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The CP-violating asymmetry A(A ) has been estimated to occur at the level of a few times of
10 within the minimal standard model. The experiment E871 expects to reach a sensitivity of
10 to the asymmetry A(A ) + A(:- ). In this paper we study some of the implications of such a
measurement for CP violation beyond the minimal standard model. We find that it is possible to
have A(A ) at the few times 10 level while satisfying the constraints imposed by the measurements
of CP violation in kaon decays.
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I. INTRODUCTION

The origin of CP violation remains one of the out-
standing problems in particle physics. In the attempt to
understand this problem many experimental and theo-
retical efforts have been launched [1]. One of the sys-
tems where it is possible to search for CP violation is
the nonleptonic decay of hyperons. Although this has
been known for many years [2], it is only recently that
it has become conceivable to carry out an experimental
program to look for CP-violating signals in the decays of
:- and A hyperons [3,4].

Of particular interest is the upcoming experiment E871
that expects to reach a sensitivity of 10 for the sum
of asymmetries A(A ) + A(:- ) [4]. Unfortunately, the
calculation of these asymmetries is plagued by theoreti-
cal uncertainties in the estimate of the hadronic matrix
elements involved. Nevertheless, a conservative study of
these asymmetries within the minimal standard model
indicated that A(A ) is likely to occur at the level of a
few times 10 5. In view of this, the potential results of
E871 are very exciting.

One of the questions we would like to answer is whether
the phase in the Cabibbo-Kobayashi-Maskawa (CKM)
matrix of the three-generation minimal standard model
is the sole source of CP violation. The experimental
information that we have so far is the following.

A nonzero value of the parameter e in kaon decays [5]:

~e[ = 2.26 x 10
—' . (1)

A measurement of the parameter e' [6]:

(2.3+0.65) x 10 s NA31,
(0.74 + 0.52 + 0.29) x 10 s E731 .

~ ~

~

~ ~

~

~

~The first result indicates that there is CP violation in
nature, but it does not pinpoint its origin. The best
one can say is that it is possible for the minimal stan-
dard model to accommodate this number. If the second
number turns out to be nonzero, it would establish the
existence of direct ~AS~ = 1 CP violation, ruling out

some superweak mod. els. The current experimental num-
bers are consistent with the minimal standard model, al-
though the theoretical calculations are also plagued with
uncertainty &om the evaluation of hadronic matrix ele-
ments.

The present situation is, therefore, that there is no
need for CP violation beyond the phase in the three-
generation CKM matrix, but that other sources of CP
violation have not been ruled out.

The question we want to address in this paper is
whether it is possible for E871 to find a nonzero asymme-
try given its expected sensitivity and the current values
of e and e'/e. To this end and in keeping with the re-
sults of all the precise experiments conducted to date, we
will assume that the minimal three-generation standard
model is a very good. low energy approximation to the
electroweak interactions. We will, therefore, discuss any
possible new physics in terms of an efFective Lagrangian
consistent with the symmetries of the standard model
and will only look at operators of dimension six.

Our paper is organized as follows. In Sec. II we re-
view the notation for CP-violating observables in hy-
peron decays as well as the standard model estimate of
A(A ). In Sec. III we compute the contributions of CP
violating four-quark operators to A(Ao ) and the con-
straints that result &om the measurements of CP vio-
lation in K ~ arm. In Sec. IV we repeat this analysis
for the two-quark operators of dimension six (so called
penguin operators). Finally, we present our conclusions.

II. CP VIOLATION IN A m gnr

In this section we review the basic features of CP vi-
olation in the reaction A -+ per, denoted by (A ). In

Except perhaps in the origin of the baryon asymmetry of
the universe. We will not discuss that issue in this paper.
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the A rest IIrame, u, f will denote unit vectors in the
directions of the A and p polarizations, and q will denote
the proton momentum. The isospin of the Gnal state
is I = 1/2 or 3/2, and each of these two states can be
reached via a AI = 1/2 or 3/2 weak transition, respec-
tively. There are also two possibilities for the parity of
the Gnal state. They are the s-wave, L = 0, parity-odd
state (thus reached via a parity-violating amplitude), and
the p-wave, / = 1, parity-even state reached via a parity-
conserving amplitude.

A model-independent analysis of the decay can be done
by writing the most general matrix element consistent
with I orentz invariance [2]:

M = Gpm up(A —Bps)ug .

It is customary to introduce the quantities

rameter that governs the angular distribution:

dI' I'= —(1+nq 2;) .
dO 4~ (8)

Similarly, if the initial A is unpolarized, o. determines the
polarization of the proton:

P&=Ape.

E871 will not measure the correlation governed by the
parameter P, and so we will not deal with it in this paper.

