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Instanton size distribution: Repulsion or an infrared fixed point?
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We discuss available information about the instanton size distribution d(p), which comes from
lattice simulations and the interacting instanton liquid model. First, we demonstrate that they
agree quite well. Second, we also show that an alternative idea, based on the infrared 6xed point,
can also reproduce the shape of d(p). Third, we discuss how one can use lattice methods to clarify
the nature of the suppression of the large-size instantons.

PACS number(s): 12.38.Lg, 11.15.Pg, 12.38.Gc

Instanton physics [1—3] was discovered nearly 20 years
ago, but only now is their quantitative role in @CD be-
ing clarified. In particular, a large set ( 40) of point-
to-point correlation functions was calculated in the sim-
plest "instanton liquid" model [4], both numerically [5]
and (with certain approximations) analytically [6]. It
was found that not only masses and coupling constants
of many hadrons (including vr, o, p, Ai, N, 4, and others)
are reproduced, but the whole correlation functions also
agree with those extracted Rom phenomenology [7] and
&om lattice simulations [8].

Recently, glueballs were added to the list [9], with
the conclusion that the instanton liquid model predic-
tions (such as small mass and especially small size of the
scalar glueball) are in quantitative agreement with the
lattice data. This agreement is not accidental, as can
be seen from the fact that the "instanton liquid" itself
was "distilled" &om lattice configurations by the "cool-
ing" method [10—12]. Two parameters of the model (the
average instanton size p and instanton spacing R) were
found to be inside 10'%%uo, the same as those suggested in
1982 by the author [4]: namely, p = 1/3 fm, R = 1
fm. I"urthermore, in spite of absent perturbative effects
and (nearly complete) loss of confinement, this operation
does not change much the correlators and hadrons [11].
So the instanton-induced 't Hooft interaction [2] is truly
the dominant part of the interquark forces.

With the mean instanton size being approximately
measured, the obvious next step is the shape of the in-
stanton (plus anti-instanton) size distribution function,
d(p). With all those advances at the phenomenological
kont, we are still lacking answers to many major ques-
tions related to it. One of them, to be discussed below,
is: Why are large-size instantons absent in the @CD
vacuum? Alternative explanations are (i) they are sup-
pressed by repulsive interaction between instantons, (ii)
the higher order efjects lead -to charge renormalization so
that their actions are large, and (iii) confinement ef-
fects screen their gluoelectric fields. In this work we will

go through this list, and will show that the first two still
remain strongly competitive.

The idea (i) is implemented in the "interacting instan-
ton liquid model" (IILM), a statistical model [13,14] with
the partition function (for N/2 instantons and N/2 anti-
instantons)

z j=dflldo(pl) exp —).~Fr
I(J

where OI denote the orientation, position, and the
size of pseudoparticle I, do (p) here corresponds to
noninteracting instantons, with the gluonic interactions
SIJ In its previous applications the main effects are re-
lated with the quark-related interaction, but those are
not considered in this work.

Let us brieBy remind the history of the SIJ. The sim-
plest "hard core" model was introduced in [15]. Then
it was shown that for the simplest "sum ansatz" [16]
such a repulsion actually exists. Some defects of this
ansatz were cured in [13],where the improved trial func-
tion known as "ratio ansatz" was proposed: this repro-
duces phenomenological parameters of the "instanton liq-
uid. " However, numerical solutions [17] of the "stream-
line" equation [18] have shown that the instanton —anti-
instanton valley leads continuously to zero fields; so the
original hopes to get repulsion at the purely classical level
[16] are not satisfied. Presumably quantum effects (espe-
cially subtraction of perturbative contributions, relevant
for close instanton —anti-instanton pairs with a strongly
attractive interaction) will generate the effective repul-
sion (see also [19]). Meanwhile, in IILM-based recent
studies [9,20], the streamline interaction is supplemented
by a repulsive core, with the radius fitted to the value of
the gluon and quark condensates.

We have simulated numerically the ensemble of inter-
acting instantons (see details in [20]) for the pure gauge
theories. The resulting d(p) is shown in Fig. 1 (open
points), for the SU(2) (a) and SU(3) (b) cases. Both
have sharp maxima, supplemented by a tail toward large
p, to be discussed below. Recently, the first lattice mea-
surements [12] were made for the SU(2) case: those re-
sults (for two lattices, closed points) are compared to
each other (and IILM) in Fig. 1(a). The comparison
leads to our first conclusion: d(p) obtained from both
approaches are very siinilar. (A deviation at small p was
expected: instantons with the radius p a "fall through
the lattice" during "cooling. ")

[In passing, let us mention here one practical aspect of
the studies of d(p): its measurements at small p ( 0.2
fm is potentially the source of by far the most accu-
rate measurements of Agco. As it is well known, here
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Surprisingly, the available data are actually in nice
agreement with predictions following &om this simple
idea. In terms of statistical accuracy and the widest
range studied, the best lattice measurements are those
for d=2 O(3) cr model [22]. For large sizes the result is
d(p) - p

