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Reexamination of the perturbative pion form factor with Sudakov suppression
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The perturbative pion form factor with Sudakov suppression is reexamined. To guarantee the
reliability of the perturbative calculations we suggest that the running coupling constant should
be frozen at n, (t = (k2 )) and (kT ) is the average transverse momentum which can be determined
by the pionic wave function. In addition we correct the previous calculations about the Sudakov
suppression factor which plays an ixnportant role in the perturbative calculations for the pion form
factor.
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It is believed that perturbative @CD (p@CD) can suc-
cessfully describe exclusive processes at asymptotically
large momentum transfers [1]. However, the applicabil-
ity of pQCD to the electromagnetic pion form factor at
the present energy is a matter of controversy [2]. Re-
cent studies [3—5] on the pion electromagnetic form fac-
tor have shown that the PQCD contributions become
self-consistent for momentum transfers in the range of a
few GeV. Li and Sterman [4] give a modified expression
for the pion form factor by taking into account the cus-
tomarily neglected partonic transverse momenta as well
as the Sudakov corrections. Sakob and Kroll [5] point
out that the dependence of the hadronic wave function
on the intrinsic transverse momentum should be consid-
ered in the perturbative calculation. Sudakov corrections
come &om an in6nite summation of higher-order eKects
associated with the elastic scattering of the valence par-
tons. However, because the running coupling constant
cr, becomes rather large with 6 (the distance between a
quark-antiquark pair) increasing in the end-point regions,
a cutoB on o., has to be made to evaluate perturbative
contributions and to justify the self-consistency of per-
turbative calculations. In this paper, we will reexamine
the perturbative pion form factor with the Sudakov sup-
pression. It is pointed out that cr, (t) should be frozen as t
is smaller than a certain value because of the multigluon
exchange at low Q2. We suggest that the frozen point is
related to the root-mean-square (rms) transverse momen-
tum, which is determined by the pionic wave function. In
addition, we correct the previous calculations about the
Sudakov suppression factor, which plays an important
role in the perturbative calculations for the pion form
factor.

Let us begin with a brief review on the derivation of
the expression for the pion form factor in Ref. [4]. Taking
into account the transverse momenta kT that Bow &om
the wave functions through the hard scattering leads to
a factorization form with two wave functions @(z;,kT;. )
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corresponding to the external pions, combined with a new
hard-scattering function TH(zq, z2, Q, kT, , kl;), which
depends in general on transverse as well as longitudinal
mome nta:

I" (q') = dxidT* j d kT, d k g(.TkTT;|, Pi)
0

xTH(zg, z2, Qi kr„kz;, p)4'(z2, kT„P2),
(1)

where Q = 2' . P2, and p is the renormalization and
factorization scale.

The hard-scattering amplitude TH is to be calculated
&om the one-gluon-exchange diagrams to the lowest or-
der in the perturbation theory. Neglecting the transverse
momentum dependence in the fermion propagator, TH is
given by

TH (*1,*2,Q, kT„kT, )
16vr C~n, (p)

xgx2 2 + kT; + kT; 2'

(2)
where C~ is the color factor. The kT dependence on the

2
fermion propagator contributes to TII a factor

1
which involves only a single transverse momentum cor-
responding to the one in the external pion, and this fac-
tor causes the Fourier transformation for TH to involve
multiple-6 integrals. This factor leads to a reduction of
the prediction for I' by about 10% [6]. We may neglect
this factor &om the mechanisms that we are discussing
in this paper.

Through Fourier transformation Eq. (1) can be ex-
pressed as

dbms db2
E~(Q ) = dzgdz2 2 2(p(zg) bg, Pg, p)

0 27r 2 27r 2

xTH

(zlzz

z2) Q) big b2& p) p(z2& b2i P2, p).
(3)

In this expression, wave function rp(z;, b, , P;, y, ) takes
into account an in6nite summation of higher-order ef-
fects associated with the elastic scattering of the valence
partons, which gives out the Sudakov suppression to the
large-b and small-z regions [7]:
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(4)

g(i) ) q q ~(» ( q ) g(» - A&')P, ln( —2b)+
s(t, , b, q) = qin

~ l+, l
. —1

~

— (q+b) —,'q
b)— 4i & b— )2i 4i

E 4A' 4lgi 2 ) E —b)
where

"dp ( 11
&p(x, b, P, p) = exp —s(*,b, Q) —s(1 —*,b, Q) —2 V, (g(P)) 4 l

hI—
igb P

where p = —o, /vr is the quark anomalous dimension in the axial gauge. s((, b, Q) is the Sudakov exponent factor:

1 ln( —2q) + 1
—g

q = ln[gq/(v 2A)], b = 1n(bA),
33 —2nf 153 —19nf

A(' = ——-~' — nf+—-P, ln( —e ).4 2 67 1 2 10 8 1
3' 9 3 27 3 2

(6)

nf is the number of quark fIavors, and p is the Euler constant.
It should be noted that there are some mistakes in the coefficients of the fourth and the sixth terms in s((, b, Q)

given by Refs. [4,6]. We find that the correct coefficients should be —
4&,

' and + s&, ', in place of —
is&,

' andA( )P A(') P,
1 1 1

A(1)p~' in Refs. [4,6]. It is s((, b, Q) that plays an important role in the perturbative calculations for the pion form
1

factor. In this paper, we are going to examine the efFects brought about by these corrections.
Applying the renormalization-group equation to T~ and substituting the explicit expression for TH, we have the

following expression for the pion form factor:
1 OO

E~(q ) = 167t C»' dhi dh2 b dbai(t)Kp('ghih2qb)IttI(hi, 1/b)Itb(x2, 1/b) exp[ —S(xi, x2, Q, b, t)], (7)
0 0

where

2
S(xi, x2, Q, b, t) = ) [s(x, , b, Q) + s(1 —x;, b, Q)] ——ln

A b—
K0 is the modified Bessel function of order zero.

Radiative corrections in higher orders will bring loga-
rithms of the form ln(t/p) into T~, where t is the largest
mass scale appearing in T~. Reference [4] points out that
a natural choice for p in T~ is p = t and

t = max(gx, h, q, 1/b) .

where

b if 1/b & (kT)
if 1/b ( (kl),

e7

t = max(ghix2Q, 1/bs), (10)

If b is small, radiative corrections will be small regardless
of the values of x because of the small o, When b is
large and xix2Q is small, radiative corrections are still
large in TH, while p will suppress these regions. But
with b increasing, n, becomes rather large (for example,
a, & 1 as b & 5 GeV for x~ ——0.01, x2 ——0.01 and
Q = 2 GeV; see Fig. 1) and accordingly the perturbative
calculation loses its self-consistency. Therefore, a cutofF
on n, is made to evaluate perturbative contributions and
to justify the self-consistency of perturbative calculation.
That is to say, if 50% of the result come from the regions
where a, is not very large (say, ( 0.7), the perturbative
calculation can be trusted.

Strictly speaking, the perturbative predictions to the
regions where o., is larger than unity are unreliable, al-
though these regions are suppressed. In fact, in the re-
gions of small xix2Q and large b, the multigluon ex-
change is important and the transverse momentum in-
trinsic to the bound-state wave functions fiows through
all the propagators [3, 11]. To respect this point, instead
of Eq. (9) we suggest that
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FIG. 1. The evolution of n, with b for xq ——0.01, xq ——

0.01, Q = 2 GeV and Agon —100 MeV. The solid line is
evaluated with Eq. (9). The dashed line is evaluated with
Eq. (10) for g
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and (kT) is the rms transverse moxnentum of the pion.
With such a choice, the running coupling constant will
be frozen at n, (t = (kT )) when b is large and xxx2Q
is sxnall. In this way, the perturbative contributions to
the pion form factor can be calculated from the present
energy with a reasonable o, Experimentally the rms
quark transverse momentum of the pion is of the order
300 MeV approximately [8]. In the perturbative calcu-
lations, (kq ) always associates with the pion wave func-
tion, which may be a little different for different models
of wave functions. Because the perturbative predictions
for the pion form factor are insensitive to the values of
(kz ), the model dependence of our prescription for freez-
ing the running coupling constant is very weak. An effec-
tive gluon mass [9] and an infrared cutofF [10] have been
taken as the scale to freeze o.„in which the result are
sensitive to the variation of the freezing scale (the gluon
mass or the infrared cutofF). According to the present
approach the perturbative predictions for the form fac-
tor are insensitive to the variation of (kT ) with the help
of the Sudakov suppression. We would like to point out
also that although (kT) appears in the Sudakov suppres-
sion [Eq. (8)], as well as in cr„ through the mass scale t
[Eqs. (10) and (11)], it affects the Sudakov suppression
very weakly while it afFects o., dramatically (see Fig. 1).