The CP odd o-bservable A(A ) is constructed by com-
paring the parameter o. in the reaction A ~ p7t with
the corresponding parameter o. in the reaction A
per+. One can show that CP symmetry predicts that

s=A,

(Ep+ Mp)

to write the total decay

IC( P+ P)G2 4(i, i. + i„i2)4' MA

The angular distribution is proportional to

dT
dO

~ 1 + yid~ (df + (1 —y)g id~( . (dy

+(xg ((D~ + 4/y) + Pg . ((Vy x (V~)

where we have used the standard notation [2]:

(4)

(5)

(6)

so that a CP-odd observable is [7]

aI'+ Q.I' o. + n
r —-I

Other possible CP-odd observables have been discussed
in the literature: a rate asymmetry that is significantly
smaller than A [7] and an asyinmetry based on the pa-
rameter P that will not be accessible to E871. For
this reasons we concern ourselves with the observable
A(Ao ).

It is convenient to decompose the amplitudes according
to isospin and to introduce the following notation for the
phases:

s(~' ) = —g2/3» "l"+~'l + gl/333. '(3:+&'l

(12)

2Res*p 21ms*p isi' —[pi'
lsl' + lpl" lsl' + lpI' lsl' + lpI'

If the proton polarization is not observed, o. is the pa-

where bJ is the strong rescattering phase for the pion
nucleon system and $1& is the CP-violating phase.

In terms of these quantities, one finds [7]

A(A ) = —tan(Pi —bi) sin(/~i —Pi) 1 +
si 4 COB Pl —61

»n(~3 —~l)»n(&3 —&i) &

sin(Pi —8'i) sin(/~i —Pi) j

sin(Pi —h3) sin(/~i —$3) )
sin(Pi —bi) sin(qadi —Pi) )

Experimentally we know the values of the strong
rescattering phases [9],

and the s and p amplitudes (assuming they are domi-
nated by the CP-conserving, AI = 1/2, transitions)

b'i = 6.0', bs --—3.8', Pi = —1.1', b3 ——0.7',
(14)

with all the errors on the order of 1', the b,I = 3/2 am-
plitudes are much smaller than the b,I = 1/2 amplitudes
[10],

B3/si ——0.027 + 0.008, p3/pi = 0.03 + 0.037, (15)

In fact, E871 will be sensitive to the sum A(A ) + A(:- ).
An analysis of A(:- ) parallels the one we will carry out,
but does not really acct our conclusions given the inherent
uncertainties in the computation of matrix elements. It has
also been argued that A(:" ) is probably smaller than A(A )
due to much smaller strong rescattering phases [8].
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8g ——1.47 + 0.01,

~
(9.98 6 0.24) .(E~+ Mg)

(16)

of the real part of the amplitudes is smaller than the ex-
perimental value. Nevertheless, the numbers should be
viewed with great caution.

The approximate weak phases estimated in vacuum
saturation are [12]

y.' = —3y, lm~,
= —0.3yslmw,

Substituting the experimental numbers for the ampli-
tudes and strong rescattering phases, one gets

A(A ) = 0.13sin(/~i —Pi) + 0.001 sin(/~i —Ps)
—0.0024 sin(P~s —Pi) . (17)

B2
3.6(yi + y, ) + 2.7(y~ + 3ys),' Im~,

mg
B2

4„' = 0 5(yi + y2) —0.4(y~ + 3ys)
mg

(22)

A. Standard model calculation

In the case of the minimal standard model, the CP-
violating phase resides in the CKM matrix. For low
energy transitions, this phase shows up as the imagi-
nary part of the Wilson coefficients in the efFective weak
Hamiltonian. In the notation of Buras and Harlander

H~ —— V„*qV„,) c; (y,)Q; (p) + H.c.

These provide numerical estimates using the values for
the Wilson coefficientss of Buchalla et aL [11], ys
—0.08, and the value of Bo given in the Appendix. For
the quantity Imr (we use the Wolfenstein parametriza-
tion of the CKM matrix), we take

Imw = A A g & 0.001 .

Putting all the numbers together and using the upper
limit in Eq. (23) yields4

(24)

q, (p) are four-quark operators, and c;(p,) are the Wilson
coefficients that are usually written as

Other models of CP violation contain additional short-
distance operators with CP-violating phases [13—15] and
predict different values for A(A ) [7,16]. A summary of
results can be found, for example, in Ref. [17].

V~~ Vg8
7

V„*~V„,

with the CP-violating phase being the phase of w. Nu-
merical values for these coefficients can be found, for ex-
ample, in Buchalla et al. [11].

The calculation of the weak phases would proceed
by evaluating the hadronic matrix elements of the four-
quark operators in Eq. (18) to obtain real and imaginary
parts for the amplitudes, schematically,

(20)

and to the extent that the CP-violating phases are small,
they can be approximated by

ImMi
ReM (21)

At present, however, we do not know how to compute the
matrix elements, and so we cannot actually implement
this calculation.

For a simple estimate, we can take the real part of
the matrix elements from experiment (assuming that the
measured amplitudes are real, that is, that CP violation
is small) and compute the imaginary parts in vacuum
saturation. This approach provides a conservative esti-
mate for the weak phases because the model calculation

III. FOUR-QUARK OPERATORS

f
H,~ = Hiv + ) A;0,"' + H.c.

