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Supersymmetry without R parity and without lepton number

Tom Banks
Department of Physics and Astronomy, Rutgers University, Piscatazuay, ¹wJersey 08888-08$g

Yuval Grossman, Enrico Nardi, and Yosef Nir
Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel

(Received 26 May 1995)

We investigate supersymmetric models where neither A parity nor lepton number is imposed.
Neutrino masses can be kept highly suppressed compared to the electroweak scale if the p terms
in the superpotential are aligned with the SUSY-breaking bilinear B terms. This situation arises
naturally in the framework of horizontal symmetries. The same symmetries suppress the trilinear
B-parity-violating terms in the superpotential to an acceptable level.
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I. INTR.GDUCTION

Baryon and lepton number conservation are relics of
the ancient history of particle physics. We know today
that they are not likely to be exactly preserved symme-
tries of nature. Nonetheless much of the modern discus-
sion of supersymmetric (SUSY) models is cast within a
framework in which symmetries that guarantee baryon
and lepton number conservation at the level of renormal-
izable interactions are assumed [1—5]. The purpose of
the present paper is to show that a much larger spec-
trum of models may be consistent with the data. Fur-
thermore, since we suspect that the intricate structure of
the quark mass matrix is probably connected. to a hor-
izontal symmetry group, we find it natural to suppose
that this same symmetry group may have something to
do with the absence of what are usually called baryon-
and lepton-number-violating processes.

Within the standard model, lepton-number-violating
observables and lepton-Havor-changing processes are for-
bidden because U(1), x U(l)„x U(1) is an acciden-
tal symmetry of the (renormalizable) standard model
Lagrangian. This makes such processes particularly
sensitive probes of new physics at high energy scales.
Thus measurements of lepton-number-violating observ-
ables such as neutrino (Majorana) masses [6,7],

m, ( 5.1 eV, m„„& 160 keV, m ( 24 MeV,

and lepton-flavor-changing decays such as [6]

B(p -+ ep) & 4.9 x 10, B(p —+ eee) & 1.0 x 10

(1 2)

put severe constraints on extensions of the standard
model.

Generic supersymmetric extensions of the standard
model predict large contributions to neutrino masses and
to lepton-Havor-violating decays: (i) Sneutrino vacuum

expectation values (VEV's) give neutrino masses by mix-

ing neutrinos with the Z-ino Z [8—ll]; (ii) quadratic
terms ("p terms") in the superpotential give neutrino
masses by mixing neutrinos with the (up) Higgsino P„
[12,13]; (iii) trilinear terms in the superpotential in-
duce tree-level slepton-mediated decays such as p ~ 3e
[4,12—14].

The bounds (1.1) and (1.2) severely constrain the su-
persymmetric parameters. Taking mg mz, we find

{v ) & gm„mz & 1 GeV . (1.3)

Taking m-, mz, we find

p, y„& gm„m&, &1GeV. (1 4)

Both (1.3) and (1.4) become stronger by three orders
of magnitude, namely {v ) & 1 MeV and p„y„& 1
MeV, if the cosmological bound on long-lived neutrinos,
m(v;) & 10 eV, holds. Taking the slepton mass mf mz,
the bound (1.2) on p ~ 3e constrains the product of two
lepton-number-violating couplings to be

(1.5)

(We do not consider here the stronger constraints from
baryogenesis [15—17] since they are model dependent [18]
and may be evaded in some baryogenesis scenarios [19].)

These bounds pose a serious problem for generic SUSY
models where the natural expectation is that {v;)
(Pd) mz, p~, ~„p~,~„mz, and A;sA,. 1. The
standard solution to this problem is to impose a discrete
symmetry, B parity (R ), that forbids all three types of
terms. Alternatively, one could just impose lepton num-
ber to forbid. these terms.

