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We study the implications of Lorentz symmetry for hadronic structure by formulating a variable
quantization front constituent quark model. We conclude that there is little sensitivity of the
calculated observables to the choice of the formalism, provided relativity is properly implemented.
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I. INTRODUCTION

The explicit quark picture of hadrons has been investi-
gated by an increasing number of models using the con-
stituent quarks as the effective degrees of freedom [1—3].
Despite the fact that a formal link is missing between
such /CD-inspired models and fundamental @CD there
are many indications that the constituent quark repre-
sentation. does emerge as a result of strong vacuum cor-
relations which generate the quark condensate and lead
to dynamical chiral symmetry breaking [4,5]. Central
to these approaches is a globally gauge-invariant poten-
tial confining the quarks. Justification for an effective
potential is provided by the flux tube configurations gen-
erated by the gluon field. Nevertheless, the validity of
the constituent quark model remains an open issue. For
example, it is not clear how to reconcile the simple, va-
lence constituent quark model spin-spin interaction as
the source of the x-p mass splitting [1] with the expla-
nation put forth &om chiral symmetry-breaking argu-
ments [4]. The above issues become even more complex
when attempts are made to develop a consistent rela-
tivistic quark approach. Relativity is indispensable [6,7]
due to the large velocities associated with quarks having
masses of the order of a few hundred MeV but bound
on a typical hadronic scale of the order of 1 GeV. The
implementation of Lorentz symmetry is the thrust of this
paper.

The problem of formulating relativistic dynamics for a
fixed number of particles originated with the pioneering
work of Dirac [8] and has been extensively studied over
the years on both classical and quantum levels. Classi-
cally this is a Cauchy problem to determine the world
lines in Minkowski space, while in the quantum case one
seeks the probability amplitude distributions, as an ini-
tial value problem on a three-dimensional spacelike or
lightlike surface. We refer the reader to the extensive
literature on the subject [9—13]. The possible choices
of the initial surface are commonly classified according
to the dimension of the corresponding stability group
consisting of purely kinematical transformations within
the subspace defined by the initial conditions. Conve-
niently, the group representation does not require a full
solution of the evolution equations. With this classifica-
tion scheme the surface of the light cone, also referred to
as the light &ont, is very appealing because it generates

the largest stability group [12]. The light cone stabil-
ity group acts transitively on the mass shell, and so the
light cone wave function of arbitrary momentum can be
determined from the wave function in the rest frame. At
the field theoretic level there are also practical reasons
for quantizing on the light front [14]. At short distances
color interactions can be treated perturbatively and such
separations, which are lightlike in a Minkowski metric,
usually dominate high energy processes [15]. Further,
the @CD vacuum is rigorously decoupled &om excited
Fock states when formulated on the light cone and this
permits a more sensible quark Fock state expansion for
hadron states [16]. However, until a formal connection is
established between field theory and @CD-inspired mod-
els, such arguments should cautiously be regarded.

Irrespective of quantization surface orientation for-
malisms using impulse approximated currents lack com-
plete Lorentz covariance. This is because such currents
do not include interactions and will therefore not prop-
erly commute with the interaction-dependent generators
of the Poincare group. Consequently, matrix elements of
the current operator will also not be properly constrained
and will acquire an incorrect four-vector structure which
is represented by a dependence upon n&.

Of course full covariance is not always necessary, pro-
vided strong arguments exist for disposing of unphysical
degrees of freedom or spurious form factors arising in
a noncovariant formulation [16,17]. However, in a par-
ticular framework with a fixed number of constituents
such as the valence constituent quark model any exten-
sions such as to nonvalence degrees of &eedom should be
taken with caution until full implementation of symme-
tries including Lorentz covariance is properly done. The
main objective of this paper is to provide insight and
criteria for assessing when Lorentz covariance violations
are quantitatively important and should be addressed.
To this end a comparative study of alternative relativis-
tic calculations of observables for pseudoscalar mesons is
performed using various quantization schemes to docu-
ment &amework sensitivity.