( (25)

For p = 1 GeV, Aq~D ——200 MeV.
See Ref. [12] for additional discussions of this calculation.

We now study, in a model-independent manner, the
contributions to A(Ao ) that occur due to physics be-
yond the minimal standard model. In this section we
look at the efFect of all the four-quark operators and in
the next section we discuss the two-quark operators. We
assume that the physics that lies beyond the minimal
standard model is characterized by a scale A &) M~
and, therefore, that its most important low energy efFects
can be parametrized by the lowest-dimension operators of
the most general efFective Lagrangian consistent with the
symmetries of the standard model. Such a Lagrangian
has been written down by Buchmiiller and Wyler [18].
In the Appendix we list all the operators that occur at
dimension six with ~ES~ = 1.

The calculation then proceeds as in the previous sec-
tion, but with the efFective Hamiltonian
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To the usual, @CD-corrected, standard weak Hamilto-
nian of the previous section, we add all the four-fermion
operators with lASl = 1 that come from the new physics
sector. We will sidestep the issue of the possible origin of
the efFective CP-violating operators. We use the notation
of Ref. [18] as detailed in the Appendix. These operators
violate CP if the coupling A; has an imaginary part. The
normalization has been chosen for convenience.

(M~) . ( Im&, l (~+7r lO;lK )I=o
- qA2Asgy ys(or+sr lO—slKP)I=o

~2 (~+~-lO, ]Ko),=.
~ ys(~+~ lOs]Ko)I=o

(32)

of the new four-quark operators. Given the experimental
result in Eq. (2), we will place bounds on the new physics
by requiring, conservatively, that 0„&1. We find

A. Kr, -+ mm and e'/e

The standard notation for the K ~ vrvr amplitudes is

AgA(K' ~ ~+ -) = A,"'+

A(K -+ m vr ) = Aoe' ' —~2Aqe' '
(26)

where bp 2 are the strong m~ scattering phases in the
I = 0, 2 channel. The amplitudes Ao and A2 are real
unless there is CP violation. Experimentally it is known
that the AI = 3/2 amplitude A2 is much smaller than
the AI = 1/2 amplitude Ap.

(~'l ~ Im(Ap)s

v&lel

ysAIm~(~+a- lOslK ) . (28)

ReA2 1
ReAp 22

The contribution of the dominant penguin operator (Os
in the notation of Ref. [11])to e'/s is given by

Because there is no way at present to compute the matrix
elements of four-quark operators reliably, we will simply
use vacuum saturation. The new contributions to ~' can
thus be computed with the aid of the matrix elements
listed in Table VIII, below. We use, as before, A A5g =
2 x 10 4, and we explicitly separate the contributions
&om the difFerent isospin components of each operator
for later convenience. We thus write

0„, = 4 x 10
l l ) 1m~'(~o'+~2 ),4 & M~)t'

A
(33)

where up 2; refers to the AI = 1/2, 3/2 component of O;.
We present numerical results for uo 2; in Table I.

Requiring that 0„, & 1, we can constrain the size of
the CP-violating couplings ImA;/A . By assuming that
there is no accidental cancellation between the contribu-
tions of difFerent operators to 0„,we may constrain
each operator separately. The isospin decomposition is
useful because it is possible to construct combinations
of operators with definite isospin transformation proper-
ties. The constraints that apply to operators that are
purely b,I = 1/2 are different f'rom those that apply to
operators that are purely AI = 3/2.

I=o
—0.26 GeV

Using the values A = 0.9, A = 0.22, and g = 0.5, one
finds that

-1.5 x 10
(e'l
(')s

The usual standard model analysis of e'/e consists of
computing this contribution of the "penguin" operator
and of normalizing all other contributions to it in terms
of a parameter 0:

/e
(1 —AsM —0„, )) es (31)

OsM is given, for example, in Ref. [11],and we have in-
troduced an analogous term 0„ for the contributions

The hadronic uncertainty enters the calculation through
- the matrix element of the four-quark operator. We will

use the estimate of Ref. [11] for the matrix element of
06.. Operator

~(1,1)
ee

(s, x)

~(1 3)

(s, 3)

(~)

C7„d
(i)
(s)
dd

Q„d
(s)

(~)
C7q„

(s)Dq„
~(~)

qd

D~,q
(s)
(1)
(s)

~(1s)
&(ss)

CcPp

—0.06
—0.3
—0.3

0.32

—0.02
0.1
0.2
2.4
0.1
1.5

—3.9
—0.1

—3.5
—3.5

2.1
1.8
1.3

—2.5

—3.3
—36.8

36.8
—3.3

—31.2
33
31

—33
0
0

TABLE I. Numerical coefncients for Eq. (33).
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B. K' -X mixing and e

In general, e' provides tighter constraints on new CP-
violating interactions than does e. Nevertheless, it is nec-
essary to consider constraints Rom e because the ones
that arise &om e' do not apply to parity-conserving op-
erators that do not contribute to the decay K —+ mvr.