In this work, we would like to suggest an alternative
mechanism to suppress SUSY contributions to neutrino
masses: an approximate alignment of the p terms and
the SUSY violating B terms. (Hall and Suzuki [12] noted
this case parenthetically in their study of models without
B parity but did not emphasize it because it did not fit
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into the grand unified framework which was one of their
primary concerns. ) We will first present the mechanism
and then show that it arises naturally in the IIramework of
Abelian horizontal symmetries. Furthermore, such sym-
metries automatically suppress the linear lepton-number-
violating couplings.

II. ALIGNMENT

In this section, we introduce our notations, clarify the
meaning of the bounds (1.3) and (1.4), and present a
mechanisxn that may satisfy these bounds.

where v = (P ), v = (L ), and 04&&4 denotes a zero
4 x 4 block in M . (The zeros in this 4 x 4 block are
lifted by nonrenormalizable terms in the superpotential,
i.e. , MP„P„LL Ta. king M )) mz, these terms have neg-
ligible efFects on our discussion. Here and in our analysis
below we neglect these terms as well as additional small
loop efFects. ) In general, M gives four massive states
and two massless ones. Three of the four massive states
should correspond to (combinations of) the Z-ino and
the two Higgsinos with masses = O(mz). The remaining
massive state is then one of the neutrinos, and its mass
is constrained by (1.1).

The product of the four masses is easily extracted from
(2.5). Define

A. Notations 1/2

In supersymmetric extensions of the standard model
without R or lepton number, there is a priori noth-
ing to distinguish the lepton-doublet supermultiplets I,.
from the down-Higgs supermultiplet P~, as both trans-
form as (2) ii2 under SU(2)L, x U(1)i.. We denote then
the four Y = —1/2 doublets as L, o. = 0, 1, 2, 3. The
single p term of the minimal supersymmetric standard
model (MSSM) is now extended to a four-vector:

(2.1)

where P„(2)+iyz is the up-Higgs supermultiplet. The sin-
gly SUSY-breaking B term of the MSSM is also extended
to a four-vector:

BLP„,

A pi, L Lyly, + A'
i,L Q~di, , (2.3)

where li, (1)+i are the three lepton singlets, Q~ are quark
doublets, and dg are down quark singlets. Finally, there
are also SUSY-breaking scalar masses,

where here L and P„stand for the scalar components
in the supermultiplets. The trilinear terms in the su-
perpotential contain lepton-number-violating generaliza-
tions of the down quark and charged-lepton Yukawa ma-
trices:

v, =— ) v.'
1/2

(2.6)

~ vnpa
cos g vip

Note that ( measures the alignment of v and p . We
find

det'M" - p'v,'sin'(, (2.7)

where by det' we mean the product of (in our case, the
four) eigenvalues difFerent &om zero. Following the dis-
cussion above, we require

p vg slil ( mzm~2 2 ' 2 ( 3 (2.8)

where m„stands for the heaviest among the neutrino
mass eigenstates: m & 24 MeV &om direct experi-
ments or m„& 10 eV &om cosmology if its lifetime is
longer than the age of the Universe. Note, however, that
p, = O(mz) because it provides the charged Higgsino
masses, and (for tanP 1) vg = O(mz) because it con-
tributes sizably to m~ and m~ and it provides the down
quark and charged-lepton masses. The requirement is
then

m pLt Lp+ H.c. , (2.4) sin( & 0
/ mz) (2 9)

that are relevant to our study. (Here, again, L stand
for the scalar components. )

B. Neutralinos

mz
9 v2 cosa~

v2 cos 8~

g v2 cos8~ v2 cos8~
p~

04„4 )
, (2.5)

The full neutralino mass matrix is 7 x 7, with rows and
columns corresponding to {p,Z, P„,L }.(Here, L cor-
responds to the fermionic components in I .) Neutrino
masses arise from the 6 x 6 mass matrix M" (the photino
is irrelevant to neutrino masses):

The bound (2.8) or, equivalently, (2.9) is a severe con-
straint on SUSY models because generically one expects
sin( 1. It translates into (1.3) and (1.4) in the follow-
ing way: take v and p to be approximately aligned.
Then there are three mass eigenstates of M with masses
of O(mz). Equation (2.8) implies that the VEV (L )
in the direction orthogonal to these three massive states
should be & O(gmzm ) [Eq. (1.3)] and, similarly, p
in this direction should be & O(gmzm„) [Eq. (1.4)].

