Extended technicolor contribution to the Zbb vertex

Kaoru Hagiwara Theory Group, KEK, Tsukuba, Ibaraki 305, Japan

Noriaki Kitazawa * Department of Physics, Tokyo Metropolitan University, Tokyo 192-03, Japan (Received 19 April 1995)

We show that the flavor-diagonal gauge boson of the extended technicolor theory contributes with opposite sign to the standard model correction for the Zbb vertex. This mechanism can naturally explain the deviation of the CERN LEP result from the standard model prediction for the partial wid⁴ $\Gamma(Z \to b\bar{b})$. A smaller value of the QCD coupling, $\alpha_s(m_Z) \simeq 0.115$, is then preferred by the $\Gamma(Z \to hadron)$ data, which is consistent with both the recent lattice QCD estimate and the Particle Data Group average.

PACS number(s): 13.38.Dg, 12.60.Nz

The measurement of the Z boson partial width ratio $R_b \equiv \Gamma_b/\Gamma_h$ at the CERN e^+e^- collider LEP shows a significant deviation from the standard model (SM) prediction [1]. The measured value deviates at the 2 σ level from the SM prediction [1,2]. The large SM radiative correction proportional to m_t^2 , which is specific to the Zbb vertex, has not been identified. Therefore, some new contribution to the Zbb vertex, which can cancel out the SM contribution, may be required.

It has been pointed out that the "sideways" gauge boson of the extended technicolor (ETC) theory generates significant correction to the Zbb vertex [3]. This contribution is highly model independent. Flavor-diagonal ("diagonal") gauge bosons appear in the most ETC models, and they also contribute to the Zbb vertex [4]. The magnitude of the correction is comparable with the sideways contribution [4] and the sign is opposite [5,6]. The sideways and the SM contributions make R_b small, while the diagonal contribution makes it large. Therefore, if the diagonal contribution is large enough to cancel out the other contributions, the LEP result can be explained. In this report we show that this cancellation naturally occurs in some models of the ETC theory. We further note that the value of the QCD coupling $\alpha_s(m_Z)$ as extracted from the Z boson data is sensitive to the Zbb correction and that the ETC contribution can make its value more consistent with both the recent lattice QCD evaluation [7] and the global average of the Particle Data Group [8].

Let us consider the one-family-like model, which was introduced in Ref. [4]. The gauge group is $SU(N_{TC} + 1)_{ETC} \times SU(3)_C \times SU(2)_L \times U(1)_Y$, and its fermion contents are

$$\begin{pmatrix} \left(U^{1}\cdots U^{N_{\mathrm{TC}}}t\right)_{L}\\ \left(D^{1}\cdots D^{N_{\mathrm{TC}}}b\right)_{L} \end{pmatrix} \sim (N_{\mathrm{TC}}+1, 3, 2, 1/6), \qquad (1)$$

$$(U^1 \cdots U^{N_{\rm TC}} t)_R \sim (N_{\rm TC} + 1, 3, 1, 2/3),$$
 (2)

$$\left(\begin{array}{cccc} D^1 & \cdots & D^{N_{\mathrm{TC}}} & b \end{array} \right)_R \sim (N_{\mathrm{TC}} + 1, \ 3, \ 1, \ -1/3).$$
 (3)

0556-2821/95/52(9)/5374(4)/\$06.00

The lepton sector of the third generation and the first and second generations are omitted from our discussion for simplicity. By breaking the ETC gauge group $SU(N_{TC} + 1)_{ETC}$ down to the technicolor gauge group $SU(N_{TC})$, two kinds of massive gauge bosons are generated: a massive technicolored sideways gauge boson, which mediates transition between ordinary quarks and techniquarks, and a massive diagonal gauge boson, which is flavor diagonal and couples both with ordinary quarks and techniquarks.

In this naive model the masses of the top and bottom quark are degenerate for isospin-invariant techni-quark condensates $\langle \bar{U}U \rangle = \langle \bar{D}D \rangle$ because of the common mass and coupling of the sideways boson for each quark. Instead of considering an explicit realistic ETC model that realizes $m_t \gg m_b$, we effectively introduce different ETC gauge boson couplings for the two right-handed multiplets, while keeping the technicolor interaction vectorlike.