In the operator basis that we are using, all the operators
have parity-conserving and -violating components. How-
ever, it is possible to construct parity-conserving com-
binations of operators just as it is possible to construct
combinations of operators with definite isospin.

All of the ~ES~ = 1 four-quark operators that we
consider contribute to e when combined with a second

~AS~ = 1 vertex from the usual weak Hamiltonian. In
terms of the K -K mixing matrix, each operator gives
a contribution to e of the form

1 (ImMi2 I;
b,mi,

(34)

We estimate the long-distance contributions to ImMq2
due to intermediate pion and g poles [21]. Using the
matrix elements of Table IX, below, we find that there is
a cancellation between the contributions of the pion and
octet-g poles at leading order in SU(3) breaking. This
situation is unfortunate because it makes the estimates
very unreliable. For our purposes we will use the model
of Ref. [19] to deal with this problem.

The contribution of each operator to e is given by

M ' m' 2

(35)

where 8s is defined in Eq. (53) and (; is given according to the model of Ref. [19] by

O It' m' —m'&
(m ~D, (K ) + '

~ 2 ~ [(1+()cos8+ 2~2psin8] "' cos8 —V2

+
~ 2, ~

(1+$)sin8 —2~2pcos8 ' sin8+ ~2 "' cos8
- .f f J

We choose the parameters that Ref. [19] considers more
physical: 8 = —20, $ = 0.17, f„, = 1.25f, and f„o ——

1 04f.
Once more we present separate results for the LI =

1/2, 3/2 components of each operator in Table II. We
emphasize again that we present our results in this form
because it is possible to construct combinations of opera-
tors that have definite isospin transformation properties.

TABLE II. Factors (, for Eq. (36).

Operator
(x, z)

(s,~)
ee

~(l 3)

~(s,s)
ee

(&)Dq„
C7„~

(&)

(s)

D„~(s)

(~)O~„
(s)Oq„

~(i)
~P'~)

~sd

Dq, q
(s)
(i)
(s)

~(1a)
+(ss)

(, », (p = o.s)
—0.24
—0.41
—0.33
—0.16
—0.18
—0.06
—0.23
—0.18
—1.8
—0.05
—4.2
—2.4
—0.23
—1.7

0.46
0.22

—1.6
—1.5
—1.1

(*,iy. (p = 12)
0.14

—0.12
—0.17

0.71
0.04
0.1
0.06

—0.18
—1.7

0.24
—1.2

0.57
0.06

—2.2
2 0 1

—2.6
—1.6
—4.8

3%7

(, „,(~ only)
—0.04
—0.22
—0.21

0.22
—0.06

0.01
—0.07
—0.15
—1.5

0.07
202

—0.75
—0.07
—1.6
—0.65
—1.0
—1.3
—2.6
—2.0

6', spy

0

—0.11
0.11

—0.15
0.15
1.5
0.15

—1.5
—0.15

1.2
—1.3
—1.2

1.3
0
0
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For the EI = 1/2 component, there is sensitivity to the
parameters in the model of Ref. [19]. We illustrate this
by presenting results for p = 0.8, p = 1.2, and for just
the pion pole. For the EI = 3/2 component there is only
a pion pole.

C. A -+ gnr and A(Ao)

The starting point of the calculation is Eq. (17). We
study the efFect of the new physics one operator at a time
and always assume that the CP-violating amplitudes are
small, so that the experimental value of the amplitudes
is approximately equal to the CP-conserving amplitude.
All the CP-violating phases are then small, and we can
write

A(A ) = 3 x 10 +) [0.13(P~ —P~)
Z

+0.001(y', —y;) —0.0024(y", —y;)];,

G~ (M~) (per ~O;~A)P
A )

™~9.98G~m2

GJ; (M~) (per ~O;~A)s,

~2 q A )
™~1.47G&m2

G t'M 5 (p ~O, ~A)

A ) 0.21G~m'

G~ t'Mg l (per ~O, ~A)g
A ) ' 0.03Gpm2

(38)

The matrix elements are estimated in vacuum saturation
and listed in Table VII, below, in the Appendix. Numer-
ically we find

A(A ) =3x10 +
~ ) ImAa;,
/ M~

(39)

where the coeKcients a; are listed in Table III. We
present two difFerent values: In the erst column we in-
clude only the AI = 1/2 component of each operator,
whereas in the second column we include both isospin

where the sum runs over all the operators in Eq. (25).
We carry out the calculation in the same manner as

the standard model analysis of the previous section [12].
That is, we compute the imaginary part of the amplitudes
by taking matrix elements of each new four-quark opera-
tor in vacuum saturation. Further, we will not compute
perturbative @CD corrections to the effective Hamilto-
nian of the new physics sector. We will also assume
that the new physics does not significantly alter the CP-
conserving amplitudes, but we will comment on this later
on. As discussed in Ref. [12], this vacuum saturation cal-
culation is not reliable at all; nevertheless, we will use it
for lack of anything better.