' [»].
Furthermore, for the d=4 SU(2) gauge theory [see

Fig. 1(a)] we have fitted the lattice-based distribution
by semiclassical expression (2) with the following simple
parametrization for the action:
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Sm2 bg= boI + —lnL,
g p 0

(3)

a standard two-loop expression for the charge (where
bo = iiN„bi ——s7N2) but with a "regularized" log

0 L

0 4
P

(4)

FIG. 1. The instanton size distribution in d=4 SU(2) (a)
and SU(3) (b) gauge theories. The open points correspond
to the "interacting instanton liquid, " and the closed ones are
lattice results by Michael and Spencer, [11] 16,4/g = 2.4
for squares and 24, 4/g = 2.5 for dots (the dotted and
dashed lines just guide the eye). Solid curves correspond to
the parametrization discussed in the text. Units are in "fem-
tometers, " de6ned for lattice data by the scalar glueball mass
defined as mo+ = 1.7 "GeV"; and by 1/Apv for the instanton
model.

d(p) A&cD. thus even relatively poor accuracy in its
measurements leads to AqcD value with the accuracy
bettei than measured today by other methods. ]

However, it is well known that good agreement does
not guarantee that the theory is right. To challange the
"instanton liquid" model let us now consider an alterna-
tive idea (ii). If the action is large enough S,g )) 1, one
can use the generic semiclassical expression

It has two new parameters C and p, describing where
and how rapidly the "&eezing" occurs. The solid line
in Fig. 1(a) shows such a fit, with A;„,t ——0.66 fm
p=3.5, C=4.8. For the SU(3) gauge theory the data
for d(p) itself are still missing, but the total instan-
ton density and average size were measured in [11]:jdpd(p) = 1.3 fm, p = 0.35 fm. One may fix two pa-
rameters to reproduce those two values: the correspond-
ing (solid) curve is shown in Fig. 1(b). (Parameters in
this case are A;„,t ——0.70 fm, p=3.5, C=5.0.) Although
it is not a fit to open points (the interacting liquid) the
curve agrees with the points. It shows that both the in-
stanton repulsion (i) and the frozen coupling constant (ii)
produce very similar distributions.

If one plots the action for those fits [Fig. 2(a)] one can
see that it indeed means rather rapid. "freezing" of the
coupling constants. We do not know why such &eezing

40

d(p) =,„,& ~'"' '"(p)exp[ —~(p)] (2) 30

where 2 accounts for instantons and anti-instantons, d
is the space-time dimension, and NzM is the number of
zero modes (4N for Yang-Mills fields). The value of the
(renormalization-dependent) constant was determined in
the classical work [2] CI = 0.466/[(N —1)!(N, —2)!].
(In order to simplify our discussion of the large-N,
limit below, we have absorbed the extra N -dependent
factor in Ci into a new lambda parameter A;„,t
0.632Ap „);~;)) „——0.657AMs, where MS denotes the
modified minimal subtraction scheme. )

Furthermore, various arguments in favor of existence
of an infrared fixe point (or "freezing" of the coupling
constant) have been many times made before, based on
a variety of phenomenological observations [see, e.g. , the
recent paper [21], which deals with higher-loop correc-
tions to o(e+e ~ hadrons)]. If so, at large p the action
becomes p independent, and therefore d(p) p (~+i&,

where d is just the space-time dimension.
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FIG. 2. The upper part shows the instanton action S(p)
versus p (in "fm") according to the parametrization used in
Fig. 1. The lower part compares the 6tted values of the "6xed
point" actions S' (divided by the number of colors N = 2, 3)
with the critical point in the large N, limit (star).
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may occur: but it is remarkable that it should happen
where the action itself is large, S 11,20 for N = 2, 3,
so one should trust the semiclassical theory.

Let us now comment on alternative (iii) mentioned
above, namely, that the cutofF of the large size instan-
tons is related with confinement: an argument against
it can be given. Recent studies of the instanton sizes
at nonzero temperatures [23] have shown that up to the
deconGnement transition the average instanton size does
not change, and only above it the size slowly decreases.
In contrast to that, the string tension decreases below T„
and vanishes K(T) ~ 0 at the transition point.

In connection with the "&ozen coupling" idea, the
author looked at the so-called nonperturbative P func-
tions used in the lattice studies. Recall that the bare
coupling g(a) is fixed at the input of simulations, then
one calculates some observables (hadronic masses, etc.)
which allows to fix the physical magnitude of the lat-
tice scale a. Reversing the function, one gets the charge
g(a). The procedure is subject for (a) universality test
(its independence on the particular observable used) and
(b) comparison with the expected perturbative behavior
("asymptotic scaling" ). The nontrivial fact found (see,
e.g. , [24,25]) is that (a) extends beyond (b), so that non-
perturbative P function inakes sense in some window.