In the following two sections the basic ingredients en-
tering the quark model calculation of physical observ-
ables are reviewed and the method for calculation of ma-
trix elements for arbitrary quantization scheme is out-
lined. Numerical results are presented in Sec. IV with
major findings summarized in Sec. V.
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II. MESGNIC PROPERTIES IN A
CONSTITUENT QUARK MODEL

A n ~ „n"
Al, =, A~ —= A" —Al, (2.8)

All meson observables investigated in this work are
specified in. terms of hadronic matrix elements of local
operators, having one of two forms:

(ol J(o) IP)
&2 —= (P'I J(0)IP). (2.1)

Z = Z, u "UZ&
~~): (~ .») = "(u. ») = 0) (2 2)

with A being the number of constituents (A = 2 for the
qq mesons). Since time parameters do not appear in the
matrix elements in Eq. (2.1), only the knowledge of the
single-time wave functions defined on Z are needed. The
hadronic matrix elements, defined in Eq. (2.1), in the
light cone quantization, n = 0, will be obtained in the
limit as n + 0. For each constituent i described by
configuration or momentum space four-vector A~ we de-
fine the associated transverse four-vector A~ in the ith
subspace of Z and the longitudinal component AL, by
projections:

Here IP) denotes a pseudoscalar meson state, with four-
momentum P", J = g(0)I'vP(0$ is a current operator
with the fermion field operators g, @ describing the @CD
quark fields, and IO) denotes the vacuum. In the con-
stituent quark picture a meson state is entirely repre-
sented by a valence constituent qq pair and the exact
/CD field operators are replaced by the efFective con-
stituent fields [18]. In the following we shall concentrate
on this two-body Fock sector.

A flat instant time (= n x), spacelike or lightlike quan-
tization surface Z is defined by a timelike or null four-
vector n~, n2 & 0:

Since Az ~ n = 0, A~ has only three independent com-
ponents denoted in three-vector form by A~ = (O, A).
The three components of a transverse vector A do not
necessary correspond to the Minkowski coordinates since
in general n" g (1,0, 0, 0) . The scalar product becomes

A. B = AI, BL, + Ay B~ ——AL, BL, —A . 8 (2 4)

where
3

A B —= ) A'g, ~B~, (2.5)

A; (B;) are the components of the three-vector A (B)
and g;~ is the 3 x 3 matrix of nonvanishing components
of I, the projection of —g onto Z:

l'0 O) u„n„
o I =g&pv = gpv+I) n2 (2 6)

[x p] = agz . (2.7)

The longitudinal pl. , component of a four-momentum de-
fines particle's energy and because it is conjugate to time
xL, it describes dynamical evolution. Returning to the
fermion field operators Q and @, these can be canonically
quantized on the surface Z and represented by a Hilbert
space expansion in terms of operators b = b(p, A, r), d =
d(p, A, r):

In a similar way the transverse antisymmetric tensor
~z;~A, is defined by the nonvanishing components of e~„~
projected onto Z, i.e.,

~

~e~;~p. Thus, if x and p are
canonically conjugate, [x",p"] = ig~", then the three-
dimensional transverse components w and p are also
canonically conjugate:

fb(p', A', r'), bt (p, A, r) ) = (2') —b (p' —p) bp p8 (2 8)

4

vP(O, x) = 2m 2mb(p —m )8(pL, ), ) bu(p, A)e '" + dtv(p, A)e'"
2m. 4

~,A=+
4

g(0, x) = 2m 2vrb(p —m )8(pl, ), ) ~btu(p, A)e'" + dv(p, A)e
w, A=+

(2 9)

