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We present results from analytical and numerical studies of a fiux tube model of hybrid mesons.
Our numerical results use a Hamiltonian Monte Carlo algorithm and so improve on previous ana-
lytical treatments, which assumed small 6ux tube oscillations and an adiabatic separation of quark
and Aux tube motion. We find that the small oscillation approximation is inappropriate for typical
hadrons and that the hybrid mass is underestimated by the adiabatic approximation. For physical
parameters in the "one-bead" flux tube model we estimate the lightest hybrid masses (AL = zP
states) to be 1.8—1.9 GeV for uu hybrids, 2.1—2.2 GeV for ss, and 4.1—4.2 GeV for cc. We also
determine masses of conventional qq mesons with L = 0 to L = 3 in this model, and con6rm good
agreement with experimental J-averaged multiplet masses. Mass estimates are also given for hybrids
with higher orbital and flux tube excitations. The gap from the lightest hybrid level (zP) to the
first hybrid orbital excitation (zD) is predicted to be = 0.4 GeV for light quarks (q = u, d) and

0.3 GeV for q = c. Both zP and zD hybrid multiplets contain the exotics 1 + and 2+; in addi-
tion the &P has a 0+ and the zD contains a 3 +. Hybrid mesons with doubly excited Hux tubes
are also considered. The implications of our results for spectroscopy are discussed, with emphasis
on charmonium bybrids, which may be accessible at facilities such as BEPC, KEK, a Tau-Charm
Factory, and in @ production at hadron colliders.

PACS number(s): 12.39.Mk, 12.39.Jh

I. INTRODUCTION

The @CD Lagrangian contains quarks and gluons and
the successes of perturbative @CD confirm their exis-
tence as dynamical degrees of freedom. The behavior
of @CD in the strongly interacting low-energy regime,
"nonperturbative @CD," is less well understood. Stud-
ies using lattice gauge theory have con6rmed the presence
of confinement and give spectra for conventional mesons
and baryons that are in reasonable agreement with ex-
periment [1], but the status of gluonic hadrons in the
spectrum has remained obscure.

It is possible that this is now about to change. Can-
didates for gluonic hadrons have recently been reported
which have much in common with theoretical expecta-
tions. There are various lattice predictions for the masses
of glueballs; the most reliable is presumably for the glue-
ball ground state, which is expected to be a scalar with
a mass near 1.5—1.7 GeV [1]. A candidate for the scalar
glueball has been reported at 1520 MeV by the Crys-
tal Barrel Collaboration at LEAR [2] and may also be
evident in central production by NA12/2 [3] at CERN.
Possible evidence for a 1 + light exotic hybrid candidate
has been reported in pm and f2' at about 1775 MeV [4]
in ger and especially g'm at 1.6 GeV by the VES Col-

laboration [5], and in fi7r [6] with a'resonant phase in the
region 1.6—2.2 GeV, with production and decay charac-
teristics similar to theoretical expectations for "hybrid"
states. A light 1 + signal in g7r reported by the GAMS
Collaboration near 1.4 GeV [7] has been withdrawn, al-
though KEK [8] reports a resonant 1 + amplitude with
a mass and width similar to the a2(1320). Another pos-
sibility is that the surprisingly large @' production at the
Fermilab Tevatron [9] may be due to the formation and
decay of metastable hybrid charmonium [10].

In view of the discovery of these candidates for gluonic
hadrons it is appropriate to investigate the theoretical
models for these states more carefully, to see if the pre-
dictions are relatively stable and what level of theoret-
ical uncertainty is present. This paper concentrates on
hybrid states, which are formed by combining a gluonic
excitation with quarks.

Hybrids have been studied in the literature using the
flux tube model [11—18], the MIT bag model [19], an
adiabatic heavy-quark bag model [20], constituent gluon
models [21,22], and heavy-quark lattice gauge theory [23].
In all these approaches the lightest glueball and hybrids
(H~, involving u, d, s flavors) are predicted to have masses
in the —12—2 GeV region. Hybrids are very attractive
experimentally since they span complete Bavor nonets
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and are expected to include the lightest J exotics
(which are forbidden. to qq). For recent reviews of hy-
brids see [24].

Detailed predictions for hybrid spectroscopy were first
carried out using the MIT bag model and QCD sum rules.
The bag model predictions [19) suffer &om parameter un-
certainties and possibly additional efFects such as gluon
self-energies, so the absolute mass scale and the scale of
multiplet splittings are somewhat problematical. Con-
clusions of the bag model studies include the existence of
a lightest hybrid meson multiplet at 1.5 GeV and the
presence of a 1 + J exotic state in this multiplet. In
the bag model the lowest qqg hybrids have negative par-
ity due to the bag boundary conditions, which give the
first TE gluon mode (J = 1+) lower energy than TM
(J = 1 ). For heavy quarks it is unrealistic to assume
a spherical bag, so Hasen&atz et al. [20] introduced an
adiabatic bag model in which the bag was allowed to de-
form in the presence of fixed QQ sources. The resulting
E(R) was used in the two-body Schrodinger equation to
give mass estimates for hybrids. Masses found for the
lightest hybrids were 3.9 GeV for cc (taken &om their
Fig. 2) and 10.49 GeV for bb The es.timated systematic
uncertainty for bb hybrids was +0.2 GeV.

QCD sum rules have been applied to the study of hy-
brids, notably the 1 + and 0 exotics, by several col-
laborations [25—29]. Early results by these collaborations
suggested a light 1 + exotic hybrid with a mass between

1 GeV and 1.7 GeV. The 0 exotics were predicted
to lie much higher, at 3.1—3.65 GeV. Unfortunately, much
of the more recent work is not consistent with these re-
sults, although Balitsky, Dyakonov, and Yung [25] con-
tinue to support a mass of M(1 +) 1.5 GeV. Latorre,
Pascual, and Narison [26] cite higher masses of = 2.1 GeV
for the u, d 1 + and 3.8 GeV for the 0 . Govaerts et
aL [27] estimate 2.5 GeV for the 1 + qqg (q = u, d, s),
and their other exotic hybrid mass estimates are rather
higher than previous references. They conclude however
that the sum rules for exotic hybrids are unstable, so all
these results are suspect. For heavy 1 + hybrids Nari-
son [26] estimates 4.1 GeV for cc and 10.6 GeV for bb.
In contrast, Govaerts et al. find 4.4—5.3 GeV for cc
and 10.6—11.2 GeV for bb, albeit with reservations re-
garding the stability of these results. Thus, sum rules
have reached no clear consensus regarding the masses of
hybrids, and recent results suggest rather higher masses
than previously thought. Some technical errors in the
earlier sum rule calculations have been reported by Gov-
aerts et al. [28]. Sum rule calculations of decay couplings
have also been reported; deViron and Govaerts [29] antic-
ipate a strong per decay mode for the I = 1, 1 + exotic.