A sample of lattice data for the SU(3) lattice-gauge
theory, without quarks [24] (open points) and with two
massless quark Havors (closed points) [25] is shown in Fig.
3. Those are usually presented in form of the derivative
of g(a), the famous Gell-Mann —Low P function. In order
to compare various theories, it is convenient to normalize
the derivative to its asymptotic (g -+ 0) perturbative
value: thus we plot the ratio

t'd(1/g') l
( din(a) )

which tends to one at the right-hand side of Fig. 3. As
one penetrates into the nonperturbative region the data
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FIG. 3. The nonpertubative P function for the SU(3) lat-

tice theory with Wilson action. Open points are taken from
Gupta review (which is an analysis of the data set from Lep-
age and Mackenzie), the solid points are from Blum et aL The
solid line is a fit discussed in the text.

display a deep drop of Bp at 6/g 6, with subsequent
turn upward. Both are very rapid: the latter turn is
known in literature as a transition to a "strong coupling"
regiine. This drop may be an indication for an infrared
fixed point nearby (.The turn upward is very similar to
those commonly observed when a renormalization trajec-
tory is going toward the Gxed point, and then misses it
closely. )

Another way to investigate charge renormalization
(with the standard Wilson action) is related with the
renormalization of background fields. This method is
quite popular in. the perturbative context [26] but (to
our knowledge) has not yet been used on the lattice.
It is clear which Geld is the best to try. First, to
avoid complications with external current, one should
better take a "self-supporting" classical Geld, such as
D„G'„„=0. Second, topology adds additional stabil-
ity: thus an instanton is the most natural classical back-
ground. Third, its renormalized action depends on one
parameter p, S,tr = 8vr /g (p), and thus this expression
can be used as a definition of the nonperturbative charge
renormaliz ation.

One can put a classical instanton on the lattice and
then "heat it up, " performing standard updates: such
studies have been made by Alles et aL [27], establishing
renormahzation of the topological susceptibility. How-
ever, for the proposed goal it is not enough to keep a
topological charge (as done in Ref. [27]): one has to pre-
serve the chosen value of p. This can be achieved in two
ways: (i) while updating a link, one may keep the quan-
tum Geld a„orthogonal to the dilatational zero mode
bA„/b p [28]; or (ii) one may use a modified lattice action
containing the two-plaquette operators with parameters
tuned to make any given size the classical minimum of
the lattice action. Either way, the main problem is to get
high statistics measurements of the efFective action, after
subtraction of the usual "average plaquette" is made.

The last topic addressed in this work is the fate of
instantons in the large N limit. Witten [29] has for-
mulated the following dilemma: either (i) instantons
are not dynamically relevant, while all observables have
perturbative-type 1/N expansion, or (ii) instantons play
a role in the real world, but are exponentially suppressed
at large N, . [Back in 1979, Witten argued in favor of
(i), using analogies with some d=2 models, but today
there is no doubt about the signiGcance of the instan-
tons at N, = 3. However, it is hard to accept (ii) also,
because then all the 1/N, development is undermined. ]
This dilemma, however, can resolve itself [30,4]. More
generally, while comparing worlds with difFerent N, one
has the keedom of selecting the right units. Reversing the
argument, one may look for the particular definition, in
which the large N limit looks smooth: e.g. , demand that
the instanton density is not exponential in N . In fact, we
have selected above our "frozen coupling" parametriza-
tion with a desired smooth large N limit.

First of all, recall that the semiclassical formula (2)
in the large N, hmit contains factorial terms in the de-
nominator. The action, however, grows linearly with N,
S(p) = N, s(p), and thus factorials are exactly canceled
by the gauge zero modes. The main problem is with the
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exponential terms, which in our normalization are

d(p) exp(N [2 —s(p) + 21ns(p))) . (6)

The limit clearly depends on the sign of the bracket: if
there exists a fixed point s(p) m s', it is better to place
it at the root of the bracket, 8' —5.4. As shown in Fig.
2(b), the fitted values of the action limits for N, = 2, 3
are indeed close to the critical value (shown by the star).
Thus, this parainetrization leads to finite d(p) in the large
N limit [which is, of course, nonsmooth: d(p) ~ 0 below
some critical value].

(One should not confuse the mere existence of smooth
parametrization with the answer to a nontrivial physical
question: Should the N ~ oo limit be smooth? The an-
swer, suggested in [16], is negative: in this limit an "in-
stanton liquid" should become a solid, so that both color
and translational symmetries are spontaneously broken.
The reason is the growing action is analogous to a de-
creasing temperature. In [14] such phase transition was
in fact found for N = 3, but at nonphy8ica/ instanton

density, about 60 times the physical one. The critical N
is unknown, and the work is in progress. Lattice stud-
ies of theories with N~ & 3 would certainly be of great
value. )

In summary, we have presented results for the instan-
ton size distributions in the interacting instanton liquid
model, which were compared to those obtained on the
lattice. %e have concluded that they are very consis-
tent. Ru'thermore, we have put forward another expla-
nation, based on the existence of an in&ared fixed point,
which is also consistent with data. Better measurements
of d(p) on the lattice (especially at N, = 3 and larger)
are badly needed: among resolving several theoretical
problems, they are potentially a promising way toward
precision determination of Agco. A new type of lat-
tice measurement, especially of the renormalized action
of the large-size instantons, is the only way to resolve the
dilemma discussed in this work.
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