To summarize, in phenornenologically consistent mod-
els, both p and vd are of O(mz) and approximately
aligned; the misalignment should not exceed 10 or
even 10 if the cosmological bound holds.
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C. Charginos D. Alignrne~t

In the previous subsection, we have shown that out of
the seven neutral fermions, two are (to the approxima-
tion in which we work) massless but, in general, five are
massive. To guarantee a third very light (coinpared to
the electroweak-breaking scale) neutral fermion, v and
p have to be aligned. There is still a question, however,
of whether the three resulting light states correspond to
neutrinos. To answer this question, we have to study the
charged fermion mass matrix.

The chargino mass matrix M is 5 x 5, with rows cor-
responding to {va,L ), and columns to {Co+,P+, lk+):

The alignment of p with v

p~ ocv~ ) (2.13)

(2.14)

(b) p is an eigenvector of m
& (the SUSY-breaking

scalar mass-squared matrix):

can be achieved by imposing two conditions on the SUSY
parameters.

(a) The B terms are proportional to the p terms [12]:

( M, ~~v„0,„3 )
pa. ~npkvp )

(2.10)

Note that the SU(2)L, gauge symmetry implies that A pk
is antisyminetric in (n, p) and, therefore, (M ) kv = 0.

I.et us now assume that the phenomenological con-
straint (2.9) is satisfied, namely, v and p, are approx-
imately aligned. Then, to a very good approximation,
(M') kp, = 0. To understand the consequences, it is
convenient to de6ne

v L
vg

(2.11)

( M2 ~gv„
vd p

03xl 03xl

oix3
Oix3

~iPgkvd )
(2.12)

(The zeros in the second column stand for highly sup-
pressed entries, of order p sin(; the other zeros are exact
for renormalizable tree-level terms. ) We learn the follow-
ing.

(i) The three singlets I, do not mix, to a good approx-
imation, with the triplet iu and doublet P„. This implies
that the mass eigenstates, whose right-handed compo-
nents are $, , are the "charged leptons. "

(ii) The left-handed components in the charged leptons
come from the three L, .

(iii) Neutrinos, which are defined as the SU(2)r, part-
ners of the left-handed charged leptons, correspond then
to the three neutral members in L, .

However, our analysis of the neutralino mass matrix
reveals that, for p ac v, the three neutral fermion com-
ponents in L, correspond to the three light mass eigen-
states. We conclude that aligning p with the VEV v
guarantees not only that there are three very light neu-
tral fermions, but also that these light states are the three
neutrinos.

and L; as the three fields orthogonal to Pg. The
charged fermion mass matrix with rows corresponding
to {iv,g&, L, ) (and columns as above) is, to a very
good approximation, block diagonal:

2m&pp ——mp (2.15)

To prove this statement, note that the minimum equa-
tions that determine v~ depend on p, B~, m &, and
gauge couplings. In particular, the minimum equa-
tions do not depend on the trilinear couplings A pk and
A' .k, because these always involve a charged field. It
is convenient to rotate to a basis where m

&
is diago-

nal. Condition (b) guarantees that, in this basis, p has
only a single component, say po, that is difFerent from
zero. Condition (a) guarantees that also B has only
Bo g 0. Then trivially (in similarity to the B parity
case) (Lo) P 0, (L;) = 0, is a solution of the minimum
equations; namely, (2.13) holds.