Constituent gluon models for hybrids were introduced
by Horn and Mandula [21] and were subsequently devel-
oped by Tanimoto, Iddir et al. , and Ishida et al. [22].
Since these models assume a diagonal gluon angular mo-
mentum Z~, their predictions for quantum numbers difFer
somewhat from the other models. For the lightest hybrid
states (with Eg = 0) Horn and Mandula predict nonexotic
quantum numbers equivalent to P-wave qq states, since
the gluon has J = 1 . Exotic quantum numbers includ-

ing 1 are predicted in the higher-lying (E~~, Ig) = (1,0)
and (0, 1) multiplets. Detailed spectroscopic predictions
for hybrids have not been published using constituent
gluon models, and the estimated masses are assigned
large uncertainties. A typical result, due to Ishida et
al. , is 1.3—1.8 GeV for light nonexotic hybrids and 1.8—
2.2 GeV for light exotics. This type of model predicts
that the dominant two-body decay modes of light exotic
hybrids such as 1 + are the S + P combinations [22]
such as bier and a~vr. This conclusion was subsequently
supported by studies of the flux tube model.

Lattice QCD will presumably give the most reli-
able predictions for absolute hybrid masses, although
at present this approach has little to say about multi-
plet splittings. In heavy-quark lattice QCD, in which
the QQ pair is fixed spatially and the gluonic degrees of
&eedom are allowed to be excited, the lightest charmo-
nium hybrid was predicted by Perantonis and Michael
[23] to have a mass of m(H )~„,„,h, ~ = 4.04(3) GeV.
This reference adds an estimated shift of 0.15 GeV to
compensate for the quenched approximation, which leads
to a final lattice estimate of m(H ) = 4.19 GeV. Note
that a wide range of charm quark masses has been as-
sumed in hybrid spectrum calculations; in this (HQLGT)
result a value of m = 1.32 GeV was used, whereas
the flux tube calculations of Isgur, Merlin and Paton
[12—14] used m = 1.77 GeV. The sensitivity of the hy-
brid mass spectrum to m will be addressed subsequently.
The corresponding HQLGT estimates for bb hybrids were
m(Hi, )~„,„,h, g = 10.56(3) GeV and m(Hs) = 10.81 GeV.

In the flux tube model the more recent calculations
[12—14] cite masses of about 1.9 GeV for the lightest
(q = u, d) hybrid multiplet, about 4.3 GeV for cc hybrids,
and about 10.8 GeV for bb hybrids. There is an overall
variation of about 0.2—0.3 GeV in these predictions, as
indicated in Table I. Although multiplet splittings are
usually neglected in the flux tube model, a rather large
inverted spin-orbit Thomas term was found by Merlin
and Paton [14]. The flux tube model also predicts very
characteristic two-body decay modes for hybrids [16,17]
which have motivated experimental studies of the chan-
nels fi7r and birr, and suggest him and pm [17] as inter-
esting future possibilities.

The mass predictions for the lowest-lying (1 +) exotic
hybrid (which is essentially the mass of the lightest hy-
brid multiplet) are summarized in Table I.

In this paper we carry out improved numerical studies
of the flux tube model, which is the most widely cited
model for hybrids. Previous flux tube estimates of the
hybrid spectrum made several simplifying assumptions,
including a small oscillation approximation and an adia-
batic separation of quark and flux tube motion [ll—15].
In principle these could introduce important systematic
biases in the spectrum. We will present numerical re-
sults which are free of these approximations, using a
Hamiltonian Monte Carlo technique. Since our results
for the lightest hybrid masses are quite similar to previ-
ous analytical results, we conclude that the approxima-
tions made were reasonable, or when they did lead to
important numerical inaccuracies (such as in the adia-
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TABLE I. Predicted 1 + hybrid masses.

State
H„,g

mass (GeV)
1.3-1.8
1.8—2.0
2.1-2.5

3.9
4.2—4.5
4.1-5.3
4.19(3) + syst.
10.49(20)
10.8—11.1
10.6—11.2
10.81(3) + syst.

Model
Bag model
Flux tube model
@CD sum rules (most after 1984)
Adiabatic bag model
Flux tube model
@CD sum rules (most after 1984)
HQLGT
Adiabatic bag model
Flux tube model
@CD sum rules (most after 1984)
HQI GT

Ref.
[»1
[11—14]
[26—28]
[»]
[12—14]
[26—28]
[23]
[»1
[12—14]
[26—28]
[23]

batic approximation and in the small oscillation approx-
imation at small R) the estimates of corrections to the
approximations were sufFiciently accurate. Thus, we sub-
stantiate previous estimates of hybrid masses in the flux
tube model, and we also give masses for higher hybrid
excitations using our techniques.

Here mq and mq are the quark and antiquark masses,
mb is the bead mass, and the (flT ) are two orthogonal
unit vectors associated with bead i that are transverse
to the local string tangent (r;+i —i; i)/]r;+i —r, il. In
this study we use a standard linear form for the string
potential,

&(I~' —~'-il) = al~' —~'-.
I (4)

II. THE FLUX TUBE MODEL

A. Deflnitions

and we usually set the string tension a equal to 1.0
GeV/fm. For our estimates of physical hybrid masses
we will augment this with a color Coulomb interaction
fol' Vq(y lil (2) .

+ = IIquarks + +flux tube

1 -2 1 -2
Hquarks = 7 + + +qq

2mq q 2mq
(2)

1V

+flu~ tube = — ). l ) .( lT &')
2mb ( )
N+X

(3)

In lattice QCD widely separated static color sources
are confined by approximately cylindrical regions of
chaotic color fields [31]. The flux tube model is an at-
tempt to describe this phenomenon with a simple dynam-
ical model, and was motivated by the strong-coupling
expansion of lattice QCD [ll] and by early descriptions
of flux tubes as cylindrical bags of colored fields [32].
In this model one approximates the confining region be-
tween quarks by a string of mass points, "beads, " with
a confining potential between the beads. Since a line
of flux in strong-coupling I GT can be extended only in
transverse directions (by the application of plaquette op-
erators), by analogy in the flux tube model one allows
only locally transverse spatial fluctuations of the bead
positions. For a string of N mass points which connects
a quark at site 0 to an antiquark at site N + 1 we write
the flux tube model Hamiltonian as

B. Adiabatic potentials and fluw tube parameters

In the flux tube studies of Isgur, Kokoski, Merlin, and
Paton [ll—16] the combined quark and flux tube system
is treated using an adiabatic approach as a zeroth order
approximation. In the adiabatic analysis one exploits
the anticipated fast dynamical response of the flux tube
relative to heavy-quark time scales, and separates the
lux tube and quark degrees of &eedom. This is accom-
plished by fixing the qq separation at R and determining
an eigenenergy EJi(R) of the flux tube. Solution of the
Schrodinger equation for the qq wavefunction in the flux
tube ground state potential Ep(R) then gives the con-
ventional qq meson spectrum in the adiabatic approxi-
mation. Hybrids are excited states of the string in this
approach, and are found using an excited string poten-
tial E~(R). The lightest hybrid follows from an Ei(R)
in which the lowest string mode has a single orbital ex-
citation about the qq axis.