where A is a spin projection on a specified direction in Z, w represents other quark quantum numbers, i.e., Bavor and
color, m is the constituent quark mass, and u, v are the Dirac spinors normalized according to uu = 1. The quark and
antiquark (qq) momentum space wave function @Nag, is defined as the probability amplitude for finding the qq pair
with given individual (p;, A, , r,.) quantum numbers in a meson state IP, K, J, Js, a) which belongs to an irreducible
representation of the Poincare group characterized by the meson mass M~, total angular Inomentum J, J3, and other
quantum numbers (fiavor, orbital angular momentum, and spin of the qq) denoted collectively by a (J, Js ——0 and
a = 1, . . . , 8 specify the low-lying octet state):

l»»~ l =) /l4il @ .-(~' ~' ~')lr, ~,~;r.» ~.l
A, 7-

(2.1o)

where
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d3 d3 2

["p']~=, , V'I'L~(2~)'4'
I
P —) .p'2~ gpil, 2~ gp21.

(2.11)

p~l, = p'L, (lpl~) = ~m; + p;, & = p&I, + +21., and II. = gM~ + P2 is the meson energy Th. e particular form of the
measure, [dp;], will be discussed in the next section. Combining Eqs. (2.1), (2.9), and (2.10) yields

&~ = (0I@(0)r@(0)l»N J Js ~)

= ).f(~vrl~&~». -(v* ~' ~')
A, ~

v(p2, A2)I', , u(pg, Ag)
P&L P2L

(2.12)

A = (P', N', J', Jso.'l@(0)r@(0)lP,N, J, Jsn)

) ff&u!l~ (4') @p' ~,;., (r';, &!,~!)@NJJ (u* &', ~)
AA'7. ~'

,
' u(p'„A', I', „, '

u(pg, Ag)
l
8, ,hg, p, (2vr)'b (p', —p2)

mi / / m2
, v(p„A, )r.,

~2L
v(p2, A2) 8 „,bp, p, (27r)'8 (p', —pg) (2.13)

"(~) = f~("(s —0 ),

d'p' = d's'~(p'1. ) (2.14)

in Eqs. (2.12) and (2.13).

III. COVARIANCE

Under a Poincare transformation, hadronic states
should transform as an element of a unitary represen-
tation while a matrix element is expected to transform
covariantly (i.e. , consistent with the tensorial rank of the
matrix element operator).

A. Hadronic states

In the constituent quark model the meson and baryon
mass spectrum corresponds to eigenvalues of a phe-
nomenological Hamiltonian. The phenomenological de-
scription of hadrons as the few-body bound states can be
extended to satisfy the requirements of Poincare symme-
try by an explicit construction of interaction-dependent

I

where pointlike constituent quarks have been as-
sumed [2,3].

As mentioned in the Introduction the current matrix
elements can be written as explicit four-dimensional in-
tegrals depending on the physical momenta and n". This
is achieved by writing

generators of the symmetry group. The method, for a
fixed number of constituents, has been introduced by
Bakamjian and Thomas [9], and extensively discussed
by Osborn [10] and Foldy and Krajcik [ll]. First, an
interaction-independent set of internal and center of mass
(c.m. ) variables is introduced and the product of nonin-
teracting generators for individual constituents is cast
into a free, single-particle form that specifies symmetry
properties for the system as a whole. Since the ft. ee mass
of the constituents in the single-particle representation
enters only as a function of internal variables, the gener-
ators for an interacting system are modeled by replacing
the &ee mass by an interaction dependent operator. In
particular for two spin-1/2 particles with individual mo-
menta p; and spins s;, the relative momentum k and c.m.
momentum P are defined by

(3 1)

[s',] =—) D(p;, p, ) ~[s;]» D'(p', p')~
AA'

(3.2)

where the Wigner rotations are given by (p; = +k)

with ~, , = ~~,2(lkl) = m2i, 2+ k' ~ = ~(lkl)
~& + ~2, and E' = E(lkl, lPl) = gM2 + P . With the
components [s'] ~r of the c.m spin operators s'; obtained
through an interaction-independent I.orentz boost to the
c.m. frame given by

[(p;I, + m, ;)(~; + m, ) + p; p;]h p + i[a] g . [p;, p, ]