Calculating the imaginary part of the amplitudes tak-
ing the real part &om experiment as in the previous sec-
tion, we 6nd that each operator D; induces the phases

TABLE III. Factors a, for A(A )„, in Eq. (39).

Operator
~(& &)

(s, x)

(~, 3)

(s, s)

(~)

V„~(~)

(s)

Q„~(s)

(i)Vq„
(s)Dq„

~(~)
(d

qaq
(s)
(~)

(s)

+(1s)
(s~)

(a')i(2
0.03

0.14
—0.15
—0.05

0.01
—0.06
—0.1
—1.3
—0.05

1.5
—0.6

0.05

0.6
—0.9
—1.1

1.4

a,
0.03
0.14
0.14

—0.15
—0.06

0.02
—0.08
—0.1
—1 ~ 1
—0.08

—0.8
0.08

—1.2
0.7

—1.0
—1.0

1.8

components. We can see &om Table III that the CP-
violating asymmetry A(A ) is dominated by the inter-
ference of the s and p waves in the AI = 1/2 amplitude,
as can be anticipated from Eq. (17).

We also see &om Table III that a; is of order one in
some cases. Equation (39) then tells us that a measure-
ment of A(Ao ) at the 10 4 level is sensitive, in princi-
ple, to new CP-violating interactions generated at a scale
A & 8 TeV and is thus potentially interesting.

We can use the constraints &om CP violation in kaon
decays to place bounds on the magnitude of A(A ) that
each of the four-quark operators can induce In general,
the bounds coming &om direct CP violation in e' are
stronger than those coming &om c. However, it is neces-
sary to consider both because it is possible to construct
parity-conserving combinations of operators that do not
contribute to K ~ arm amplitudes and, thus, evade the
bounds &om e'. Similarly, e' places stronger constraints
on KI = 3/2 operators than on AI = 1/2 operators due
to the enhancement factor of I/tu in Eq. (32). To take
into account these distinctions, we list in Table IV the
bounds on each of the weak phases separately. The blank
entries indicate that there is no bound because the par-
ticular operator does not contribute to that amplitude.

The bounds on the p-wave phases arise from the con-
tributions of the operator to e and are weaker than the
bounds on the 8-wave phases that arise &om the contri-
butions to e'. For the operator basis that we have been
using, the bounds on the di8'erent components are not
independent. This, however, is not an important point
because there is nothing special about this operator ba-
sis. We prefer to illustrate separately the bounds on each
parity and isospin amplitude because it is possible to con-
struct operators with definite parity and isospin.
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TABLE IV. Bounds on the phases that enter A(A ).
Operator

(x, x)

(s, x)

+(z,3)

(s, s)

(~)

C7„„(~)

(s)

Q„q(s)
(~)Vq„
(s)Qq„

~(~)
~I~)

C7q q
(s)

(~)

(s)

~(1s)
&(ss)

qq

P", x10
2.9
9.0
10

—24

5.3

5.3
14
14

—24
9

5.3
16
24

—74
14
29
29

Qi x10
—10
—10
—10
—10
—10
—10
—10
—10

—9.3
—10

2.8
—10

—2.8
4.2

—9.3
22

22

/~3 x 105

400
400
400
400
400
400

—400
400
400

—400
400
400

P~ x10

—16

—16

—16

—15
—16
—15
15

IV. TWO-QUARK OPERATORS OF DIMENSION
SIX

Dg~ = (qo.„„A d)QG„„. (40)

The operator of interest to us is obtained when the scalar
doublet P takes its vacuum expectation value. This leads
to the effective Lagrangian (with the same overall nor-
malization that we used before and v = 246 GeV)

Ag, do„„A
I l

sG„„
g2 v — f 1+ps'
A' 2

' "" ( 2 )

+A;ado. „~A
I I

sG„+H.c.
t'1 —ps l

)
2 'U

do„„t (fpc+ psfpv)sG„„+ H.c.
A2 (41)

There are also analogous operators where the gluon field
strength tensor is replaced by field strength tensors for
electroweak gauge bosons. The matrix elements of these
operators are suppressed by a power of n = I/137 with
respect to the gluon operator and we will, therefore, ne-
glect them.

In addition to the four-quark operators of dimension
six considered in the previous section, there are also two-
quark operators of dimension six that can contribute to
the processes under consideration [18]. These operators
are the SU(3) xSU(2) xU(1)-invariant versions of "pen-
guin" operators that naively appear to be dimension five
[20]. There are two types of operators that contribute to
CP violation in ASI = 1 processes. The first one in the
notation of Ref. [18] is

A. Constraint on the parity-conserving coupling

The parity-conserving coupling fpc is constrained by
the contribution of Eq. (41) to the parameter e. Un-
like the four-quark operators of the previous section, we
cannot use vacuum saturation to compute the matrix el-
ements of this operator. However, this is the same oper-
ator that arises in the Weinberg model of CP violation,
and the analysis has been carried out by Donoghue and
Holstein [21] using MIT bag model matrix elements. We
can simply take over their results to find

I
llmfpcl.