More explicitly, we assign the sideways coupling $g_t\xi_t$ to the left-handed multiplet, g_t/ξ_t to the right-handed multiplet with the top quark, and g_t/ξ_b to the right-handed multiplet with the bottom quark. The mass of the top quark is then given by

$$m_t \simeq \frac{g_t^2}{M_S^2} 4\pi F_\pi^3 \sqrt{\frac{N_C}{N_{\rm TC}}},\tag{4}$$

where $N_C = 3$. The scale M_S is the mass of the sideways boson and the relation $\langle \bar{U}U \rangle \simeq 4\pi F_{\pi}^3 \sqrt{N_C/N_{\rm TC}}$ (from the naive dimensional analysis [9] and the leading 1/Nbehavior) is used. The value of the decay constant F_{π} in this model with four weak doublets is $F_{\pi} = \sqrt{v_{\rm SM}^2/4} \simeq$ 125 GeV. A large top quark mass indicates a large value of g_t or small value of M_S . The bottom quark mass is given by $m_b = \frac{\xi_t}{\xi_b} m_t$. We are assuming that the sideways effect can be treated perturbatively, and hence we require

$$\frac{(g_t\xi_t)^2}{4\pi} < 1 \quad \text{and} \quad \frac{(g_t/\xi_t)^2}{4\pi} < 1.$$
 (5)

The possible range of ξ_t is restricted by this condition.

The couplings of the diagonal ETC boson are fixed by the sideways couplings. For technifermions, we ob-

©1995 The American Physical Society

^{*}Electronic address: kitazawa@musashi.phys.metro-u.ac.jp

tain the diagonal couplings by multiplying the factor $-\frac{1}{N_{\rm TC}}\sqrt{\frac{N_{\rm TC}}{N_{\rm TC}+1}}$ to their sideways couplings. For quarks, we obtain them by multiplying the factor $\sqrt{\frac{N_{\rm TC}}{N_{\rm TC}+1}}$ to their sideways couplings. These factors are determined by the normalization and traceless property of the diagonal generator of the ETC gauge group. The diagonal interaction is also chiral in the same way as the sideways interaction.

The effect of the sideways and diagonal ETC boson exchange is described by the effective four-fermion interactions at low energy (weak boson mass scale). The technifermion currents in the effective four-fermion interactions can be replaced by the corresponding currents of the low-energy effective Lagrangian in which the chiral symmetry of the technifermion is nonlinearly realized. The electroweak symmetry $SU(2)_L \times U(1)_Y$ is gauged in the effective Lagrangian. Only the currents that couple with the weak gauge bosons remain nonzero in the unitary gauge of the effective Lagrangian. Those currents are described by the weak boson: $\bar{Q}_L \frac{\tau^3}{2} \gamma_\mu Q_L \rightarrow \frac{1}{4} F_\pi^2 N_C g_Z Z_\mu$, for instance, where $g_Z \equiv \sqrt{g^2 + {g'}^2}$ with the gauge couplings g and g' of the $SU(2)_L$ and $U(1)_Y$, respectively. Then, we can extract the Zbb vertex correction from the effective four-fermion interaction [3].

The sideways contribution is obtained as [3]

$$(\delta g_L^b)_{\text{sideways}} = \frac{1}{4} \frac{g_t^2}{M_S^2} \xi_t^2 F_\pi^2 g_Z$$
$$\simeq \frac{1}{4} \xi_t^2 \frac{m_t}{4\pi F_\pi} \sqrt{\frac{N_{\text{TC}}}{N_C}} g_Z, \tag{6}$$

where Eq. (4) is used in the second line. In the tree level of the SM, $g_L^b = g_Z(-\frac{1}{2} + \frac{1}{3}s^2)$ with $s \equiv \sin \theta_W = g'/g_Z$. The diagonal contribution is obtained as [5]

$$\begin{aligned} (\delta g_L^b)_{\text{diagonal}} &= -\frac{1}{2} \frac{g_t^2}{M_D^2} F_{\pi}^2 \frac{N_C}{N_{\text{TC}} + 1} g_Z \\ &\simeq -\frac{1}{2} \frac{N_C}{N_{\text{TC}} + 1} \frac{m_t}{4\pi F_{\pi}} \sqrt{\frac{N_{\text{TC}}}{N_C}} g_Z, \end{aligned}$$
(7)

where we neglect the small contribution that is proportional to ξ_t/ξ_b and assume $M_D \simeq M_S$. Therefore, the total correction due to the ETC bosons are obtained as [10]

$$(\delta g_L^b)_{\rm ETC} = \left(\xi_t^2 - \frac{2N_C}{N_{\rm TC} + 1}\right) \frac{m_t}{16\pi F_\pi} \sqrt{\frac{N_{\rm TC}}{N_C}} g_Z.$$
 (8)