We conclude that when (2.14) and (2.15) hold, neutri-
nos do not mix with gauginos and Higgsinos and their
masses are, therefore, highly suppressed.

One could think of various theoretical frameworks
where (2.14) and (2.15) hold. For example, if string the-
ory guarantees that the p terms arise from the Kahler
potential only and if the quadratic terms in the Kahler
potential depend weakly on the moduli whose E terms
break supersymmetry, then B and p would be approxi-
mately aligned. However, in this work we would like to
show that the required alignment arises naturally in the
framework of horizontal symmetries.

III. HORIZQNTAI SYMMETRIES

The hierarchical pattern of fermion masses and mix-
ing angles could be the result of an Abelian horizontal
symmetry that is explicitly broken by a small parameter.
With a single breaking parameter A, whose charge under
the horizontal symmetry is defined to be H(A) = —1, the
following selection rules apply.

(a) Terms in the superpotential that carry charge n & 0
under 'R are suppressed by O(A ), while those with n ( 0
are forbidden due to the holomorphy of the superpoten-
tial. [If 'R = Ziv, the suppression is by O(A ~ l).]

(b) Terms in the Kahler potential that carry charge n
under 'R are suppressed by O(A~~~) [or O(A~'"~+ &~~~~&~)

for '8 = Ziv].
The selection rules apply to all orders in perturbation

theory, so we can safely ignore loop eKects.
Note that the p terms in the efFective low-energy super-
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potential could originate from either or both of the high
energy superpotential and the high energy Kahler poten-
tial. The superpotential contributions obey rule (a), and
their scale is arbitrary. Those from the Kahler poten-
tial obey rule (b) and their natural scale is the SUSY-
breaking scale m [20,21].

For the various terms relevant to our study, the follow-

ing order of magnitude estimates hold [we use U(1)i to
set H(P„) = 0]:

10~~(~-), H(I. ) &o,- Pl~(&-)I H(L ) ( ()

B mB Al ( )I

- ~pl~(I.~)—~(l.-) Im~p~ m

(3.1)

Here, p and B are unknown "natural" scales for p and
B/m, respectively, and m is the SUSY-breaking scale.
Equations (3.1) lead to the following simple observations.

(a) Assuming that all H(L ) are of the same sign and
that one of the L fields (say, Lo) carries the smallest
horizontal charge, ~H(LO)~ && ~H(L;)~ (i = 1,2, 3) then
both the p terms and the B terms will be dominantly
in the direction of this field:

po)) p;, Bo))B;. (3.2)

(b) The diagonal terms in m
&

are not suppressed by
the selection rules, namely m~ m, while the off-
diagonal are suppressed if the various fields have different
charges:

m'& « m' - m' (o g P) .

2

The important point here is that
YlLpp gp

These two effects satisfy the two conditions described
in the previous section in an approximate way. Conse-
quently, the mixings of neutrinos with the Z-ino and the
Higgsino do not vanish but are suppressed. It now be-
comes a qnantitative question of whether reasonable hor-
izontal charge assignments lead to satisfactory suppres-
sion of neutrino masses.

Note that, since the mixing between Lo and the three
L, is very small, we can neglect the rotation (2.11) from
the (L ) basis to the (PAL, L;) basis in our various order
of magnitude estimates.

The quantitative answer is easy to find. As sin ( =

A charge difference of 7 may be too large for reasonable
models. However, in some models of Ref. [22], where the
symmetry-breaking parameters are much smaller than
0.2, the required approximate alignment can be achieved
with charge differences & 2.

Equation (3.5) ensures that, at the tree level, m„ is
safely suppressed. One may still worry whether loop
corrections can give larger contributions to the neutrino
masses. However, this is not the case. The leading con-
tributions come ft. om loops generated by the A',.