(M~ l
A

(42)

This contribution to e is due to long-distance eÃects as
those discussed in the previous section. In complete anal-
ogy we have introduced the parameter $ which takes the
values ( = 0.12 for p = 0.8 and ( = —0.48 for p = 1.2.
We find that the sensitivity of the result to the SU(3)-
breaking parameters of the pole model is larger in this
case than it was for the four-quark operators.

B. Constraint on the parity-violating coupling

5
t' M~I'= 2.2 x 10

I I
llmfx vl .

e„(A )

The constraint on the parity-violating coupling fpv
comes from an analysis of e'. Just as we did for fpc, we
simply take over the results of Ref. [21] with a suitable
identification of the coupling. We find
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C. Contribution to A(AO)

Once again, we use the fact that up to coupling con-
stants this operator is the same one appearing in the
Weinberg model of CP violation. Its matrix elements us-
ing the MIT bag model can thus be taken from Ref. [7].
We find

4 t'Mw)
gP, =7x10

~
~

I fpv,EAr
(44)

P", = —8 x 10'
~ ~

Imfpc .
A

In the Weinberg model this operator appears with fpv =
—fpc and there is a large cancellation between the two
phases, leading to a smaller value for A(A0 ) than would
have been obtained from each phase individually [7]. In
our general operator analysis, the bounds from Eqs. (42)
and (43) can be combined to obtain (with ( = —0.5)

Imfpg ( 2.7 x 10
r'Mw i

(Mw)'
imfpv ( 6.8 x 10

(46)

or, in terms of the hyperon decay observable,

3 x 10 4 parity-conserving operator,
6 x 10 s parity-violating operator .

(47)

Before ending this section we should comment on one
class of two-quark operators that we have not discussed.
In the notation of Ref. [18] it is

OqG. = i (q A p„D„d)QG„„ (48)

and related operators with Beld strength tensors for elec-
troweak gauge bosons instead of the gluon. These latter
ones will have matrix elements suppressed by o. compared
to Eq. (48). We have not found a simple way to estimate
the matrix elements of these operators, and for this rea-
son we do not discuss them in detail. We do not expect
the behavior of this type of operator to be significantly
diferent &om the others that we have discussed.

V. SUMMARY AND CONCLUSIONS

The minimal standard model of electroweak interac-
tions is in extraordinary agreement with all experiments
conducted so far, and there is no evidence for any new
particles below 100 GeV or so. In view of this, it is rea-
sonable to assume that any new physics beyond the min-

From these it follows that
2

A(AO )„=—10
~

~
(Imfpc + O.mm fpv) . (45)

imal standard model is associated with a scale A & M~,
and it is, therefore, possible to represent the low en-
ergy effects of any such new physics with an efFective
Lagrangian that respects the symmetries of the standard
model.

In this paper we have studied all the ~AS~ = 1, CP
violating, operators that occur at d.imension six. We have
investigated the constraints that exist on the couplings of
these operators &om the measurements of e and e', and
estimated what their largest contribution to CP violation
in A(AO ) could be.

The operators that we have discussed also contribute
to CP-conserving and flavor changing amplitudes. We
might thus worry that the constraints on the real part
of the couplings are such that it is not natural for the
imaginary (CP-violating) part of the couplings to attain
the upper bounds allowed by the values of e and e'. We
briefly address this issue in this section.

Consider the contributions to K -K mixing. If we
fix ImA, to its maximum allowed value, we find that the
constrain 2aeMq2; & Lm~ is also satisfied if

ImA;
ReA; (

2 26
(49)

Therefore, the CP-conserving constraint is also satisfied
if both real and imaginary parts of the couplings are of
the same size or if the imaginary part is smaller than the
real part by a factor of c. The strongest constraints on
flavor-changing operators in the CP-conserving case are
known to come &om K -K mixing. If we set the cou-
plings to be of order one, we obtain a lower bound on the
scale of new physics A requiring that 2ReMq2, & Am~.
It is easy to check that with couplings and scales satisfy-
ing this bound the new operators do not make any sig-
nificant contributions to the real part of the amplitudes
in K -+ mar or A —+ p7t. Therefore, we conclud. e that
fixing the imaginary part of the couplings to their maxi-
mum allowed value is not in conflict with CP-conserving
constraints.

In the minimal standard model, we have estimated pre-
viously [12] that A(A0 ) is of the order of a few times
10 . For the new physics considered in this paper, we
find that most of the operators would naturally induce
contributions to A(AO ) at the 10 level, making them
indistinguishable from the minimal standard model (as
long as precise calculations of the matrix elements are
not available) and inaccessible to the search to be con-
ducted by E871. However, we have also found that for
certain operators O~q, and Qg~, A(A ) could be as large
as a few times 10

Given our crude estimate of the hadronic matrix el-
ements involved, all our numerical results should be
viewed with caution. Nevertheless, our results suggest
that the search for CP violation in A(AO ) at the 10
level of sensitivity that is expected for E871 is poten-
tially very interesting. Our results also suggest that this
measurement is complementary to the measurement of
e'/e, in that it probes potential sources of CP violation
at a level that has not been probed by the kaon exper-
iments. This is particularly true for parity-conserving
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TABLE V. Division six ~AS~ = 1 four-quark operators. We list in the second column the gauge-invariant version of the
operator in the notation of Ref. [18] and in the third column the ~AS[ = 1 components (in some cases there is more than one).