To analyze the Zbb vertex, it is convenient to introduce the form factor $\bar{\delta}_b(q^2)$ [2] in terms of which the Zb_Lb_L vertex function is expressed as

$$\Gamma_L^{Zbb}(q^2) = -\hat{g}_Z \left\{ -\frac{1}{2} \left[1 + \bar{\delta}_b(q^2) \right] + \frac{1}{3} \hat{s}^2 \left[1 + \Gamma_1^{b_L}(q^2) \right] \right\}.$$
(9)

The quantities with carets, \hat{g}_Z and \hat{s} , are the modified minimal subtraction scheme ($\overline{\text{MS}}$) couplings, and the form factor $\Gamma_1^{b_L}(q^2)$ is small in the SM. The correction due to the ETC bosons is translated as

$$\bar{\delta}_b(m_Z^2)_{\rm ETC} = \left(\frac{2N_C}{N_{\rm TC}+1} - \xi_t^2\right) \frac{m_t}{8\pi F_\pi} \sqrt{\frac{N_{\rm TC}}{N_C}}.$$
 (10)

The correction within the SM has been estimated. The one-loop correction [2] and the two-loop correction of $O(\alpha_s m_t^2)$ [13] is parametrized as

$$\bar{\delta}_b (m_Z^2)_{\rm SM} = -0.0099 - 0.0009 \frac{m_t - 175 \text{ GeV}}{10 \text{ GeV}}$$
 (11)

for $\alpha_s = 0.11-0.12$ and $m_t = (160-190)$ GeV. We can neglect the $O(m_t^4)$ two-loop contribution, which is about one order smaller than the $O(\alpha_s m_t^2)$ contribution.

From the measurement of R_b , we can obtain the constraint on $\bar{\delta}_b(m_Z^2)$ without the uncertainty of α_s and the universal oblique correction [14]:

$$\bar{\delta}_b(m_Z^2) = 0.0011 \pm 0.0051,$$
 (12)

which is about 2σ away from the SM prediction (11). If this deviation is due to new physics, the experimental constraint on the new contribution to the Zb_Lb_L vertex is

$$\bar{\delta}_b (m_Z^2)_{\rm new} = 0.0110 \pm 0.0051 + 0.0009 \frac{m_t - 175 \text{ GeV}}{10 \text{ GeV}}.$$
(13)

There is a 2σ evidence of new physics for $m_t > 165$ GeV. If the ETC contribution (10) dominates the difference (13), we find the following constraint:

$$\left(\frac{2N_C}{N_{\rm TC}+1} - \xi_t^2\right) \sqrt{\frac{N_{\rm TC}}{N_C}} = 0.20 \pm 0.09 + 0.005 \frac{m_t - 175 \text{ GeV}}{10 \text{ GeV}}, \quad (14)$$

where we take $F_{\pi} = 125$ GeV.

The possible value of $N_{\rm TC}$ and the range of ξ_t^2 are constrained also by the mass formula of the top quark, Eq. (4), and the perturbative condition, Eq. (5). If we take the ETC scale $M_S \simeq M_D = 1$ TeV, the values $N_{\rm TC} = 2, 3, \ldots, 8$ are possible. The minimal and maximal values of ξ_t^2 allowed by the perturbative condition (5) for $M_S = 1$ TeV and the experimental constraint from Eq. (14) for $m_t = 175$ GeV are shown in Table I for several $N_{\rm TC}$ values. We find that the condition (14) can

TABLE I. Possible ranges of ξ_t^2 for each $N_{\rm TC}$ in one-family model, when the ETC boson mass is 1 TeV. The experimental constraint $(\xi_t^2)_{\rm expt}$ from the Zbb vertex measurement is obtained from Eq. (14) for $m_t = 175$ GeV.