In previous studies the adiabatic potentials (E~(R))
were determined assuming small string fluctuations vela
tive to the qq axis. We shall find that this is an inaccurate
approximation for typical hadrons, assuming R = 1 fm.

One motivation for the small oscillation approxima-
tion is that it leads to relatively simple analytical re-
sults; when applied to (3) it gives a quadratic Hamil-
tonian, which can be diagonalized using Fourier modes.
To illustrate this, consider a string with fixed ends at
xp = (0, 0, 0) and xN+i ——(0, 0, R) and N dynamical
beads, with motion allowed only in the transverse (x;, y, )
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directions. In the small oscillation approximation, assuming that the beads are equally spaced in z by ap, so z„=nap
and ap ——R/(N + 1), the flux tube Hamiltonian becomes

1 ( 82 )9z l a/ap
~flux tube = aR ) I ~, + ~, I

+ ).[(&i &i—1) + (JJi Vi 1)']—

and

N

s„p (~ 2) = ) sin(k„z;) (x, y),
i=1

2 ) sin(k„z;) s„g (, 2)
n=1

(6)

This is equivalent to a system of N coupled masses fmbj
with an effective spring constant of k = a/ap ——(N +
1)a/R. We can diagonalize this using sine variables

where the effective spring constant of the nth Fourier
mode is

4(N+i)a . , r'

&2(N+ 1) r

The ground state energy of the string, which is used
as the adiabatic potential for conventional (qq) mesons,
is aR plus the sum of ~/2 for each mode in the small os-
cillation approximation. The individual eigen&equencies
are

where k„= 7m/R. This gives

~flux t b =aR+) ).I 2 +
2mb Os ),

~. = &K./mb = 2
(N + 1)a . reer'n

sin 10
mbR q2(N + 1) r

and the mode sum runs over n = 1 to N and A = 1, 2.
The resulting ground state energy is

Ep(R) = aR+ ) —~„=aR+
modes

~ mN
2(N + 1)o ' 4(~+i) )

b sin 4(N+ 1)

which agrees with the result of Isgur and Paton [ll]. The
most general adiabatic potential in the small oscillation
approximation is

E(R) = Ep(R) + ) na(R)),
modes

where n is the number of excitations of the mth Hux
tube mode.

The ground state wave function of the string in the
small oscillation approximation is a Gaussian in the
Fourier mode amplitudes,

—8 g /2'
~in &

~ h

n, A

1 f )9

/2mb(u

with an increase in energy of u . States with definite an-
gular momentum component A along the qq axis, which
are useful in constructing hybrid states, are created by
the linear combinations

(
2E

(16)

The Bux tube parameters a, mb, and N can be con-
strained by the plausible requirement that the maximum
propagation velocity on the Qux tube be c. In the large-N
limit this implies [from (10)]

where the Gaussian width of mode n, A is given by

- 1/4

84)
v „/c =—lim

A:-+0 gk
aao
mb

R
(N+1)am, g

- 1/2
2 sin 2(N 1)

(14)

This suggests an estimate of the range of validity of the
small oscillation approximation; it should fail when these
fluctuations become comparable to B.

Excitations can be created &om the ground state wave-
function (13) through the application of "phonon" cre-
ation operators

The length ao might reasonably be identified with the
transverse Hux tube extent of 0.2—0.3 fm found in a
lattice Hamiltonian string theory [30] or the 0.2—0.4 fm
estimated in lattice Monte Carlo @CD [31]. For a typical
string tension of a = 1.0 GeV/fm the constraint (17)
implies mb 0.2—0.4 GeV. %le take m, b ——0.2 GeV as our
standard value, since the larger transverse extent of 0.4
fm may represent Buctuations of an intrinsically smaller
Aux tube.

Isgur, Merlin, and Paton [ll—16] also treat ap as a fun-
damental length but allow N to vary continuously with
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R, so that ap ——B/(N + 1) is constant. The large-R
hybrid potential gap of 3.5

E (R)

E (R)

lim cui(R) =
R—+oo Q(N+ 1)R

3.0
E (GeV)

2.5

then becomes

lliii ldi (R)R—+oo

GGp Jt

mb R R

1.5

1.0

0.5 — —= E (R)
gap

The final result follows from the constraint (17). An
excitation energy of vr/R was found earlier by Gnadig et
aL [32] in their cylindrical bag model of a flux tube.

Of course we cannot vary N continuously in a numer-
ical simulation. In this erst numerical study we shall
mainly consider the simplest fixed-% case, % = 1. As
we shall see, this allows a detailed study of the vari-
ous approximations used previously in estimating hybrid
masses, and leads to very plausible results for conven-
tional and hybrid spectroscopy. For the sake of complete-
ness we also discuss some K ) 1 Monte Carlo results in
a footnote to Sec. V.

III. NUMERICAL RESULTS FOR ADIABATIC
POTENTIALS

We will now generate adiabatic potentials numerically,
for comparison with. the small oscillation potentials de-
rived in the previous section.

The adiabatic N = 1 (single bead) problem can be
integrated numerically, since there is only motion in a
single plane, and the bead wavefunction can be separated
as 4&(p, g) = @~(p) exp(iA0). The ordinary differentjal
equation satisfied by @~(p) is

0.0
0.0 0.5 1.0 1.5

R(fm)
2.0 2.5 3.0

I"IG. 1. Ground state and first hybrid adiabatic potentials
and their difference, for N = 1. Solid lines are exact and
dashed lines are the small oscillation approximation. String
tension a = 1.0 GeV/fm, bead mass mb = 0.2 GeV.

- 1/4

4mba
(21)

Note the weak parameter dependence of the scale of fluc-
tuations implied by the 1/4 power. The characteristic
length B at which the scale of fluctuations oq equals R
is given by

hadrons. For smaller R the approximate small oscillation
adiabatic potentials depart considerably from the true
(E~(R)) (solid lines), and actually diverge as R —+ 0.