/2(p;I. + m;) (~; + m;) (p;L, (u; + p; p; + m2)
(3.3)
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the ten generators of the Poincare group, M~„, P",
KT = (0, K) —= (0, ML„;), JT = (0,J) = (0, 2&T,'&i, (gT .
M . g2 )~i,) [gT and eT being defined in Eq. (2.7)], for an
interacting system are constructed as

R'~ = ——~„p P M~
2

(3.6)

whose components in the rest kame of a particle (now
for an arbitrary n" defined as P = 0) are given by

p = pi+p2,
pg = QM2+ P2,

3 = i,p + 8'+ I', S' = s~+s2, I' = i,k
t9k

'

W„= (O, W2) = (0, W),
1
2

K = —— i, PL, [P, S'),
Pl

(3 4)

with

JUl = M+ V.

In general, as long as ni' g (1,0, 0, 0), the generators
are not the usual Cartesian generators. The states are
eigenstates of the Casimir operators M and TV, the
latter being the square of the Pauli-Lubanski vector

and are also labeled by the eigenvalues of P and a eigen-
value of a component of 3. States characterized by the
same eigenvalue of M and R' in two different quanti-
zation schemes, characterized by vectors n' and n, re-
spectively, are related to each other by means of the
Wigner rotation given in Eq. (3.3). In particular for
n'" = nq~ = (1,0, 0, 0) (instant) and n" = n~~~

(cos(a), 0, 0, —sin(n))/icos(2n) in the limit e ~ 0
when n —+ 45' —e (light cone) the Wigner rotation in
Eq. (3.3) reduces to the Melosh rotation. From the first
two equations of Eqs. (3.4) this limit also yields

2 MP +P 0 3 +e 1 ). o 3 M +(Q, , p~;) (3.7)

thus, taking e ~ 0
2

PJ ) PJi~

2

I'+ =—I'+I' =) (P,'+I,'),
i=1
M2+ P2

P+

and thus the generator P+ becomes interaction independent while the interactions are contained in P in agreement
with the standard light cone quantization rules. Similarly it can be shown that the generators J and K are mapped
into the standard light cone generators [12,14].

The restrictions on the potential V which can be either local or nonlocal are that it commutes with J, P, and iV'~.
The basis of an unitary representation of the Poincare algebra given in Eq. (3.4) is obtained &om the set of eigenstates
of M, and the basis of the algebra for the noninteracting system. The reducible (with respect to J) representation
for the noninteracting system can be expressed in either individual, Ipi, Ai., p2, A2), or relative and c.m. variables,
I»I ~i u2), ~~l~t~dby

(P~ k~ ~» ~2lpli ~li P2~ ~2) —D (Pl~ Pl)Aq, crqD (p21) P2)Ag, egg

X2 (2ir) b' (pi —pi(P, k)) (2') h (p2 —p2(P, k)),
mg m2

(3.S)

with p, (P, &) given by Eq. (3.1). The states are normalized according to

(P' k' ~i ~'IP, k, ~l ~2) = 2(2~)3~~3(P' —P)u '(II I)~3(i ' —k)4;.,b...„
& ) = '(2 )'~'(p' —p ) "(2 )'~'(p' —p.)~;,~, „m1 m2

where the factor

(3.9)

JH
~(li I) =

2(2 )3 (3.10)

assures the unitarity of noninteracting generators in the relative and c.m. variables representation [19,20]. For the
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time being we have neglected the Qavor and color quantum numbers. The irreducible representation classified by the
eigenstates of JH, P, J2, Js, L', and S'2 is obtained by projecting IP, k, oq, 02) onto eigenstates of spin and angular
momentum

dOg (k l
IP lkl~ J~ Js L' ~') = ). 4

IP k oi 02)+L'L,' I k I +x,'~, c's s,'L'L,'
~,~2S,'Ls

(3.11)

The eigenvalue equation for the interacting mass operator can be written in the form