&
cou-

plings (2.3) with d-type quarks and squarks circulat-
ing in the loop. They are proportional to the heaviest
d-quark mass m&. (hm„);~ is, A', sI,

A'
I,smb Sin. ce

the radiative contributio is to
m, . require

g 3/2
pII(L„) H(pg) (— ~i 4~

(

mg (ms)
(3.6)

IV. AN EXPLICIT EXAMPLE

Take a model with an exact discrete horizontal sym-
metry

+ —Zn1 X Zn (4.1)

The symmetry is spontaneously broken, as we show be-
low, by two scalars in singlet supermultiplets:

This is weaker than (3.4) by a factor 10 . Equation
(3.6) shows explicitly how the suppression from horizon-
tal symmetries is effective at any order in perturbation
theory, and indeed justifies neglecting loop effects.

We conclude that in models of Abelian horizontal sym-
metries, the p and B terms are dominantly in the direc-
tion of one of the four L fields, and the scalar mass-
squared matrix does not significantly mix this field with
the other three. This leads to an approximate alignment
of p and v . Consequently, neutrino masses from mix-
ing with the Z-ino or Higgsino can be suppressed well be-
low the electroweak scale, while radiative contributions
can be kept negligibly small. Whether this suppression
is strong enough is a model-dependent question. We
present a class of models with satisfactory suppression
in the next section.

&a(1 )—a(y„) & m. 10 ~ m &24MeV,
mz &0 m & 10eV.

0 ~ = 0 ~&
——0, Eq. 2.9 or, equiva-

lently, (1.3) and (1.4)] is satisfied if
s, (—1, o), s.(o, —1) .

In addition, we have the doublet supermultiplets

$„(0,0), L (Hi, Hz ) .

(4.2)

(4.3)

(3.4)

H(L )
—EI(pg) &

I ~ ( (3.5)

If the small parameter A 0.2, as suggested by the mag-
nitude of the Cabibbo angle, then

We use horizontal charges 0 & II, & n; —3..
In order to estimate the VEV's of the various fields, we

investigate the Higgs potential and the minimum equa-
tions. We assume that there are only two scales in the
model: m is the SUSY-breaking scale which characterizes
all SUSY-breaking terms, and M~ the Planck scale which
suppresses all nonrenormalizable terms. We consider all
the terms that are consistent with SU(2)1, x U(1)y. x R.
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We omit dirnensionless coeFicients of order 1 in all for-
mulas.

The leading terms in the superpotential are

bing

bing SHfa SH2a (P L )1 + 2 + ~ 1 2 ~ ~ (4 4)
Mng 3 Mn2 3 MH1 c, +Hg~ —1

P P CX P

They lead to the following (leading) terms in the Higgs
potential:

M2n1 —6 M2ng —6
P P

& S* l "' ' SH'- 'SH'-) 1 2
MHf a+H2a —2

9 P
SHf a SHqa —1-

Lp(ni —2, 0) m (Lp), Pp - m . (4.12)

If we then take, for example,

Equation (4.11) shows that, indeed, the VEV's of
the I doublets are hierarchical and depend on the
horizontal charges in the way described in the previ-
ous section. The eBective p can be extracted &om
Eq. (4.4) by putting in the VEV's (S,), with the re-
sult p'+ (L ). That is, p, and (L ) are approx-
imately aligned. Taking (Lp) ) (Ls) to be the two
largest of the four (I ), the alignment is accurate to

y H) (Ls) —Hy (Lp) y Hg (Lg )—H2 (Lp )01der A1
The VEV of the down Higgs boson (for tan P 1)

should be of O(m). This is achieved if one of the I, fields,
say Lp, has one of its horizontal charges H; (Ip) = n; —2
and the other H~(Lp) = 0:

(4 5)

In addition, there are D terms in the Higgs potential,

) H„/{n, —2)

L;(Hi;, n2 —2) m (I;), p; m
I

(4.13)

I+-I' —) .IL-I' (4 6) so that

soft scalar masses (off-diagonal terms are highly sup-
pressed),

V" - m' IS,I'+ IS,I'+ 14„1'+) IL I', (4.7)

S,"' S2"'
V ~m +

M MP P

+
-si' s."'