In the previous section we suggested a condition for ap-
plicability of the small oscillation approximation, which
is that R should be much larger than the zero-point fluc-
tuations o in the string ground state. The largest fluc-
tuations are in the n = 1 mode; taking this case, the
mode width for N = 1 is

1 (d2$~ 1 dip l
R0(N = 1) = (4mba) ~ = 0.37 fm. (22)

+~ 2aV p2+ R2/4+ ~g~ = E~(R)g~, (20)
2mbp )

and the exact qq meson adiabatic potential Ep(R) and
first hybrid adiabatic potential Ei (R) follow from solving
this equation for its lowest eigenvalue with A = 0 and
A = 1, respectively. The potentials Ep(R) and Ei(R) and
the potential gap Ei (R) —Ep(R) are shown in Figs. 1 and
2 for mb = 0.2 GeV and a = 1.0 GeV/fm. In the limit
of infinitely massive quarks the adiabatic approximation
is exact, the QQ separation approaches zero, and the
hybrid mass gap is therefore Ei(0) —Ep(0) (= 0.829 GeV
with these parameters). As R increases the potential
gap falls, but asymptotically as 2/a/mbR [(10) with
n = 1 and N = 1] rather than as the vr/R of Isgur and
Paton, due to our assumption of a Axed-N flux tube.
The small oscillation. adiabatic potentials and gap from
(10)—(12) are shown as dashed lines in Figs. 1 and 2; they
are evidently useful only beyond R 1 fm. Since R
1 fin is a typical light (u, d, s) hadron length scale, the
small oscillation approximation is inappropriate for light

1 . 0

E (R)

(GeV)

0.8

0.4

0.2

e \ ~
~ ~

N=1

N=2

0 0
0.0 1.0 2.0 3,0

R(fm)
4.0 5.0

FIG. 2. Hybrid potential gap Er(R) —E0(R) for N = 1
and N = 2. Plotting conventions and parameters as in Fig.
1; points are Monte Carlo data.

R should be significantly larger than this for the small os-
cillation approximation to be useful, which is supported
by our Figs. 1 and 2.

Although this paper is primarily concerned with nu-
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merical results for the K = 1 one-bead flux tube model,
we can carry out simulations for larger N using a Hamil-
tonian Monte Carlo technique [33]. This method will be
discussed in the next section, in which it is applied to the
combined dynamical quark and Qux tube system. As a
test of the Monte Carlo method we confirmed that the
adiabatic potentials Eo(R) and Ei (R) with N = 1 are ac-
curately reproduced (Fig. 2), and we also show results for
the N = 2 case. The hybrid mass gap falls with increas-
ing N, so it may be difIicult to find a realistic description
of the spectrum with a fixed-N Qux tube model for large
¹ the excitation energy of a many-bead string is pre-
sumably quite low relative to the N = 1 case, assuming
similar mg and a. There are also rather subtle complica-
tions in the dynamics of the N & 1 Qux tube with fixed
ends; the constraint of transverse bead motion implies
dependence of energies on the initial conditions, which
must then be varied to find the lowest-lying state.

so without loss of generality we assume nonnegative A in
our simulations. The total orbital angular momentum I
is constrained to be L & lAl.

The wave function (23) is not fully diagonal in con-
figuration space; it assumes that the Qux tube is in a
coherent superposition of orientations about the qq axis
such that the angular momentum projection A along the
qq axis is diagonal. This requires a wave function

&s..' ~.b. (&b) =
~2

(24)

where Pb gives the rotation of the Qux tube about the qq
axis relative to a reference configuration. In our Monte
Carlo simulation we used basis states which are fully di-
agonal in coordinate space, so a configuration is defined
(for N = 1) by the coordinates xq, xq, 2:b, which implic-
itly determine its orientation relative to a reference con-
figuration and space-fixed axes, specified by the qq axis
angles 0, P and the rigid-body rotation angle Pb. This
relation is defined by the efI'ect of the rotation operator:

IV. HY'BRIDS WITH DYNAMICAL QUARKS l0, y, yb) = e-'~'. -*".+'~' l., yb) . (25)

A. Adiabatic resu. its

Thus far we have only considered the adiabatic poten-
tials. Now we shaB solve the two-body qq Schrodinger
equation in the exact adiabatic potentials (E~(R)j,
which are determined by numerically integrating (20) for
a Qux tube with static sources separated by B. The Qux
tube ground state and first excited state potentials Eo(R)
and Ei(R) lead to conventional and the lightest hybrid
mesons, respectively.

For hybrids there is a centrifugal barrier for the qq pair
that arises &om the matrix elexnent of L in the full quark
and Qux tube angular momentum eigenstate. The angu-
lar wave function of the combined gluon or Qux tube and
quark system was discussed by Horn and Mandula [21]
and subsequently by Hasenfratz et al. [20] and Isgur and
Paton [11].There are discrepancies between these refer-
ences in the C and P hybrid quantum numbers; this does
not afFect our conclusions regarding hybrid energies be-
cause of degeneracies between the levels concerned. The
latter two references give essentially the same rigid body
angular wavefunction for the full system, which is

@H MA(~&

(The wavefunction of Hasenfratz et al. does not have the
final —P argument because it uses body-fixed rather than
space-fixed coordinates. ) This is the amplitude to find
the qq axis pointing along (0, P) in a hybrid state with
total orbital angular momentum L and z projection M,
and A is the projection of the Qux tube orbital angular
momentum along the qq axis. A = P (n + —n ),
where n ~ is the number of excitations of the mth Qux
tube mode, (+) for right handed and (—) for left handed,
as in (16). Thus for a single flux tube excitation A = +1,
for doubly excited Qux tubes A = 0, +2, and so forth.
Parity implies a degeneracy between A = +[Al levels, and

The angles 0 and P are specified trivially by the qq axis.
The rigid-body rotation angle Pb is rather more compli-
cated, and satisfies

Sin((ik) (Xb Xqq cog) + COS(P) (gb Pqq cog)sin
I"b rqq cogl

as may be confirmed &om Fig. 3, which shows the oper-
ations required to reach a general config'-~ration &om an
unrotated "reference" configuration.

Given the Pb dependence implicit in the A states, our
Pb-diagonal angular wave functions must be of the form

(0, P, Pbl L, MA) oc 17~~~~ (P, 0, Pb —Q), (27)

1 f 0' 2 8 & L(L+1) —A2

, + ——I+ —+ E~(~),
2p $8r TOr) 2pp

(28)

II.„.@,"'(r) = M„@~ '(r) . (29)

Isgur and Paton determined the hybrid spectrum by solv-
ing this eigenvalue problem, with an additional approxi-
mation; they replaced the singular small oscillation adia-
batic potentials E~(R) (12) with approximate forms that

which we shall use as the guiding wave function for hybrid
states in the Monte Carlo simulation.

In their Eq. (28) Isgur and Paton [11] [see also Eq.
(6) of Merlin and Paton [12]] introduce a simple approx-
imation for the matrix element of L, which neglects a
mixing operator that raises and lowers A. This approxi-
mation gives (Lq) = L(L+ 1) —A2, which transforms the
Schrodinger equation into an ordinary difFerential equa-
tion for the adiabatic qq radial wave function @& (r):
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Z Z

FIG. 3. An N = 1 quark, antiquark, and
Bux tube bead, showing the gq axis angles 8
and P and the rigid-body rotation angle Pt
relative to the reference con6guration.