MNWN(k, ~i, ~.) = ). d'k'p(lk'l)M-, -;,-,-, (k' k)A (k' &i ~2)
I I

C71 0'2

(s.i2)

with N denoting the total (radial and orbital) quantum number,

2(2~)'Zb (P' —P)@N(k, Ogo2) = (P, k, og, o2IP', N),

and M, , defined by

2(2~)'&&'(P' —P)M, „,, (k', k) = (P', k', oI, &2I~IP, k agio~)

For example, the harmonic oscillator basis IP, N = nq + n2 + ns ——2n+ l) results &om the mass operator

(s.is)

(3.14)

k2
M-, -;, . ;(k' k) = p '~'(Ik'I)

I 2
+

2
(&&~)'

I

~'(k' —k) h-;-, ~-;-,p '~'(Ikl) (3.15)

with the reduced mass, p = mqm2/(mq + m2), and leads to

@N(k, og, cr2) = p
' (Ikl)@N'(k, o.F02), (s.i6)

where @"' is the solution of the nonrelativistic harmonic oscillator. The two factors of p ~~2 in Eq. (3.15) assure
Hermiticity of the mass operator in the relativistic norm in Eq. (3.9). Since [M, J] = 0, the eigenstates of the mass
operator can be classified by J and J3 and in the L'S' coupling scheme the irreducible representation of the interacting
algebra is spanned by

IP ~~, &s, l', ~'& = f ~'&uII&I), 2I2 'I~~'(P —P')IP, I&I, &, &', I', +') '0~ii is (I&I) (3.17)

with the wave function @NjJsL s' (lkl) related to QN(k, oq, 02) by

dOg I k l s's~
Azz&Lts~(IkI) = ) 4x QN(k, oi, ~2)&L L I I

&, ; &s,s L,L(lkl) —, x-, 2 s'ssL'Ls'
~&~2SSL S

(s.i8)

The square root factor in front of g in Eq. (3.17) guarantees unitarity of generators of the interacting algebra in the
covariant norm

(P, N J, Js, n IP, NJ, Js, n) = 2(2~) PLs (P —P)bN Nhg gag, g, b~~~. (3.19)

Using Eqs. (3.11), (3.9), and (3.8) the mass operator eigenstate in Eq. (3.17) may be expanded in terms of single-
particle states. After including flavor and color quantum numbers it has the form [n—:(a, L'8'), a = 1, . . . , 8 for the
SU(3) flavor octet and L' = S' = 0 for the lowest-lying pseudoscalars]

d3
IP N J Js ~) =), , (2~) V'I'L~~ (P —pi —p2)2m' sgpgL 2' sgp2L

I ) t t (k)
I ). D'(p p ) „-,D'(

2 3) sL
S'Ss mlm2

S'S' L'L' @Net. (Ikl) Ipi, &i, ~i; p2, &2, ~2),
2 1 2 2 s S PgLP2L

(3.20)
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with k being a function of p; determined from Eq. (3.1),
A denoting the Gell-Mann matrices in the SU(3) flavor
space, and I being an identity in the color space. Com-
paring Eq. (3.20) with Eq. (2.10) the qq wave function
@HAJJ, is easily identified with the term in the square
bracket in Eq. (3.20) . The covariant normalization in
Eq. (3.19) follows from the normalization of the mass
eigenstates:

dependence of matrix elements results &om the Lorentz
symmetry breaking, it permits us to assess quantitatively
the extent covariance is violated in a model calculation
and, as detailed in the next section, to establish a poten-
tially useful model criterion.

