

W(')(p-p) a„' Z(Z —1),Z(Z —1)=5.2 x 10
W(2) (n-n) a N(N —1) N(N —1)

'

(3.10)

= —0.145 . (3.11)
W~~ n- a 2Z Z
W(2) (n-n) a„N—1 N —1

Since Z & N for almost all nuclei it follows from
Eq. (3.10) that W( ) (p-p) is negligible compared to
W(2)(n-n). Similarly ~W( )(n-p) ~, although not negligi-
ble, is nonetheless small. Hence for practical purposes
we can approximate the nuclear contribution to W~ ~ by
the n-n contribution. Turning to the contributions &om
the n-e potential, we note that since electrons are spread
out through a volume of order (1 A.)s, whereas nucleons
are confined to a volume of order (1 fm) s, it follows from
Eq. (3.9) that contributions &om electrons are suppressed
relative to the n-n contribution by a factor of order
(1 fm/1 A.) = 10 . We conclude that among all possi-
ble interactions involving n, p, and e, neutrino-exchange
between neutrons is the dominant contribution, and is
given by the result in Eq. (3.9).

W~ ~ can then be expressed in the form

W( ) = 1.34 x 10 eV ((B).N N —1)
B (3.15)

Since W(2) represents the energy E in Eq. (1.1) arising
from neutrino-exchange, it follows &om Eq. (1.2) that the
quantity which determines the acceleration is W(2&/M,
where M is the (inertial) mass of the nucleus. It is con-
venient to express M in atomic mass units (amu) so that
for any nucleus,

M = p(l amu).

W( )/M can then be written in the form

(3.16)

W( ) is N(N —1)
( ) (3.17)

If rI„„-denotes the constant in Eq. (1.1) corresponding to
the vv-exchange energy W(2), then, from Eq. (1.2),

—16 N1 ~N1 1' =rI „-(1.4x10 '
)

' )((Bg)
g 1@1

N2(N2 —1) ((B )B2P2
(3.18)

0.4

N(N —l)g(B) / Bp

0.3-

0.2-

0.1-

In Table I we present the values of the "neutrino charge"
N(N —l)((B)/Bp for the first 92 elements in the Peri-
odic Table, and a plot of this charge is shown in Fig. 3.

B. Numerical results
-0.1 1 I I I I I

10 20 30 40 50 60

atomic number

I

70
I

80
I

90 100

r =0.49x 10 cm, (3.12)

We proceed to evaluate W~ ~ for a nucleus with N
neutrons and Z protons, with N + Z = B. The hard-
core radius r, is taken to be [35]

FIG. 3. Plot of the average "neutrino charge"
N(N —1)((B)/Bp and I /y, as functions of atomic number Z
for the first 92 elements. Although both plots shorn a similar
variation, these charges can be distinguished from each other
by noting that I /p = 0 for several elements and various com-
pounds. See text for details.
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Following the discussion in Ref. [7] we can show that for
an element having several isotopes, with relative abun-
dances r~ (g& rl, = 1), the efFective "neutrino charge"
1s

Since the proposed STEP experiment is designed to
achieve a sensitivity Aa/g 10 [8], it follows &om
Eq. (3.21) that STEP will be able to set a nontrivial
limit on g„„-:

N(N —1) Q~ rI, [N(N —1)((B)/B]g
+p PqrI pa

[q. „-,
(

& o.6o, (3.22)

Equation (3.19) was used in obtaining Table I.
The sensitivity of the proposed STEP experiment to

vv-exchange can be estimated by considering as an exam-
ple the samples used in the experiment of Roll„Krotkov,
and Dicke [10], which were Al and Au: /q„.-/ & o.2o. (3.23)

for each neutrino species i. If there is a universal break-
down of the WEP for all neutrinos, characterized by a
common value of g„-,then in this case the indicated level
of sensitivity in the STEP experiment would lead to

»A12 ~ ( ) g(a) =o.2o4,
Bp

rgAu m ((B) = 0.321.N(N —1)
Hp,

Combining Eqs. (3.18) and (3.20) we then have

=1.7 x 10

(3.2Oa)

(3.2Ob)

(3.21)

Given a limit such as (3.22) or (3.23), one can in principle
work backwards in any detailed theory of WEP violation
to infer a constraint on the anomalous coupling of gravity
to any of the neutrinos v, v, v„,v„,v, and v .

