Method of constraining the CP-violating phase γ from charged B meson decays

L. Wolfenstein*

The University of Chicago, The Enrico Fermi Institute, 5640 South Ellis Avenue, Chicago, Illinois 60637

(Received 31 May 1994)

Gronau, Rosner, and London have presented a method of determining the CP-violating phase γ of the CKM matrix from the decays $B^+ \to \pi^+K^0$ and $B^{\pm} \to K^{\pm}\pi^0$. We show that this method could provide a powerful constraint on γ even if only a weak upper limit on the CP violation is obtained. We also point out a consequence of the assumptions they make.

PACS number(s): 12.15.Hh, 11.30.Er, 13.25.Hw

In a recent paper Gronau, Rosner, and London [1] In a recent paper Gronau, Rosner, and London $[1]$
presented a method for determining the CP -violating
Cabibbe Kebeweebi Meskawe (CKM) phase a from nat Cabibbo-Kobayashi-Maskawa (CKM) phase γ from rate measurements on B^{\pm} decays. Here we point out the surprising power of this method in certain cases. We also point out that their assumptions yield a relation between strong phases.

The decays of interest are $B^+ \to K^+\pi^0$ and $B^+ \to$ $K^0\pi^+$. These decays are believed to have significant contributions from penguin diagrams $[2]$ as well as doubly Cabibbo-suppressed tree diagrams. The transition am-Cabiboo-suppressed tree diagrams. The transition am-
plitude to the final $I = \frac{3}{2}$ state comes only from the tree diagram since the penguin diagram has $\Delta I = 0$; we write this as

$$
\sqrt{\frac{1}{3}}A(K^{0}\pi^{+}) + \sqrt{\frac{2}{3}}A(K^{+}\pi^{0}) = \sqrt{\frac{2}{3}}Ae^{+i\gamma}e^{i\delta_{3}}.
$$
 (1)

The tree diagram is proportional to $V_{ub}^*V_{us}$ and so has the weak phase factor $e^{i\gamma}$. Gronau, Rosner, and London show that using $SU(3)$ the magnitude of A can be approximated from the rate of $B^{\pm} \to \pi^{\pm} \pi^{0}$.

Because the tree diagram contains no d or \overline{d} Gronau, Rosner, and London argue that the decay $B^+ \to K^0 \pi^+$ is a pure penguin diagram which we write as

$$
A(K^0\pi^+) = \sqrt{2}Be^{i\delta p} . \qquad (2)
$$

Since the penguin diagram is proportional to $V_{tb}^*V_{ts}$ it contains no weak phase factor. Combining Eqs. (1) and $(2),$

$$
A(K^+\pi^0) = Ae^{i\gamma}e^{i\delta_3} + Be^{i\delta_p} . \qquad (3) \qquad \text{or}
$$

The amplitude for $B^- \to K^- \pi^0$ is obtained by changing γ to $-\gamma$.

We define

$$
S = [\Gamma(B^+ \to K^+\pi^0) + \Gamma(B^- \to K^-\pi^0)]/2 ,
$$

$$
D = [\Gamma(B^+ \to K^+\pi^0) - \Gamma(B^- \to K^-\pi^0)]/2 .
$$

Then, from Eq. (3),

$$
\cos \delta \cos \gamma = (S - A^2 - B^2)/2AB , \qquad (4a)
$$

$$
\sin \delta \, \sin \gamma = D/2AB \;, \eqno(4b)
$$

where $\delta = \delta_3 - \delta_p$.

Since A is assumed to be determined via $SU(3)$ from the $\pi^{\pm}\pi^{0}$ rate and B from the $K^{0}\pi^{+}$ rate (which here is equal to the $\bar K^0\pi^-$ rate) the measurement of the $K^+\pi^0$ and $K^-\pi^0$ rates allows the determination of γ and δ from Eqs. (4) up to a twofold ambiguity.

The measurement of a nonzero value for the asymmetry D/S would be a sign of direct CP violation and of great importance. The method discussed above allows the quantitative determination of γ from the asymmetry. Detailed discussions of this asymmetry have been given by Gerard and Hou [3] and Simma et al. [4]. Their results suggest that the asymmetry is only a few percent and so will be undetectable for the foreseeable future.