IV. NUMER, ICAL B.ESULTS

(%~M) —hN M (3.21)

B. Matrix elements

Covariance under a Lorentz transformation A for a ma-
trix element, say, A2, evaluated for a current J with k-
Lorentz indices means

A", '"'""(P',P) = (P'i J"' ""(0)]P")
= A"' . A""A"' """(A P' A P)

(3.22)

If U(A) are the unitary operators corresponding to the
transformation A in the space of physical states ~P),
Eq. (3.22) demands

U '(A) J"'"""(0)U(A) '= A"' . . .A"' J"' ""(0) (3.2"3)

or, in in6nitesimal form,

(3.24)

These conditions are not satisfied by the &ee field, one-
body current operators used in Sec. II because, as de-
scribed in a previous subsection, the generators M~„con-
tain interactions. Thus two-particle and perhaps even
Inore complex currents must be included to restore co-
variance. Consequently, hadronic matrix elements are
expressed in terms of four-vectors representing the par-
ticles momenta and polarizations will violate covariance
and as shown in Sec. II will contain an overall depen-
dence on the four-vector n". The nonrelativistic expan-
sion of the electromagnetic currents in the presence of
internal interactions has been extensively studied [11,21];
however, a solution to all orders in V/m required to main-
tain covariance is still lacking. Although the spurious n

I

which in turn is equivalent to the normalization of
eigenstates of a "nonrelativistic Hamiltonian" de6ned as
p'~'(]k']) M (k', k) p'~'(~k~).

(0]A "(0)]P,b) = h g P"f„+ f„
]n]

"

(P', ai J," (0)iP, b) = b g Z"F„+ F' (4.1)

Covariance requires f„=F = 0, f„=const, and F„=
F„(Q ), Q = —(P' —P), Z~—:(P'+ P)". Here, these
conditions are not satisfied. We also define the charge
form factors fl, and FI, as matrix elements of n A/(n. P).
and n. J, /(n. Z), respectively Thus.

(4.2)

For the ground state mesons having N = I' = S' = J =
0, after summing over the spin components u;, the qq
wave function 4 = @ppp can be written in a compact
form

As mentioned in the Introduction, the valence, con-
stituent quark model does not re8ect the Goldstone na-
ture of the pion. This paper does not address the rela-
tion between the quark model pion mass and the phys-
ical Goldstone boson mass. Rather, the main purpose
is to examine the validity of the impulse approximation
with pointlike constituents in the quark model analysis
of hadronic matrix elements.

All key observables for the low-lying pseudoscalar octet
mesons, J = 0, can be obtained kom the matrix
elements A, . Of special interest are the meson decay
constants and form factors. For the decay constant
Aq is used with the SU(3) octet axial vector current,
A '"(0) = tP(0)A /2p"ps/(0) while for the electromag-
netic form factors the current in A2 is given by J," (0) =
@(0)[A /~3+ A ]7"@(0).Because of the presence of n~,
the matrix elements written in four-vector notation will
in general acquire additional form factors in their Lorentz
decomposition. Accordingly, the two matrix elements A;
can be written as ]P, a) = ~P, M0, 0, 0, (a, 0, 0)) in the
notation of Eqs. (2.10) and

(A I ) ~2mgm2u(pg, Ag)psCu (p2, A2)
@a pi~ ~i~ 7i =

(V& V3), , QplLp21, [~' —(mi —m2)']
(4.3)

with p;I, = gm, + p;, M = (p~l, + p~L, )' —(p~ + p2)' and

(~ + (mq —m2) )[M + (mq + mq) ]
4M2 (4.4)
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The radial wave function go is taken to be the normalized ground state solution of the mass operator given in
Eq. (3.15):

@,(~k~) = . .. exp( —k'/2P'), (4 5)

where P2 = pu [p, is the reduced mass defined below Eq. (3.15)] has a weak quark mass dependence and typically 200
MeV & P, m & 300 MeV.