Operator
~(&s&)

&(s,x)

&(~,3)

~(s 3)

(I)

V„d(I)
(s)

D„d(s)
(I)Vq„
(s)Dq„

~(~)
sd

Oq q
(s)
(1)qqs
(s)

+(Is)
(ss)

Ref. [18]
~(I,X)

~(s,1)

~(1,3)

(s, 3)

(I)

C7„d
(1)
(s)

G„d(s)
(I)Dq„
(s)Dq„

~(&)
~&~)

~(s)
d~'4)

(s)
~(I)
+(s)
~(I)
~(s)

Jasf =1
—dL, Q~SI (ZLI pgu j, + dl fpdl )

~dL, A ppsr, (uI, A f~ul, + dl, A pedi, )
2 (2ul, "fpsl, dL, fpul, —ur, ppul, dl, ppsr, + dl, /pdl, d1,7@81,)

2(26r, A p&sLdLA p~ul, —ui A p„uidr, A p„sL, + dL, A p„dr dr, A p„sl.)

~ dRPp sRdRPp, dR

2 uRppuRdRppsR

2 dRA fpsRdRA PpdR
&uRA '7~uRdRA '7psR

dLuRuRSL
dLA uRuRA SL

uLSRdRuL + dLsRdRdL

dL dRdR8I
dL A dRdRA SL

—uRSLdRuL
—uRA 8LdRA uL

dRSLuRuL
dRA SLuRA uL

uLuRdLSR dLuRuL SR

uLA uRdLA SR dLA uRuLA SR

interactions that do not contribute to e' and are only
constrained by e.

We conclude that it is possible for E871 to observe a
CP-violating signal at the 10 level. Our study indi-
cates that if such a signal is observed, it would proba-
bly be evidence for physics beyond the minimal standard
model. However, a reliable determination of hadronic
matrix elements is necessary to reach any definite con-
clusion.
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m2
7f

m~ + mQ

m2
11m~ )me+mu

we find. :

(per ~dp„psuup" s]A) = Mv.

(A1)

APPENDIX: OPERATOR ANALYSIS

= i ~2f (M~ —MI ) +3/2@„4~,

1. Dimension six ]lb, S] = 1 four-quark operators
TABLE VI. Isospin decomposition of four-quark operators.

In Table V we list all the four-quark operators of di-
mension six that change strangeness by one unit. We
use the explicitly SU(3) x SU(2) x U(1) gauge-invariant
notation of Ref. [18]. For each class of gauge-invariant
operator, we give the components needed for this paper.

Operator
3usdu
3dsuu
3d8dd

AI = 1/2
2usdu —dsuu + dsdd
2dsuu —usdu + d8dd
usdu + dsuu + 2dsdd

AI = 3/2
usdu + dsuu —dsdd
usdu + dsuu —dsdd

—usdu —dsuu + d8dd
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Operator

(z, x)

(s, z)

(~, 3)

(s, 3)

(~)

G„d(~)

(s)

TABLE VII. Matrix elements in A -+ pm

b,I = 1/2

,~ (M~ —Mv)

4 (1 —~~) (M~ —Mv)

4 (1 —~~ ) (M~ —Mv)

4 (~~
—1) (M~ —Mv)

gg (1 + ~ ) (Mw + Mv)

~'~ (~ —1) (M~+ Mv)

~~ (1 —~~) (M~ + Mv )

AI = 3/2

—~'~ (1+ ~) (M~ + Mv)
—(1+ —') (M~ + Mv)

——,~ (1 —~~) (M~ + Mv)

C7„d
(s)

gn(~)
qV

(s)
C7q„

C7 d
(1)

{~)Q,d

(s)Q,d

(~)

(s)qsq
(1)

(s)

~(1s)

(ss)

6 (1 —~~) (Mg + Mv )
+2

2 2 M~+M~ + ~~

xg (1 ~~) (Mv —Mg)
~2; (Mv —M~)

:(Mv+M~) —
—,'„(M —M )

—,~ (~~
—1) (Mv —M~)

+2

—
ig (1 —~~) ~~(Mv+ M&)

+2
i~(1+ 4): (Mv+ M~)

—(1 —~ ), (M +M~)

4 (1++r):(Mv —M~)

—
4 (1 —~~): (Mv —M&)

—,'~ (1 —~~) (M~ + Mv)

12 -20 Mv+MA 21K Mv —MA

—,~ (~~
—1) (Mv —M~)