In Ref. [7] plots are given of other "charges" that
have been considered in the literature including B/p,
I,/p = (N —Z)/p, L/p (L = lepton number), and the
charge associated with a model of Lorentz noninvariance
[17,18]. The variations of these charges across the Peri-
odic Table are diR'erent &om one another and, with the

TABLE I. Average value of the "neutrino charge" N(N —1)((B)/Bp for the first 92 elements of the Periodic Table. See
text for further details.

Element
Hydrogen
Helium
Lithium
Beryllium
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
Sodium
Magnesium
Aluminum
Silicon
Phosphorus
Sulfur
Chlorine
Argon
Potassium
Calcium
Scandium
Titanium
Vanadium
Chromium
Manganese
Iron
Cobalt
Nickel
Copper
Zinc
Gallium

N(N —1)((B)/Bp
0.000
0.084
0.172
0.183
0.181
0.159
0.166
0.171
0.198
0.183
0.201
0.].91
0.204
0.192
0.206
0.195
0.213
0.242
0.210
0.200
0.230
0.238
0.247
0.238
0.245
0.236
0.244
0.227
0.247
0.246
0.260

Element
Germanium
Arsenic
Selenium
Bromine
Krypton
Rubidium
Strontium
Yttrium
Zirconium
Niobium
Molybdenum
Technetium
Ruthenium
Rhodium
Palladium
Silver
Cadmium
Indium
Tln
Antimony
Tellurium
Iodine
Xenon
Cesium
Barium
Lanthanum
Cerium
Praseodymium
Neodymium
Promethium
Samarium

N(N —1)f(B)/Bp,

0.265
0.265
0.276
0.269
0.278
0.275
0.275
0.270
0.271
0.268
0.272
0.271
0.276
0.274
0.280
0.276
0.286
0.286
0.293
0.295
0.308
0.297
0.304
0.302
0.309
0.306
0.302
0.298
0.301
0.296
0.305

Element
Europium
Gadolinium
Terbium
Dysprosium
Holmium
Erbium
Thulium
Ytterbium
Lutetium
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Iridium
Platinum
Gold
Mercury
Thallium
Lead
Bismuth
Polonium
Astatine
Radon
Francium
Radium
Actinium
Thorium
Protactinium
Uranium

N(N —1)((B)/Bp
0.303
0.311
0.309
0.313
0.313
0.313
0.311
0.315
0.314
0.317
0.317
0.318
0.318
0.322
0.321
0.322
0.321
0.323
0.326
0.327
0.326
0.321
0.318
0.337
0.333
0.335
0.332
0.337
0.331
0.339

No stable isotopes.



5424 FISCHBACH, KRAUSE, TALMADGE, AND TADIC 52

exception of I,/p, all of these are difFerent from the "neu-
trino charge" in Eq. (3.17). A comparison of the "neu-
trino charge" and I,/p is given in Fig. 3 from which we
see that these charges have similar shapes, although the
two graphs are shifted relative to each other. This shift is
physically significant, however, since an important char-
acteristic of a coupling to I, is that many sources (and
samples) have I, = 0 [2]. Hence, if an anoinalous ac-
celeration difference were seen in the STEP experiment,
or in a future terrestrial experiment, then the "neutrino
charge" could be distinguished from I, by utilizing sam-
ples for which I was zero but the neutrino charge was
not. It follows &om this discussion that all of the gener-
alized "charges" which have been proposed as sources for
WEP violation could be distinguished from one another
by an appropriate choice of test samples and sources. It
follows that if a nonzero value of Aa/g were observed,
then it would be possible to discriminate among possible
sources of this effect by comparing the results obtained
using appropriate materials.