(e)

were nonsingular at B = 0. We shall instead use the ex-
act (numerical) adiabatic potentials (E~(B)) [from (20)j
in (28),(29) above, which give the true adiabatic result
for the spectrum. This will be compared to our Monte
Carlo results.

and

mb

mq

(31)

(32)

B. Monte Carlo simulation

1 Qg(x„, )
2 (//g (&current)

(30)

If the move is not accepted, a move in the opposite di-
rection is made, x ~ x —hg (or hg). The step sizes in hg
(for bead. moves) and hg (for quark or antiquark moves,
with mg and mg assumed equal) are given by

We improve on previous studies of the Aux tube model
by using the guided random walk (GRW) Hamiltonian
Monte Carlo algorithm [33] to solve the full N = 1
model without adiabatic or small oscillation approxima-
tions. The GRW algorithm maps the imaginary time
Schrodinger equation onto a diffusion problem, which is
then solved numerically using weighted random walks in
the con6guration space of the system. The statistical
error is reduced through the use of a guiding wave func-
tion for importance sampling, which is used to determine
stepping probabilities between con6gurations during the
walk. This importance sampling does not bias the ener-
gies and matrix elements.

In this algorithm a random walk is generated by step-
ping in the coordinates which define con6guration space.
For a q, q and N-bead system there are N = 2N + 6
possible coordinates to increment. Starting &om a spec-
i6ed initial configuration of quark, antiquark, and bead
locations at w = 0, one of the coordinates is chosen at
random, and an increment z ~ x+ hg (or hs) is made in
that coordinate with probability

where h is a small step size in Euclidean time (relative
to inverse energy scales). After each move the Euclidean
time is incremented by h . Excited states with nodes
in the guiding wave function @g require special consid-
eration; for these cases we test that moves do not cross
the nodal surface, and if they do they are rejected and
another move is generated. This introduces a bias which
vanishes as h ~ 0. There is also a bias in excited state
energies if a guiding wave function which has incorrect
nodes is used.

For the static quark simulations in Sec. III we used a
guiding wave function which is a Gaussian in the total
string length R,q„

@, = xxr (
—(&.~./0)') (33)

@~~
~ = exp (

—(R,~, /() —R/(qq j (34)

This simple generalization of the static quark Gaussian
(33) includes a suppression of the wave function with in-

and allowed only bead moves. The optimum guidance pa-
rameter ( was estimated numerically by minimization of
the statistical error, speci6cally by minimizing the vari-
ance of the weight factor u)(w) in (35). For K = 1 and
all the R values considered here the optimum value was
found to be ( = 1.5 fm.

For the dynamical quark ground state we use, as our
guiding wave function,
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creasing interquark separation B for fixed string length
B,t„as is intuitively expected for heavy quarks. For
excited-L qq and hybrid states the wave function is more
complicated, and must incorporate nodes to ensure or-

I

thogonality to the ground state (see below).
In the course of a random walk &om Euclidean time 0

to w we generate a path-dependent weight factor, given
by

' '+
2mq 2mb ) (35)

where the I aplacians are in the 6 quark and antiquark
and 2K (transverse) bead coordinates, respectively. The
form (35) and the step sizes hb and h~ above are chosen so
that a histogram of these weights in configuration space
(x} is proportional to a solution g((x},w) of the Eu-
clidean time Schrodinger equation. Actually ur(~) gives
the related function @g((x})ajar(jx},w) [34]; this gag can
also be used to determine the ground state energy, and
is generated with a smaller statistical error than @ itself.
The energy is determined from the large-w behavior of
the weight w(r): At large w the walk-averaged weight
(iir(w)) approaches an exponential in 7,

lim (ur(~)) =—r. e ' [1+O(e "J' )], (36)

so we may determine Eo &om measureinents of (io) at
two successive Euclidean times:

(~(~i))
&x )&2~~ 'T2 —'Ty tO

C. Monte Carlo results

For o., = 0 we generated Monte Carlo energies for
quark masses of mq ——0.33, 0.5, 1.0, 1.5, 2.5, 5.0, and
10.0 GeV, with a string tension of a = 1.0 GeV/fm. The

In practice we leave 72 —'T] fixed and increase wq until the
Eo estimate has converged to the required accuracy.

If a guiding wave function @g with nodes is used, we
recover the lowest energy eigenvalue for which @ = 0 on
those nodes. If the nodes are identical to those of an
excited state @ of the system, we recover the correct E„
from (37).

This algorithm gives the true eigenenergy for any guid-
ing wave function @g with correct nodes, provided that
the initial configuration has nonzero amplitude in the
ground state. The results become statistically more ac-
curate as the guiding wave function is made closer to
the true eigenfunction g, and one may confirm that the
best possible choice is an energy eigenfunction, @g

[34]. In this case the weight factor (35) becomes
ur =exp( —E„w) exactly for each walk, so the energy
can be determined &om a single walk at arbitrary w.
Of course we do not know @ in general, so we use a
parametrized ansatz for g as our v)~, and determine
the optimum parameters numerically by minimizing the
variance of the weight factors (ur} in a sample of random
walks. Given the optimized guiding wave function gg,
we then determine E„using (37).

TABLE II. Adiabatic and exact (Monte Carlo) ground
state energies for W = 1.

mq (GeV)
0.33
0.50
1.00
1.50
2.50.
5.00

10.0

Eo ' (GeV)
1.985
1.868
1.711
1.638
1.563
1.484
1.425

EMc @adia (G V)
0.274(4)
0.231(5)
0.187(3)
0.164(3)
0.148(3)
0.124(2)
0.114(3)

t

optimized guiding wave function parameters in (34) were

( = 1.5 fm and $~~ = 1.4, 1.0, 0.7, 0.6, 0.5, 0.4, and 0.3 fm
for the quark masses given above. The Euclidean times
used, which were chosen to insure convergence to ground
state results to within our statistical errors, were wq ——

10.0 GeV and v~ ——7~ + 1.0 GeV, and the step size
was h = 0.005 GeV . For energy differences of excited
and ground state levels, E —Eo, we found adequate
convergence with a smaller time of wq

——5.0 GeV . We
also generated energies for various other guidance and
time parameters to confirm the accuracy of these results.
The sample size was usually N, = 8 x 1024 walks (8
separate runs to generate errors), and we used bootstrap
on each of the 8 runs to suppress dependence on the
initial configuration. (In a bootstrapped run the final

configuration of a walk at 7 = v2 is used as the initial
configuration of the next walk at w = 0.) For hybrids with
m&

——0.33 and 0.5 GeV we used longer runs of N,
8 x 4096 walks to compensate for the larger statistical
errors.

The adiabatic ground state energies [from (28),(29)
with the potential Eo(B) of (20)] and Monte Carlo re-
sults for N = 1 are summarized in Table II for o., = 0,
mb = 0.2 GeV, and a = 1.0 GeV/fm.