0

; (Mv+ M„)+ —,'„(Mv —M~)

——,', (~ —1) (Mv —M„)
+2

—„(1—~); (Mv+ M~)

——(1 ——) (Mv + M~)

(1 —~~) ~f (Mv+ M&)

0

Operator
(x, x)

~(s ~)

+(&,3)

&(s,3)

(~)

V„d{~)

(s)
dd

C7„d
(s)

(~)Oq„
(s)Qq„

~(&)
fd

(s)

(~)qqs
(s)

~(1a)
qq

+(ss)

TABLE VIII. Matrix elements in K —+ vr+m

Ap

+v (Vg —Vg)

—,
' (1 —~) (V, —V, )

8 (2 —~) (Vg —Vj)
—

4 (1 —~~) (Vg —Vj)
—(1+ —) (Vj —Vg)

24(1V )( ~

—,', (1 —~) (V, —V.)
6 (1 —~~) (Vj —Vg)

(2sg + ~(vj + Vg))
—,', (1 —„' ) (V, +V.)

4 (Sg —Sz)
—,', ((S, —3S,) ——,'„(V, + V.))

——,', (1 —„' ) (V, +V, )
(2sg + —'(Sg —3sg))

~'~ (1 —~~) (Sg —3sg)
—'. ((1+—')S -3S)

—,
' (1 —~) S,

—-' ('+ .~) (S~ —S~)
——,

' (1 —„' ) (S, —S,)

0

(1+ —') (Vj + 2')
—,', (1+ —') (V, + 2V, )

—
—,', (1 ——', ) (V, +2V, )

—,'~ (1 —~) (Vj + 2')
—,', (S, ——,'„(V, —2V, ))

(1 —~) (Uj —2')
0

i' (-S~+ .~( ~
—2V~))

(1 —~) (Vj —2')

0
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(per ~dy„p5uup"pss~A) —= M~

m2foal'fEc ~
( 13 g)@

mQ m~2

(A2)

Vj = (~ (dp„p5u(0)(sr+~up„s~K )
= —iv 2f (mls —m ),

V2 = (~+sr )up„u~O)(0)dp„p5s)K )

(m—+7r . [dp„d[0) (0)dp„p5s(K )

jg2
(p~ (dp5uus~A) = Mv,

m+

(p~ ~dpsuup5s~A) = —
2 M~ .

mg

We list the matrix element for each operator using vac-
uum saturation in Table VII.

4. Matriw elements for K ~ m'+m in vacuum
saturation

In vacuum saturation we find

S, = (vr ~dp5u~O)(~+~us~K )
( m2)

iy 2—f Bo
(

1+.2
A,')

S2 = (or+sr ~uu~O)(O~dp5s[K )

= (sr+sr [dd~O)(0~dp5s[K )

i~2f —B
(
1+2 A'

We have to introduce momentum-dependent terms in the
last two expressions because the leading terms cancel in

TABLE IX. Matrix elements in K ~ vr, g8, rIo. An overall ~2f mlr has been factored from all
the entries in the table.

Operator
+(1,1)

+(8,1)

~(1,3)

(s,3)

(1)

D„q(1)

(8)

D„„(s)

(1)Qq„
(8)Qq„

C7
(1)

&(1)
qsd
(s)
qstg
(1)

(~'l&~ IK')
1

8N
—,-' (1 —„' )

12
~ m2& 2N

Bo
4 m~

B2

~3(&.~V, ~K')

l (&+ =')
1 ] 1

3
8N

1

l ('+ —')
1
8

1
y

1

0
1

8N

(x iOaiK )

0
——'. ('+ —')

2 +—
1 —~

0

B2

(8)
+qsq

B2——:.(1-=') ". B2 B2--'(1- =') "
(1)

&qqs
B2——'. (1+ =') ". Bo2

4 m2z

(8)
&qqs

B2
1 —~ B2

6 ~N

+(1s) --:(1+—.'-) *' --'. (1+ —.'-) ".
(ss) B21 g 1 0 B2--'(1- -;) ".
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the difFerence Sq —S2. The scale of chiral symmetry
breaking, Ax 1 GeV, can be related to the ratio f~/f
[22j. We list the matrix elements for each operator in
Table VIII.

—z(~ ]H~]K (q)) = —i2-
f2

-z(rls]Hg ]K (q)) = -i2—
2 2

—i(rip]Hg ]K (q)) =i2 3'

(A4)

5. Matrix elements for K —+ m, vys, go in vacuum
saturation

The matrix elements for the K ~ vr, g8, go transi-
tion in the standard model are, to lowest order in chiral
perturbation theory,

where gs = 7.8 x 10 s f2 = 10 isM~2.
For the matrix elements of the four-quark operators,

we use vacuum saturation and U(3) symmetry to include
the g singlet. The results are listed in Table IX where we
have factored out a common ~2f m~ For .all the oper-
ators in Table IX, we have (rip]O]K ) = ~2(mls]Q]K ).
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