C. Many-body effects

Following Primakoff and Holstein [37] we note that
when the interactions of particles (neutrons in the present

case) are described by means of static potentials, as
in Eq. (2.25), then relativistic invariance requires that
all possible many-body interactions be included along
with the two-body interaction. Ordinarily many-body
effects are relatively small in both electromagnetic and
strong iriteractions, for reasons originally discussed in
Ref. [37]. However, the considerations that apply to these
interactions do not necessarily apply to the interactions
between neutrons arising &om neutrino-exchange, and
hence we briefly examine the many-body effects arising
from neutrino-exchange in more detail.

Since the Schwinger formula in Eq. (2.5) is relativis-
tically covariant, expanding W in powers of G~ gives
the k-body generalization of V( )(r) in Eq. (2.25), where
k = 3, 4, . . .. The k-body potential thus arises &om dia-
grams in which k neutron lines are attached to a closed
neutrino loop, as shown in Fig. 4 for A, = 4. In O(G~&)
there are (k —1)!/2 pairs of topologically distinct dia-
grams, with each pair comprising the two diagrams with
opposite senses of the neutrino loop momentum. It can
be shown that for a spherical nucleus there are no con-
tributions from odd values of A:, and hence the first non-
trivial many-body contribution comes from k = 4. The
four-body potential arising from Fig. 4(a) has been de-
rived by Hartle [26,27], who finds

4

(b) 2 = = 4 3

(c) 2 2 I 3

FIG. 4. Contributions to the four-body potential energy arising from neutrino exchange. As before, heavy (light) lines
denote neutrons (neutrinos). Each of the diagrams (a), (b), and (c) is topologically different from the others, as can be seen
by redrawing the graphs as shown. For each of these diagrams there is another that is obtained by reversing the sense of the
neutrino loop momentum.
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( ) „(GFa„)1 4!
(r12) r23) r34& ~41) ) 47r3 P4S4

+2 12 ' 23 + 23 ' 34 + 34 41 + t912 ' 34 + 12 41 + !923

+ ('1912 ~23)(o34 '!941) (~12 o34)(o23 ' o41) + (~12 ' ~41)(o23

|9

1
~34)

4 4

(3.24)

Here x1, x2, x3, and x4 are the coordinates of the four
particles, with r12 ——lxi —x2l, etc. , and

we then find [using the exact expression in Eq. (3.28)]

~4 ~12 + +23 + ~34 + ~41)

P4 —P12P23P34P41

(3.25a)
(3.25b)

and

(GF/~)a. N 4.5 x 10-", »A127,
1.1 x 10 1 79Au

(3.30)

The contributions from diagrams 4(b) and 4(c) can be
written down immediately by appropriately relabeling
the variables in Eq. (3.24).

To determine whether V~ ) makes a significant con-
tribution to the weak energy R', which is a sum of all
the k-body contributions, we have integrated Eq. (3.24)
numerically [38], and find

~() 60x 10 eV, Al ~,
1.3 x 10-" V, Y.Au'" (3.31)

We see from Eqs. (3.15) and (3.31) that lW( )
l (( [W( ) l,

so that the four-body contribution to the weak energy is
indeed negligible. For k & 4 the A:-body contribution
W~") will be of order

~R !,2~ZR2)
(3.26) (Ace (GFa„N')

IRr &

(3.32)

¹!
q k ) k!(N —t')!' (3.27)

The notation U(4) indicates that the result in Eq. (3.26)
represents the energy of a specific set of four particles.
We note that, in contrast to the two-body case, the A:-

body results for A: & 4 are well-behaved even if r, ~ 0,
and hence we have set r, = 0. Since these four parti-
cles can be chosen &om among N neutrons in (4) ways,
where ( &) is the binomial coefficient

and from Eq. (3.30) it follows that higher-order many-
body e8'ects make increasingly smaller contributions to
TV. We thus conclude that the neutrino-exchange energy
of a nucleus is dominated by the two-body contribution
given in Eq. (3.9).