$\overline{N_{\mathrm{TC}}}$	$(\xi_t^2)_{\min}$	$(\xi_t^2)_{\max}$	$(\xi_t^2)_{ ext{expt}}$	$\frac{2N_C}{N_{TC}+1}$
2	0.48	2.1	1.8 ± 0.11	2
3	0.59	1.7	1.3 ± 0.09	1.5
4	0.68	1.5	1.0 ± 0.08	1.2
5	0.76	1.3	0.85 ± 0.07	1
6	0.83	1.2	0.72 ± 0.06	0.86
7	0.90	1.1	0.62 ± 0.06	0.75
8	0.96	1.0	0.54 ± 0.06	0.67

TABLE II. Possible ranges of ξ_t^2 for each $N_{\rm TC}$ in the one-family model of Ref. [16] with small S parameter, when the ETC boson mass is 1 TeV. The experimental constraint $(\xi_t^2)_{\rm expt}$ from the Zbb vertex measurement is also displayed.

N _{TC}	$(\xi_t^2)_{\min}$	$(\xi_t^2)_{\max}$	$(\xi_t^2)_{ ext{expt}}$	$\frac{2N_C}{N_{TC}+1}$
2	0.31	3.2	1.7 ± 0.13	2
3	0.38	2.6	1.3 ± 0.11	1.5
4	0.44	2.3	$1.0 ext{ }\pm ext{ }0.09 ext{ }$	1.2
5	0.49	2.0	0.82 ± 0.08	1
6	0.54	1.9	0.69 ± 0.07	0.86
7	0.58	1.7	0.60 ± 0.07	0.75
8	0.62	1.6	0.53 ± 0.06	0.67

be naturally satisfied in the range $2 \leq N_{\rm TC} \leq 5$. It is worth noting here that the cancellation between the sideways and the diagonal contributions naturally explain the LEP result for a reasonable range of $N_{\rm TC}$ and $\xi_t^2 \sim 1$.

The one-family model with the small S parameter [15] is proposed by Appelquist and Terning [16]. In the model the scale of the technilepton condensation is small compared with the scale of the techniquark condensation. To consider the correction to the Zbb vertex in this model, we simply change the value of F_{π} from $F_{\pi} = \sqrt{v_{\rm SM}^2/4} \simeq 125$ GeV to $F_{\pi} = \sqrt{v_{\rm SM}^2/3} \simeq 144$ GeV, since this model is effectively the three weak doublet model. If we take the ETC scale $M_S \simeq M_D = 1$ TeV, the model with $N_{\rm TC} = 2, 3, \cdots, 20$ is now possible. The possible range of $N_{\rm TC}$ is extended, since the techniquark condensate is enhanced and the ETC gauge coupling becomes small. The ranges of ξ_t^2 for each $N_{\rm TC} \leq 8$ are shown in Table II. We find that the experimental constraint from the Zbb vertex measurement is satisfied in the range of $2 \leq N_{\rm TC} \leq 7$.

So far, we have examined the constraint in the Zbb vertex only from the experiment on the ratio $R_b = \Gamma_b/\Gamma_h$. In fact, the Zbb vertex is constrained also by other experiments on the Z pole: Γ_Z , $R_l = \Gamma_h/\Gamma_l$, $R_c = \Gamma_c/\Gamma_h$ and the peak hadronic cross section σ_h^0 . It is worth noting that except for the ratios R_b and R_c , all the other observables (Γ_Z , R_l , and σ_h^0) measure just one combination of $\delta_b(m_Z^2)$ and $\alpha_s(m_Z)$, $\alpha'_s = \alpha_s(m_Z) + 1.6 \delta_b(m_Z^2)$ [2]. This is because the above three accurately measured observables depend on α_s and the Zb_Lb_L vertex correction only through one quantity, the hadronic width of the Z boson Γ_h . As a consequence, it has been known [2,17] that significant new physics contribution to the Zb_Lb_L vertex correction affects the $\alpha_s(m_Z)$ value extracted from the electroweak Z observables. Moreover, since the above Z

$$\begin{aligned} \alpha_s(m_Z) &= 0.1150 \pm 0.0044 \\ &\quad -0.0032 \frac{\bar{g}_Z^2(m_Z^2) - 0.55550}{0.00101} \\ &\quad +0.0015 \frac{\bar{s}^2(m_Z^2) - 0.23068}{0.00042} \\ &\quad -0.0042 \frac{\bar{\delta}_b(m_Z^2) + 0.0034}{0.0026} \ , \end{aligned}$$
(15)