Evidently the adiabatic approximation considerably
underestimates the ground state energy, by up to 0.3
GeV for light (u, d) quark systems. The discrepancy falls
rather slowly with increasing quark mass, approximately

-X/4as mq
For excited-L quarkonia we generalize the ground state

guiding wave function to

@(I) —y(o)~l y(g y) (38)
where the angular function depends on the direction
of the qq axis, and was taken to be the real part of
YI,M(0, $). (The algorithm requires a real wave func-
tion for importance sampling. ) The radial factor B+ is

not essential but is expected to be closer to the true @o
(L)

and its inclusion reduces our statistical errors somewhat.
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For hybrid states the amplitude to find the system at (g, P, Ps) is given by (27):

@(L)(g p p ) ~ (L)(p g p p) iAPb i(M A—)f g (L)(g)

For our full hybrid guiding wave function we multiply
the real part of this angular function by a radial wave
function siinilar to our ground state gs:

(40)

f(g, P, Ps) = dMA(g) cos[Api, + (M —A)P] . (41)

1.5

1.0 —- p +
1 . . a

The product of ps (the bead-axis distance) and R was
introduced as a simple centrifugal suppression factor.

There is a systematic bias in our results for excited
states due to the nodal surfaces specified by the angu-
lar wave functions f; these surfaces are exact only in
the limit m~ ~ oo. For our high statistics quarko-
nium simulations we used M = 0 states for simplicity.
%'e checked for evidence of node bias by comparing the
energies found using guiding wave functions with differ-
ent magnetic quantum number M, which have different
nodal surfaces. The bias in qq states was at most about
10 MeV, comparable to our statistical errors. For the
~P hybrid, however, we found a significant M-dependent
bias; in Fig. 4 we show hybrid energies determined us-
ing both M = 0 and M = 1 in (41). The largest bias
was at the smallest quark mass of m~ = 0.33 GeV, for
which we found E(iP, M = 1) —E(iP, M = 0) = 52(18)
MeV. This bias will be discussed in more detail in our
treatment of hybrids with physical parameters.

Figure 4 shows the P-wave and D-wave qq levels
and the first hybrid level (~i = iP) relative to the
ground state energy Eo, using the adiabatic approxima-
tion (lines) and the Monte Carlo simulation (points). Our

results show that the adiabatic approximation is more ac-
curate for the energy differences (E„—Eo), which are the
experimentally observable quantities, than for Eo itself.
The largest discrepancies between adiabatic and Monte
Carlo results are —100 MeV, for the D-wave and hybrid
states at the lightest quark mass of 0.33 GeV. Note that
the adiabatic approximation overestimates the excited-
L energies but underestimates the hybrid energy. Thus,
if toe use the adiabatic approximation and fit the ezperi
mental D-suave levels, me underestimate the light hybrid
mass by = 200 MeV.

In their analytical study of the Bux tube model, Merlin
and Paton [12] also found that postadiabatic corrections
reduce the excited-L energies and increase the hybrid
energy. They find (g = u, d) P, D and iP hybrid en-

ergy shifts which are quite similar in relative strength to
our Monte Carlo results; this led Isgur and Paton to re-
vise their adiabatic hybrid mass estimate upwards from
1.67 GeV to 1.9 GeV [13]. The overall scale of adia-
batic corrections quoted by Merlin and Paton [12] (see
especially their Table 6) is about twice as large as we
find numerically, but this may be due to their use of the
large-N limit, whereas we have specialized to N = 1.

D. Physical hybrid masses

The Aux tube results discussed in the previous sec-
tion are not applicable to real hadrons because they do
not include the color Coulomb interaction. Without the
Coulomb interaction the Aux tube at small B gives an
SHO-like adiabatic potential [see Eo(R) in Fig. 1], which
leads to nearly equal S-P-D splittings in the spectrum
of conventional qq mesons (as in Fig. 4). A realistic de-
scription of the S-P-D splittings requires the familiar
"funnel-shaped" potential, in which linear confinement
is augmented by a short ranged attraction.

In conventional potential models the Coulomb plus lin-
ear form

E-E

(Gev)
4 o.,V-(R) = ———'+ aR+ VoeO (42)

0.5

1.0
m (GBV)

q

10.0

FIG. 4. Energies of the lightest L = 1, 2 qq, and AL = 1I
hybrid states relative to Eo ——Ez for % = 1. Lines show
the adiabatic approximation and the points are Monte Carlo
data, M = 0 (open) and M = I (plus). Parameters mq = 0.2
GeV, a = 1.0 GeV/fm, a, = 0.

is most often used, with a string tension of tI 0.9—1.0
GeV/fm giving the best fit. Perturbative QCD predicts
that the effective Coulomb interaction strength o., should
run with the scale of momentum of the scattered con-
stituents, provided that we are well above any intrinsic
mass scales. For resonance physics this requirement is
obviously not satisfied, but there is nonetheless clear ev-
idence for a rapid decrease of o., with increasing quark
mass; fits to spectroscopy typically require n, = 0.6—0.7
for q = u, d, s, n, —0.3—0.4 for q = c, and o., = 0.2 for
q = b.
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For our realistic parameter set we assume constituent
quark masses of m~ = 0.33, 0.55, and 1.5 GeV for q =
u(d), s, and c, and again set the string tension equal to
a = 1.0 GeV/fm. In addition we include a color Coulomb
and constant potential,

4~",
V~e = ——

~ + Vo~3 B
in the flux tube quark Hamiltonian (2). The additive
constant Vo is found to be large and negative in poten-
tial models, and in the Qux tube model is required in
part to cancel the zero-point energies of the beads. The
coefficient —4/3 multiplying n, /r in the color Coulomb
interaction merits additional comment. In constituent
gluon models of hybrids the qq pair would be in a color
octet, so the —4/3 would be replaced by 1/6. In the
Qux tube model, in which gluonic excitations are pre-
sumed nonperturbative in o.„it may be more realistic
to use —4/3. This can be motivated by noting that at
small A the lowest gluonic excitation is a color singlet qq
pair (hence —4/3) plus a scalar glueball, rather than a
qq color octet pair with a diverging +1/6 color Coulomb
interaction [35].

The o., in the N = 1 Qux tube Vzq cannot be compared
directly to the Coulomb plus linear o.„because the fixed-
N Qux tube gives an SHO-like confining potential at short
distances [see Eo(B) in Fig. 1] in addition to the linear
term which dominates at large B. Since o., in the fixed-N
Qux tube model must cancel this additional contribution
to produce a funnel-shaped potential comparable to the
standard Coulomb plus linear form, it is larger than the
potential model o,

We used multiplet-averaged E@ and E~ energies as
input to fix o,, and Vo in each Qavor sector. The num-
bers used were EI —Es = 0.62 GeV for q = u, d (from
I = 1) and 0.45 GeV for c. The fitted values of n,t are 1.3
and 0.72 respectively, each determined to a few percent
accuracy. The E~ —Ep separation proved to be quite
sensitive to the strength of the Coulomb potential. The
constant Vo was fixed separately for each Qavor by using
the spin-averaged masses E& ——0.63 GeV and Es(I=1) (cc)

3.07 GeV as input. This required Vo
———1.71 GeV(I=i}

and Vo
———1.17 GeV. Since these constant contribu-

tions cancel zero-point energies, they are not physically
relevant. One might expect them to be roughly Qavor in-
dependent, however, which can be achieved by increasing
m to 1.8 GeV; the eKect on the hybrid spectrum will be
discussed subsequently. For 88 we used the u, d parame-
ters and simply increased the quark mass to m, = 0.55
GeV.