(& L-)
MH1 ~+Hg~ —1

CX p
(4 8)

In (4.5), (4.6), (4.7), and (4.8), the various fields stand
for the neutral scalar components.

Solving the minimum equations for (S;), we get the
two small breaking parameters for H:

(S ) /
- ) /( —)

A
Mp gMJ )

1/(ytq 2)

Mx (M„) (4 S)

This is a generalization of the '8 = Z case studied in
Ref. [23]. For the scalar doublet VEV's, we get

(4.10)

and (the leading) soft SUSY-breaking terms analytic in
the fields:

1
& —w(L), p, &10 m

A1 2 3
(4.14)

the alignment is precise to 10, and neutrino masses
are safely below the cosmological bound.

The model presented here, in addition to naturally sup-
pressing neutrino masses, has two more attractive fea-
tures [23]: (1) Eq. (4.S) shows that a hierarchy of VEV's
that could be relevant to fermion parameters can arise
naturally out of the initial two-scale model; (2) Eq. (4.12)
shows that the horizontal symmetry can naturally solve
the p problem.

The model may seem complicated, but the reason is
that we want to demonstrate the power of horizontal
symmetries in naturally achieving these extra advan-
tages. A model with a gauged horizontal U(l) symxnetry,
with given small breaking parameters and a given scale
p, would achieve the required alignment in lepton pa-
rameters with much simpler charge assignments. (See,
for example, the models of Ref. [24].)

We also note that a model without Bp and with the
L transforming nontrivially under a single horizontal
Z„does not work. The VEV's of the doublet fields are

H /(n —2) —1
(I ) rfr (a . Consequently, for H
n —2 (which is unavoidable for some of the horizontal
charges) (L ) & m, and the electroweak symmetry is
broken at a scale higher than the SUSY-breaking scale.
Of course, with R„, models with a single Z„and H(Pg) =
n —2 do solve the p problexn [23].

To demonstrate the full power of the discrete horizon-
tal symmetry, we suggest the following explicit example.
Take 'R = Z14 x Zip, with S, of Eq. (4.2), p„of Eq.
(4.3), and

(L ) ( ) Hf /(ytf —2)+Hq /(n~ —2)—1

m, pe p
(4.11)

Lp (12, 0), Ls (4, 8), (4.15)

(and higher charges for Li, L2). Solving the minimum
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equations and studying the neutrino spectrum, we find
the following.

(i) The two small breaking parameters are

V. TRILINEAR LEPTON-NUMBER-VIOLATING
TERMS

Al= M
-A A2= M

-A
P P

(4.16)
We investigate the dimension-4 terms in the superpo-

tential:

(P„) - (Pg) - po - m . (4.17)

(iii) Neutrino masses are highly suppressed. In partic-
ular, m 10 eV which is the relevant range for being
hot dark matter.

which could explain all quark and lepton parameters, as
shown in Refs. [22—24].

(ii) The p problem is solved namely, identifying Pd
Lo,

A;~i, L;L~ti, + A,
'

i,L,Q~di, + A,
"

i,u, d~di, . (5.1)

(Nonrenormalizable lepton-number-violating terms pose
no problem. ) In our presentation below we neglect the
rotation from the interaction basis (where the horizontal
charges are well defined) to the mass basis: a full analysis,
involving an estimate of the mixing angles (which are also
determined by the horizontal charges), would give just
the same order of magnitude estimates.

The selection rules, when applied to these couplings,
imply

AH(L, )+H(L~)+H(lq) H(L ) + H(L ) + H(l ) ~ 0
A, „ H(I;) + H(I, ) + H(lg) ( 0,

A (~ )+"(~')+ (" ), H(L;) + H(q, ) + H(d„) & 0,
zyk 0 H(L, ) + H(Q~) + H(di, ) ( 0 .