where $\bar{g}_Z^2(m_Z^2) = 0.55550 \pm 0.00101$, $\bar{s}^2(m_Z^2) = 0.23068 \pm 0.00042$, and

$$\bar{\delta}_b(m_Z^2) = -0.0034 \pm 0.0026$$
 (16)

are the best fit values with their 1σ errors. For a given set of m_t and m_H , $\bar{g}_Z^2(m_Z^2)$ and $\bar{s}^2(m_Z^2)$ values are determined in terms of the S and T values. The constraint for $\bar{\delta}_b(m_Z^2)$ (16) has changed from (12) by using all the available data. It should be noted that the global constraint (16) is consistent with the constraint (12) from the R_b data alone, while it is still more than 2σ away from the SM prediction (11).

The value of $\alpha_s(m_Z)$, which is obtained from the global fit (15), $\alpha_s(m_Z) = 0.1150 \pm 0.0044$, is highly consistent with the average value of the results given by the lattice-QCD analyses of the bottomonium system [7], $\alpha_s(m_Z) = 0.115 \pm 0.002$, and also with the global average value by Particle Data Group [8], $\alpha_s(m_Z^2) = 0.117 \pm 0.005$.

We showed that the deviation of the LEP result on R_b from the SM prediction can be explained naturally in the ETC theory. Since the diagonal and sideways contributions to the Zbb vertex are opposite in sign and individually larger than the SM contribution, the model can explain naturally the 2σ discrepancy from the SM prediction for reasonable values of $N_{\rm TC}$ and the ETC couplings. The value of $\alpha_s(m_Z)$, which is extracted from the Z boson data, becomes small by considering the correction from ETC. The value is consistent with the recent lattice-QCD estimate and the global average value by the Particle Data Group, but is somewhat smaller than that extracted from jet analysis [8].

We are grateful to T. Yanagida and K. Yamawaki for helpful discussions. We also wish to thank to Y. Sumino for the hospitality during our stay at Tohoku University.

- The LEP Collaborations, ALEPH, DELPHI, L3, OPAL, and The LEP electroweak working group, Report No. CERN/PPE/94-187, 1994.
- [2] K. Hagiwara, D. Haidt, C.S. Kim, and S. Matsumoto, Z. Phys. C 64, 559 (1994).
- [3] R.S. Chivukula, B. Selipsky, and E.H. Simmons, Phys. Rev. Lett. 69, 575 (1992).
- [4] N. Kitazawa, Phys. Lett. B 313, 395 (1993).
- [5] B-H. Wu, Phys. Rev. Lett. 74, 4137 (1995).
- [6] In Ref. [4] the sign of the "diagonal" ETC boson contribution was reported wrongly. The error occurred because of the use of an unphysical cutoff procedure.
- [7] C.T.H. Davies et al., Phys. Lett. B 345, 42 (1995).
- [8] Particle Data Group, L. Montaret et al., Phys. Rev. D

50, 1173 (1994).

- [9] A. Manohar and H. Georgi, Nucl. Phys. B234, 189 (1984).
- [10] The overall normalization of the correction becomes a little smaller if the technicolor dynamics realizes large anomalous dimension of the technifermion mass operator to suppress the flavor-changing neutral current [11,12].
- [11] R.S. Chivukula, E. Gates, E.H. Simmons, and J. Terning, Phys. Lett. B **311**, 157 (1993).
- [12] N. Evans, Phys. Lett. B 331, 378 (1994).
- [13] J. Fleischer, O.V. Tarasov, F. Jegerlehner, and P. Raczka,

Phys. Lett. B **293**, 437 (1992); G. Buchalla and A.J. Buras, Nucl. Phys. **B398**, 285 (1993); G. Degrassi, *ibid.* **B407**, 271 (1993); K.G. Chetyrkin, A. Kwiatkowski, and M. Steinhauser, Mod. Phys. Lett. A **8**, 2785 (1993).

- [14] S. Matsumoto, Report No. KEK-TH-418, 1994.
- [15] M.E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990); M.E. Peskin and T. Takeuchi, Phys. Rev. D 46, 381 (1992).
- [16] T. Appelquist and J. Terning, Phys. Lett. B 315, 139 (1993).
- [17] B. Holdom, Phys. Lett. B 339, 114 (1994).