The Monte Carlo technique was used to determine
masses of qq and hybrid states up to L = 3. For I & 0
qq states we used

2.5

2 74D
2

M (Gev)
2.0

f.5

D
1

F
P

1

D

2 30

2.03
I 90

1.66

[1.25]

0.5 I-
[0.63]

lations used the same statistics as the a, = 0 studies of
the previous section, although we found that ~q ——5.0
GeV sufBced for convergence of level separations to
within the statistical errors. These errors were typically
about +5 MeV for quarkonium states and +10 MeV for
hybrids. The guiding wave function parameters used in
(34) were (~q = 3/(2m~a+) (to give an accurate Coulomb
wave function for S waves at short distance), and the flux
tube length scale ( was optimized numerically for each
state. For all qq and cc states we found that ( = 1.5 fm
was nearly optimum. For qq hybrids we found ( = 1.8
fm for A = 1 and 2.4 fm for A = 2. (Note that the
higher Qux tube excitation requires a larger length scale,
as expected. ) For cc hybrids we found slightly smaller
flux tube length scales, ( = 1.6 fm for A = 1 and
2.1 fm for A = 2. The quarkonium levels were again
independent of M to within our statistical erors, but
some bias was evident in the hybrids. This bias de-
creased with increasing m~ and mg, as expected. The
largest bias was found in the light iP hybrid, for which
E(M = 1) E(M =—0) = 57(9) MeV, similar to our find-
ings for n, = 0. This fell to 36(7) MeV for charmonium.
The corresponding E(M = 2) —E(M = 0) bias for iD
was 24(13) MeV for uu and 18(9) MeV for cc. Measure-
ments with +~MI appear to give equivalent results. For
this work we average over measurements with all values
of IMI = 0 to L; the discrepancies given above imply a
systematic uncertainty of about +30 MeV for the u, d iP
hybrid, +20 MeV for the iP cc hybrid, and rather less for
the other states. This error could be reduced in future
work through incorporation of improved nodal surfaces.

Our numerical results with the standard parameter
set (m~, mq, can, a) = (0.33 GeV, 0.2 GeV, 1.3, 1.0
GeV/fm) are shown in Fig. 5. The predicted D-wave
qq mass of 1.66(1) GeV is quite reasonable, given the
well-established D-wave candidates ps(1690), us(1670),
and m2(1670). The E-wave qq multiplet is predicted to
lie at 2.03(2) GeV, in good agreement with the a4(2040),
a3(2050), and f4(2050). The lightest hybrid multiplet,
which has A = 1 and L = 1 (~I = iP in our nota-
tion), is at 1.90 GeV with these parameters. This is
identical to the Isgur-Merlin-Paton prediction of 1.9 GeV

fl ' &(8, $) = PI (cos(0)) cos(MQ) (44)

in the guiding wave function (38) and the high statis-
tics runs used M = 0. For the hybrids we again used
the rigid-body angular wave function (41). Tests of node
dependence were carried out by varying M. The simu-

FIG. 5. The lightest I = 0—3 qq {q = u, d) and AI, = iP,
zD, and 2D hybrid masses from Monte Carlo data with phys-
ical parameters, m~ = 0.33 GeV, mq ——0.2 GeV, a = 1.0
GeV/fm, a,' = l.3. Square brackets denote masses used as
input.
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[12,13]. Since we are using difFerent versions of the Hux
tube model, this agreement is somewhat fortuitous, al-
though we will show that our result is rather insensitive
to parameter variations.

In view of the interest in the experimental hybrid can-
didate at 1775 MeV [4], which may have exotic J++ =
1 + but 2 + and 3++ are also possible, we also deter-
mined the mass of the radially excited I = 2 qq multi-
plet, which contains the first I = 1 2 +

qq level expected
above the vrq(1670). (A 3++ qq state would require I = 3,
and since this multiplet has well established members
near 2.05 GeV we do not consider this a plausible qq as-
signment. ) For the radial simulation we multiplied the

qq guiding wave function gg in (38) by ~B —Ro~, and(L) .

varied the node radius Bo until the energies determined
by Monte Carlo simulations in the B & Bo and B ( Bo
regions were equal. This required Ro ——1.5 fm and gave
an energy of ED 2.3 GeV, similar to potential model
expectations [36] and far above the 1775 MeV state. This
state is thus very unlikely to be a radially excited D-wave

We find that the first orbitally excited hybrid multiplet
(iD) is at 2.30 GeV, 400 MeV above the lightest (iP)
hybrids. The same numerical result was found earlier by
Merlin [15] using the adiabatic approximation. This iD
multiplet contains the J states (1,2, 3)++ and 2++,
which includes the exotics 1 +, 2+, and 3 +. This level
is surprisingly high in mass, since a small orbital excita-
tion gap has been anticipated for hybrids, due to the rel-
atively Bat hybrid adiabatic potential found by Peranto-
nis and Michael [23] in heavy-quark lattice gauge theory.
%'e shall see that the orbital excitation gap is somewhat

smaller for cc hybrids in our model, so there is no serious
inconsistency with HQLGT results. If the experimental
hybrid candidates near 1.8 GeV [4] and 1.6—2.2 GeV [6]
are confirmed, it may be useful to search for members of
this iD hybrid multiplet near 2.2 GeV (about 0.4 GeV
above iP). A sequence of hybrids with higher orbital
excitation is expected in the Aux tube model, although
these may be increasingly dificult to observe due to small
matrix elements with light qq states.

We also determined the mass of the lightest A = 2 hy-
brid multiplet, zD. These states are found to be quite
high in mass, = 2.75 GeV, so they should be irrelevant
for light quark spectroscopy in the 2 GeV mass region.
Merlin and Paton anticipate a lighter two-phonon hybrid
multiplet, near 2.2 GeV in the adiabatic approximation.
In their level the phonon angular momenta cancel (A = 0
"paraphononium"), whereas we have considered A = 2
"orthophononium. " These A = 0 two-phonon states have
conventional qq quantum numbers, which could compli-
cate their identification.

The sensitivity of hybrid mass predictions to pa-
rameter variations is an important issue which has re-
ceived little attention in previous Aux tube studies.
To investigate this we sequentially increased one pa-
rameter of the set (mq, mb, art, a) by 20'Fo, recall that
our standard parameter set (0.33 GeV, 0.2 GeV, 1.3,
1.0 GeV/fm) gave (P, D, iP, iD) masses of ([1.25](in-
put), 1.66,1.90,2.30) GeV. [Vo is always chosen to give
Ms = (3M~ + M )/4 = 0.63 GeV.] The variations of
these masses with parameters (with errors of typically
+0.01 GeV) were

'
(—0.01, —0.02, —0.01, —0.02)
(—o.ol, +o.ol, —o.o5, —o.o3)' (+0 o7 +o o8 + 0 o6 o o9)

, (+0.05, +O.ll, +0.13,+0.16)

(Am /m = 0.2),
(gamb/mb = o.2),
(aa"/a" = 0 2)
(Aa/a = 0.2).