The pion xsaue function. According to the Brodsky-
Huang-Lepage prescription [11], one can connect the
equal-time wave function in the rest kame and the light-
cone wave function by equating the oK-shell propagator
in the two frames. They got the wave function [ll, 3] at
the infinite momentum kame &om the harmonic oscilla-
tor model at the rest frame [12]:

g& )(x, kT) = Aexp

where P = 0.385 GeV and A = 32 GeV x are parameters
adjusted [13] by using the constraints derived [ll] from
a —+ p,v and vr ~ pp decay amplitudes:

2AP2
y( ) {x,1/b) = *(1—*)

(2vr) 2

( m2
!x exp!—

8P~x(1 —x) j
x exp —2P2x(1 —x)b'

Another model of the wave function adopted in our cal-
culations is the Chernyak-Zhitnitsky (CZ) like [18] wave
function [14—16]:

y()(x, k ) =A(1 —2x)2 exp
k' +m'

8P.(1 .)
(")

and

P" (x, 1/b) = x(1 —x)(1 —2x)'
(2z)

( m2
!

x exp!—
8P'x(1 —x) )

x exp[ —2P x(1 —x)b2], (19)

&-(x) = *(1-*)3f
2K,

(20)

where P=0.455 MeV and A = 136 GeV x with the use
of m = 342 MeV; (kT, ) =(0.343 GeV)2 and Pqq = 0.364.

Numerical calculations. Numerical evaluations for the
pion form factor with P( ) and P(~& are plotted in Fig.
2. We can Bnd that the perturbative predictions are still
smaller than the experimental data. It is expected to take
into account the contributions &om higher orders and
higher Fock states to reach the data at the intermediate
energy.

To evaluate the effects due to the errors in the s((, b, Q)
expression, we adopt the formalisxn of Ref. [4] in our
numerical calculations. That is, we choose t as defined
in Eq. (9) and neglect the evolution of P(x, 1/b) with
b. In addition, the same two models of the distribution
axnplitudes in Ref. [4] are used: (a) the asymptotic wave
function [17]

1 d 1%
dx x, k~

~6
dx@(x, kT = 0) =

0 f

(13)

(14)

«0.16
C3

0.14

0.12

f = 0.133 GeV is the pion decay constant. The quark
mass is chosen as m = 289 MeV.

The mean-square transverse momentum is de6ned as

d k
(kT) =,6 .dxlk~l'I@(» k~) I'/Pqq

where

0.1

0.08

0.06

0.04

0.02

rII
I

I
I

I
I

(16)

is the probability of ending the qq Fock state in the pion.
For Q( )(x, kT), (kT2, )=(0.356 GeV) and Pqq = 0.296.
Expressing @( ) (x, kq ) in the b space, we obtain

0 I I I I I I I I I I I I I I I ~ I I I l I I I I I I I I I I I I I I I I I I I I

5 10 15 20 25 30 35 40
Q*(Gev')

FIG. 2. The pion form factor with @ (solid line) and
l (dashed line).
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and (b) the Chernyak-Zhitnitsky wave function [18]

(21)

We 6nd that the corrected expression for the Sudakov
suppression function s((, b, Q) [Eq. (5)] increases the pre-
dictions of the pion form factor by about 0.8%%uo for the P '
and about 1.0%%uo for the P at Q = 20AqcD. The efFect
increases with Q decreasing (reaching about 2.0% for gP'
and 3.0%%uo for P at Q = 10A~cD). The corrections
are sizable individually for the fourth and sixth terms in
the s($, b, Q) expression, but fortunately they cancel each
other in the 6nal expression. As a result, the whole eH'ect

on the pion form factor is mild.
Summary. In this paper, we reexamine the perturba-

tive pion form factor with the Sudakov suppression. It is
found that in the previous perturbative calculations there
are regions where the running coupling constant o., & 1
and the perturbative predictions are unreliable, although

these regions are suppressed. Thus a cutofF on n, has to
be made to guarantee the applicability of the pQCD. Ob-
serving that in the above regions the multigluon exchange
is important, we suggest that the running coupling con-
stant should be frozen at n, (t = (kT )) when b is large
and xi2:zQ is small by taking into account the average
transverse momentum. In this way, the perturbative con-
tributions to the pion form factor can be calculated &om
the present energy with a reasonable n, . Although (kT )
depends on the wave function, the perturbative predic-
tions for the pion form factor are not sensitive to the value
of (kT). Hence our prescription of &eezing the running
coupling constant depends on the model of wave function
very weakly. In addition, we correct the previous calcula-
tions about the Sudakov suppression factor, which plays
an important role in the perturbative calculations for the
pion form factor.
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