We note in passing that the preceding formalism can be
applied directly to a neutron star, which can be approxi-
mated for present purposes as a large nucleus. Consider,
for example, the observed pulsar in the Hulse-Taylor bi-
nary system PSR 1913+16 39—41]. The mass Mi of this
pulsar is accurately known [40,41],

it follows that the four-body contribution TV~ ) is given
by

Mi ——1.4411(7)Mo, (3.33)

~(4) —U(4)
lE4)

4 ( GFa„) /N)
~R q2~~2R2 j !,4y
4 GFa„

( . )~R l&2~~~R2)
N(N —1)(N —2) (N —3)

X
1

(3.28)

and hence the mass of a typical neutron star can be taken
to be

M = 1.4M. = 2.8 x 10 g. (3.34)

N = 1.7 x 10". (3.35)

To calculate the number of neutrons N we can ignore the
contribution to M from gravitational binding energy, and
assume that the neutron star is composed exclusively of
neutrons. Using Eq. (3.34) then leads to

(4) 4hc (GF /hc) a„N 1
7rR 27r ~2R2 4'

(3.29)

For a nucleus with N )& 3, W~ ) can thus be approxi-
mated by

The radius B of the neutron star, although not directly
observable, can be inferred in various models. We assume
the nominal value A = 10 km = B10 which corresponds
to a mass density p and a number density p given by

where factors of hc have been reinstated. From Eq. (3.13) p =67x 10 gcm (3.36)
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p=4.0 x 10 cm (3.37)

These values of N, B, and p are typical of the results
that arise in existing models of neutron stars [42,43]. We
then have

(Gy /hc)N x 1 (3.38)

m„c, ~a„~p= 0.4 eV,z) 2 GF
3e

(3.39)

where now lne = 1. Interestingly, for v, this is just
below the existing upper bound, m„& 7 eV [21].
A more detailed discussion of these calculations will be
presented elsewhere, along with similar results for white
dwarfs where the same problem also arises.

It follows &om Eq. (3.38) that for a neutron star higher
order many-body eKects make increasingly larger contri-
butions to 8, in contrast to what we found above for
nuclei. Using Eqs. (3.32) and (3.38) it is straightforward
to show that successive terms in the expansion of the
Schwinger formula in Eq. (2.5) increase in magnitude,
and that TV~ & would exceed the known mass-energy of
the pulsar. Although this may indicate a breakdown of
perturbation theory, an alternative possibility is that per-
turbation theory remains valid but that neutrinos have a
small mass m . In such a case the vv-exchange force
"saturates" and, for an appropriate value of m, the
mass-energy of the pulsar arising &om neutrino-exchange
would be reduced to a physically acceptable value. The
critical value of m„(forany species v„v„,or v ) is

approximations for most nuclei. The numerical results
for W( ) /M and Ea/g in Eqs. (3.17) and (3.21) are in-
teresting because they indicate that at the level of sensi-
tivity of the proposed STEP experiment (Aa/g 10 ~7),
a nontrivial constraint on the WEP-violating parameter
g„-could be set. Were an anomaly to be seen in the
STEP experiment, then the characteristic composition
dependence of the vv-exchange contribution as shown in
Fig. 3 could be used to test whether this contribution or
some other was the source of the WEP violation.

We note that both the magnitude and composition
dependence of the vv-exchange force are consequences
of the fact that the interaction mediated by vv is
long ranged. This uniquely distinguishes vv-exchange
&om other weak interaction contributions: The long
range is what is responsible for the combinatoric factor

N(N —1)/2, and because all the neutron contributions
thus add coherently, this process likely constitutes the
dominant weak effect in O(G&). The long-range nature
of this interaction is also what allows a detailed semi-
classical calculation to be carried out, in analogy to the
Coulomb energy of the nucleus.

Many-body neutrino-exchange contributions have also
been investigated to verify that these would not alter
the conclusions to be drawn &om W~ ~. We have shown
that the many-body contributions are indeed small in all
nuclei, although they could be quite large in a neutron
star. Interestingly this observation could lead to a lower
bound on neutrino masses [44].
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