Nevertheless it is possible that a significant constraint on γ may be achieved by this method without detecting any asymmetry. This is best illustrated by a specific example. Let us suppose that γ is close to 90[°] and δ is close to 0° . In this case the results of the measurements discussed above will be limits on $\cos \delta \cos \gamma$ and $\sin \delta \sin \gamma$. Assume one finds

$$
\sin \delta \sin \gamma < L ,
$$

$$
\cos \delta \cos \gamma < L .
$$
 (5)

Then the constraint on γ is

$$
\sin^2\gamma < \tfrac{1}{2}(1-\sqrt{1-4L^2})
$$

$$
\sin^2 \gamma > \frac{1}{2}(1 + \sqrt{1 - 4L^2}) \; .
$$

Assuming the fairly weak limit of $L = 0.4$, this yields

$$
|\sin \gamma| < 0.45 \text{ or } |\sin \gamma| > 0.9. \tag{6}
$$

If we assume, for example, that the value of V_{ub} gives $(\rho^2 + \eta^2)^{1/2} = 0.4$, Eq. (6) rules out values η between 0.18 and 0.36. Since fitting ϵ requires η greater than about 0.14 and the assumed V_{ub} says η < 0.4, the very weak results of Eq. (5) provide extremely strong constraints on n .

The example given is a very reasonable case but was selected to demonstrate the power of this method. If γ were close to 50° instead of 90° the method would be much less restrictive with the weak statistical accuracy

^{*}Permanent address: Carnegie Mellon University, Pittsburgh, PA 15213.

we have assumed above. Also if L is raised from 0.4 to 0.5 the constraint on γ is lost.

To see the implications for the strong phases that follow from the assumptions used in this method we write the *tree* contribution going to the final $I = \frac{1}{2}$ state

$$
\left(\frac{2}{3}\right)^{1/2} A_T(K^0 \pi^+) - \left(\frac{1}{3}\right)^{1/2} A_T(K^+ \pi^0)
$$

$$
= \left(\frac{1}{3}\right)^{1/2} C e^{i\gamma} e^{i\delta_1} . \tag{7}
$$

Considering only the tree contribution on the left-hand side (LHS) of Eq. (1) and combining this with Eq. (7),

$$
\left(\frac{1}{3}\right)^{1/2} A_T(K^0 \pi^+) + \frac{2}{\sqrt{3}} A_T(K^0 \pi^+)
$$

$$
= \left(\frac{2}{3}\right)^{1/2} e^{i\gamma} (A e^{i\delta_3} + C e^{i\delta_1}) . \tag{8}
$$

However, the assumption made in Eq. (2) was that $A_T(K^0\pi^+)$ vanishes requiring where

$$
Ae^{i\delta_3} = -Ce^{i\delta_1} . \qquad (9)
$$

This can only hold if $\delta_3 = \delta_1$.

In practice we have found no way to calculate these strong phases. In previous papers [3,4] the main strong phase included came from the absorptive part of the penguin diagram corresponding to a virtual $c\bar{c}$ state following

Bander, Silverman, and Soni [5]. While this may be reasonable in looking at the inclusive process $b \rightarrow s + u + \bar{u}$ it makes little sense for the exclusive [6]. Here a major final-state interaction is the scattering from $K + \pi$ to $K + n\pi$. Indeed for the final state of $K + \pi$ in an s state one expects the major strong interaction to be such inelastic scattering. Unfortunately we do not know how to calculate δ for this nor how to show that δ_3 does not differ from δ_1 .

A weaker assumption than Eq. (9) would be to assume $A = -C$ but to allow a difference between δ_3 and δ_1 . This is somewhat arbitrary since the final-state interactions also affect the magnitudes. If we do assume $A = -C$ and expand to first order in $(\delta_3 - \delta_1)$ we obtain

$$
\cos \delta \cos \gamma = (S - S^2 - B^2)/2AB + \frac{1}{3}\sin \frac{\Delta}{2}\cos \gamma \sin \delta ,
$$
\n(10a)

$$
\sin \delta \sin \gamma = D/2AB + \frac{1}{3}\sin \frac{\Delta}{2}\sin \gamma \cos \delta , \qquad (10b)
$$

$$
\Delta = \delta_3 - \delta_1
$$

and δ is now understood as $\frac{1}{2}(\delta_3 + \delta_1) - \delta_p$. For the example considered above the correction is relatively unimportant. Allowing $\Delta = 30^{\circ}$ would only lower the limit of 0.9 in Eq. (6) by 3% .

I wish to thank Jon Rosner for discussions.

- [1] M. Gronau, J. Rosner, and D. London, Phys. Rev. Lett. 73, 21 (1994).
- [2] D. London and R. Peccei, Phys. Lett. B 223, 257 (1989); M. Gronau, Phys. Rev. Lett. 63, 1451 (1989); B. Grinstein, Phys. Lett. B 229, 280 (1989).
- [3] J. M. Gerard and W. S. Hou, Phys. Rev. ^D 43, 2909 (1991).
- [4] H. Simma, D. Wyler, and G. Eilam, Nucl. Phys. B352, 367 (1991); H. Simma and D. Wyler, Phys. Lett. B 272, 395 (1991).
- [5] M. Bander, A. Silverman, and A. Soni, Phys. Rev. Lett. 43, 242 (1979).
- [6] L. Wolfenstein, Phys. Rev. D 43, 151 (1991).