(5.2)

We first assume baryon number conservation (which re
quires A',.'

&
——0). Stringent bounds apply to products of

two A's [4,25—28]. These are given in Table I.
Note the following: (a) All bounds correspond to

m = 1 TeV and scale like 1/m2; (b) the bounds from
~L decays also apply to AA;2l ~ AI, l2, A&2l ~ A&l2. In
all these other cases the horizontal symmetry gives sim-
ilar or even stronger suppression; (c) we do not present
various additional bounds that require A;~A, , A',-.

&
& A

and are easily satisfied in any of our models; (d) the
master model for quarks was presented in Ref. [23]. For
the lepton sector, we assume [24]

The conclusion is that all the bounds are satisfied
within our horizontal symmetry models. The only po-
tential problem is in e if we assume phases of order 1.
This can be solved by a slight modification of the "mas-
ter" model: choosing horizontal charges H' = H + nI

I

(where I is lepton number and n is a real coefficient),
one can achieve an arbitrary suppression of the lepton-
number-violating terms in (5.1), while the only effect on
the fermion mass matrices is an overall suppression of all
neutrino masses.

Baryon number violation was investigated in Ref. [29]
assuming massless neutrinos. With slight modifications
of their models, a satisfactory suppression of proton de-
cay can be achieved for the massive neutrino case as well.

To summarize: assuming baryon number conserva-
tion, dimension-4 lepton-number-violating terms are sup-
pressed to a phenomenologically acceptable level by a
horizontal symmetry. In Ref. [29] models were con-
structed in which horizontal symmetry rather than
baryon number suppresses proton decay and other B-
violating processes. Simple modifications of those mod-
els lead to a horizontal symmetry framework in which all
of the usual phenomenological consequences of baryon
number, lepton number, and B parity follow.

TABLE I. Constraints on lepton-number-violating cou-
plings.

VI. CONCLUSIONS

Couplings
I I

AI, 12AI.21
I I

AI, 12Aa21
I I

Aa13AA:31

A2, I, A1,.A:

I
Aq2, AI, 21

AA;21 AA:22
I

A„21Ag11

Limit

gx
8 x 10—10 A13

4x 10 A'

10 ' A'
10-' - A'

2x10 '-A'
10 A

2x10 A

Process

Am@

Amp

p ~eee
p ~ ep

KL, mme
Kl, w pp
KL, —+ee

Master model
A10

A10

A15

A12

A1 1

A10

A13

Supersymmetric models without A parity and without
lepton number symmetry lead. , in general, to an unac-
ceptably large neutrino mass. This problem is solved,
however, in any inodel where (similar to models with
B parity), the vacuum expectation value of the four
Y' = —1/2 doublet scalars is aligned with the p, term
which couples these fields to the Y = +1/2 doublet
scalar. For this alignment to arise, two conditions have
to hold: the soft SUSY-breaking B term is proportional
to the p term, and the p term is an eigenvector of the
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SUSY-breaking scalar masses of the Y = —I/2 doublet
scalars.

Models of aphelian horizontal symmetries, with charges
dictated by fermion masses and mixing, automatically
fulfiO these conditions but in an approximate way. The
resulting approximate alignment could lead to satis-
factorily small neutrino masses. In addition, trilinear
lepton-number-violating terms in the superpotential are
allowed but suppressed below experimental constraints.
The resulting phenomenology could dier significantly
&om models with exactly conserved B parity in low en-
ergy processes [14,28,27,30,31], in collider experiments
[25,26,32—36], in the cosmological consequences [37—39]
and in some more peculiar effects, e.g. , matter enhanced
neutrino oscillations [40—42]. Most prominently, in the

present framework, there is no reason for the existence
of a stable lightest supersymmetric particle (LSP). This
will change both the cosmological and laboratory signals
for supersymmetry.
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