In the light cone quantization it can be easily shown that in terms of the Minkowski coordinates the radial wave
function depends on x; = p,+ /P+ . and k~ ——(k, k") = pi~ —ziP& through M given by

m,'+ ei'

xi
(4.6)

The form factors defined in Eq. (4.1) can now be calculated using Eqs. (2.12) and (2.13):

f (P2) f ((P )2/ 2 P2) ~
[d ]

&(I I) iP.
V'p(lkl) pi~»~ 9'[~' —(mi ™2)']

f = f (P )= f ((P )2/ & —P2)= ~
[dp] &(I I)

P '
g&((k()p, p, +[~2 (m, m, )2]

'

(4.7)

(4.8)

Fr, ——Fj,(Q, Z') = Fj,(Q', (P'+ P—)'+ [(P'+ P) . n]'/n')

~s I &O(lk'I)@o(lkl)

&'p', &+&"pi.&+ ((p', I, —piL, )' —0')p2. &

[M' —(mi —mz) ][M —(mi —m2) ]

+ (1 -+ 2), (4.9)

F = F (0', &') = F (Q' (P' + P)' —[(P' + P) 1'/" )
&o(I~'I)A(I~I)

gp(lk'I)s (1k')p' p

X
~'p,.+~ p,.+((p,. p") -W'-)p»

+ 1-+2 )[~' —(mi —m2) ][M —(mi —m2) ]

(4.10)

where e; is the quark charge, P' = P+ Q, p', I ——p;L, (p', ),M' = JH(p', ) with p;I, and JH defined below Eq. (4.3)
and k', k are related to p', and p; through Eq. (4.4).
The only constraint imposed on the variables Z, Q, and
n is that the momentum transfer O' —P be spacelike,
Q ) 0, and n. Q = 0, i.e. , Q2 = Q2 = —Q~~. From
Eqs. (4.7)—(4.10) it follows that the form factors do not
depend explicitly on n but only on the magnitude of the
transverse projections of external momenta. Violation of
covariance can be studied and documented by this de-
pendence. It is worth noting that the ]P,T] dependence
can be interpreted as either a quantization scheme or
reference frame dependence. Sensitivity of the observ-
ables to changes in the reference kame corresponds to a
dependence on the components of external momenta for
fixed values of n" while sensitivity to the quantization
surface corresponds to n~ dependence for Gxed values
of the external momenta similarly to the eBect of pas-
sive vs active I orentz transformations. For example, the

PP& ——(n )P/n2——2 M; ~ oo limit gives a form fac-
tor in the instant n2 = 1 quantization in a kame where

some components of particle momenta are infinite [14]
or a form factor in a light cone quantization, n ~ 0,
in a frame with finite components of the momenta [12].
It can be shown that in the P~& -+ oo limit Eqs. (4.7)—
(4.10) become identical to those derived using explicit
Light cone quantization. The form factors are finite in
this limit and thus the unphysical dependence upon P,&
disappears. Also from Eq. (4.2) it follows that in this
limit f(F)1, -+ f(F)I However, there. is a priori no rea-
son to expect that the unphysical form factors [f(F) ]
vanish.

In Fig. 1 the form factors fl, (solid line), f~ (dashed
line), and f (dotted line) for the pion are plotted against
~PT

~

for m = 220 MeV and P = 290 MeV. As expected,
for large ~PT~, fr, -+ f„~ const and f -+ const; how-
ever, the unphysical form factor f becoines the largest
in the light cone limit f„(oo)/f~(oo) 70% At low ~PT ~,

f~(0)/fl. (0) 35%, but the variation of f„(~PT ~) is now
the largest. Similar results are obtained for the electro-
magnetic form factor, as shown in Fig. 2. The upper solid
line represents F„„(Q2)= F„(Q2,oo), while Fo (Qz) =
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FIG. 1. Quantization surface and/or frame dependence of
pion decay constant. fL, , f~, and f are denoted by solid,
dashed, and dotted curves, respectively.
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E„(Q,0) is depicted by the lower solid line. The upper
dashed line corresponds to I" (Q ) = E„(Q,oo) while
the lower dashed line is I"o (Q ) = P (Q, 0). There
is little of the order of 10—20% sensitivity to [PT i

for
both I"I and I"~ and similarly for f„and f Again t.he
nonphysical form factor F is comparable to E„and
largest in the [PT i

-+ oo limit (E ). In Figs. 3—5 the
charge form factors (I"I,) for m, K+, and K are plotted
for iPT = 0[ (dashed lines) and for iPT i

—+ oo (solid lines).
The kaon decay constant and charge radii can be well re-
produced for the same parametrization m 220 MeV
and P 290 MeV within a 10% accuracy. Significantly
and related, the overall model sensitivity due to quantiza-
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tion or kame dependence, as detailed &om the Ggures, is
also at this level. For additional insight we also have com-
pared our results for the pion form factor with the previ-
ous light cone analyses of Dziembowski et al. [2] [dashed-
dotted line in Fig. 3(b)] and to the nonrelativistic de-
scription [dotted line in Fig. 3(b)]. In Ref. [2), an ansatz
is taken for the light cone valence wave function. The
main difFerence between the wave function in Eq. (4.3)
and the wave function used in Ref. [2] is the use of a con-
stant value instead of the invariant quark mass M in the
spinor wave functions in Ref. [2]. While this difference is
not significant for the description of static properties, it
is quite substantial for form factors for Qz&1 GeV .

V- SUMMARY AND CONCLUSIONS
FIG. 2. Quantization surface and/or frame dependence of

pion electromagnetic form factor. The assignment of curves
is explained in the text.

We have developed a variable &ont approach for in-
vestigating hadronic structure involving matrix elements
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Data are taken from Ref. [25j.

FIG. 5. K electromagnetic form factor.

of constituent quark operators. The source of Lorentz
symmetry breaking of the current matrix elements comes
&om the improper behavior of single-particle currents un-
der Lorentz symmetry. Many successful predictions from
the constituent quark model, including early description
of baryon magnetic moments, do, however, rely on one-
body currents only. Thus there is hope that such currents
may give dominant contributions at least for the static
properties. Our model incorporates all relevant symme-
tries of the wave function by construction and permits
one to assess the sensitivity of computed observables to
the choice in quantization scheme or reference frame. As
such our method can be regarded as a covariant criteria
since it can be implemented in any quark model to detail
sensitivity to &ont orientation. A large sensitivity indi-
cates the need for restoring full covariance and perhaps a

more sophisticated hadronic model. We have calculated
various mesonic properties in this model and compared
the results in diferent schemes. The key findings are
that relativity is crucial but that alternative relativistic
approaches (different n+) which properly treat Wigner
spin rotations and appropriate Ansatze for the relative,
spin-independent wave function can achieve equivalent
phenomenological descriptions at least for the present
quality of data. For m and K+ we have found that
both the physical form factors [f(F)z] and the charge
form factors f (F)I, for vr are comparable to within 10—
20% which is also the sensitivity level to the front ori-
entation or to the choice in the reference kame. Thus
ignoring the spurious form factors, covariance imposes
a 20% uncertainty in the applicability of the quark
model. In the case of the Ko form factor at low Q, vi-
olations of covariance are much larger. In general, we
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expect the quantities which are intrinsically small to be
much more sensitive to model details and uncertainties
as similarly concluded in a recent E2/Ml N-b, transi-
tion analysis [22]. In the light cone limit as the mo-
mentum transfer increases the unphysical form factors
become largest. Such behavior is also consistent with re-
cent analysis by Keister [23] of current matrix elements
for a spin-1 particle where signi6cant rotational symme-
try violations occur for Qz/4M2 & I.

Although encouraging, small violations of covariance
found in the physical form factors are necessary but
not sufBcient to validate the quark model calcula-
tions. Complete con6rmation awaits demonstrating that
interaction-dependent current operators reduce or elim-
inate the unphysical pieces of matrix elements without
appreciably affecting the physical ones. Ideally, as more

precise data become available it may be possible to deter-
mine the form of efFective current operators and distin-
guish alternative formulations along with clarifying the
role of additional degrees of &eedom such as efFective glu-
onic excitations and/or exotic quark configurations, as in
principle expected in @CD.
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