(45)

This leads to several conclusions about the importance of parameter uncertainties in our Aux tube spectrum. First,
the level separations are evid. ently quite insensitive to variations in quark mass. Second, they are sensitive to changes
in o;, and a, but the known P-S and D-8 qq separations preclude any large changes in these parameters. In any
case the hybrid and D-wave levels behave similarly under changes in o., and a, so the predicted hybrid to D-wave
separation is quite stable. It is the bead mass that leads to the largest uncertainty. The energies do not depend
especially strongly on this parameter, but the hybrid and qq energy shifts have opposite signs. [This is more evident
in (46) below. ] Unfortunately the qq masses are quite insensitive to mb, so ideally we would use a hybrid mass to
determine mp. To estimate the range of plausible hybrid masses as we vary mp we consider the range mg ——0.2—0.4
GeV; 0.2 GeV is our standard value and 0.4 GeV corresponds to a large Bux tube length scale (see discussion in
Sec. II B). Over this range of mb we find the masses (with square brackets as input data)

([0.63], [1.25], 1.66, 1.90, 2.30) (mb = 0.2 GeV),
([0.63],1.27, 1.70, 1.78, 2.22) (mb = 0.4 GeV). (46)

With rounding to 0.1 GeV accuracy this leads to our final estimate of the lightest hybrid mass:
4

M(iP) = 1.8—1.9 GeV .

The 6rst orbitally-excited hybrid qD and the first A = 2 hybrid qD are expected at about 0.4 GeV and 0.8 GeV above
the ~P hybrid level respectively.

For ss quarkonia and hybrids we simply increased m, to 0.55 GeV. The resulting level splittings were very similar
to the results for u, d states. Using a P-wave ss mass of 1.50 GeV as input to fix Vo, our ss results are
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(S,P, D, iP, iD) (GeV) = (0.87, [1.50], 1.88, 2.17, 2.54) (mb = 0.2 GeV). (48)

The only significant changes noted were a decrease in the D-wave level (relative to Eg) of A(ED —Es) = —0.02 GeV
and an increase in the iP level by 0.03 GeV. Thus we expect the first ss hybrid near MD(ss) + 0.29 GeV, about
50 MeV higher above the D-wave level than we found for the corresponding u, d states. The dependence on mg was
very similar to that found for u, d, so our 6nal result for the 6rst 88 hybrid level iP was 2.1—2.2 GeV.

For charmonium and cc hybrids with our standard parameters m = 1.5 GeV, mp ——0.2 GeV, o., = 0.72, and
a = 1.0 GeV/fm, we predict the following levels:

(S, P, D, iP, iD) (GeV) = ([3.07), [3.52], 3.77, 4.21, 4.48) (mb = 0.2 GeV). (49)

These are displayed in Fig. 6. Note that the pred. icted D-wave cc mass of 3.77 GeV is in good agreement with the
experimental g(3770). With these parameters we expect the lightest charmonium hybrid at 4.2 GeV. The first orbital
excitation gap of cc hybrids in HQLGT was found to be 0.22 GeV by Perantonis and Michael [23] whereas we estimate
0.27 GeV; given the approximations this does not represent a serious discrepancy, although we shall see below that it
is a rather stable prediction of this version of the Bux tube model.

To test the sensitivity of these results to parameters we again increased each parameter in turn by +20%, which
gives the mass shifts

' (+0.02, +0.03, +0.04, +0.04)
(+0.01, +0.02, —0.05, —0.02)4(M —Ms)(P, D, iP, iD) (GeV) = &

(
, (+0.04, +0.06, +0.14, +0.14)

(Am, /m, = 0.2),
(b,mb/mb = 0.2),
(Dna/n."= 0.2),
(b,u/a = 0.2).

(50)

Thus for hybrid charmonium we reach similar conclusions regarding parameter uncertainties. The results are quite
insensitive to m; increasing m &om 1.5 GeV to 1.8 GeV only increases the 6rst hybrid mass by 40 MeV. Since charm
quark masses &om 1.25 GeV (HQLGT [23]) to 1.77 GeV (Hux tube [12—14]) have been used in the hybrid literature,
it is reassuring to 6nd that the lightest hybrid mass changes by only about 0.1 GeV over this wide range. As with
light quarks we find that a and u+ strongly affect the hybrid mass spectrum. These parameters, however, are tightly
constrained by the known quarkonium spectrum. The largest uncertainty again comes from m~, which is not very
well determined by the cc spectrum nor by more general theoretical considerations. To test a wide range of possible
values we again vary mb over the range mg ——0.2—0.4 GeV; with mg ——0.4 GeV we 6nd

(S, P, D, iP, iD) (GeV) = ([3.07],3.54, 3.82, 4.08, 4.37) (mb = 0.4 GeV).

Our 6nal result for the lightest hybrid charmonium mass
is thus

V. PHENOMENOLOGICAL IMPLICATIONS

M(iP) = 4.1—4.2 GeV,

and for charmonium we expect the orbital (iD) and dou-
bly excited (2D) hybrids about 0.3 GeV and 0.7—0.8 GeV
above the iP level, respectively.

5.0 P —————————— 5 00
2

4.5
M (GeV)

4.0

p ---------- 448
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2.5

FIG. 6. Charmonium cc and hybrid masses, legend as in
Fig. 5. Parameters modified for charmonium are m, = 1.5
GeV and a.,' = 0.72.

We have studied the 6xed-N version of the Aux tube
model, principally the N = 1 case, as a numerically
tractable version of this type of hadron model.

The ability to reproduce the spectrum of conventional
quarkonia with N = 1 is of interest in its own right.
It suggests that we have a uni6ed picture of both quark
and Hux tube excitation spectra, thereby generating some
confidence in the predicted hybrid masses. In this final
section we summarize implications of these results. Of
course the predictions of the model for N & 1 remain in-
teresting, especially for the relatively large light hadrons,
because the characteristic transverse size of the Hux tube
and hence the most realistic N are not well determined.
We discuss some preliminary Monte Carlo results for the
cases 1V = 2 and 1V = 3 in a footnote [37].

Our studies suggest that the adiabatic approximation,
used in previous analyses of hybrid meson masses in
the Qux tube model, underestimates the hybrid mass
scale. Our conclusions substantiate previous analytical
estimates of corrections to the adiabatic approximation
[12,14], and lead to hybrid masses that are —0.1 GeV
above the predictions of quenched heavy-quark lattice
QCD, but are consistent with these lattice results given
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their estimated corrections to the quenched approxima-
tion.

In contrast to the light quark sector, in which Havor
mixing in nonexotics may be important and the qq spec-
trum itself is rather controversial, in heavy-quark sys-
tems the QQ spectroscopy is relatively straightforward
and special opportunities ensue for the detection of hy-
brids. Our results support the expectation that heavy
hybrids Hg appear at masses of

M(Hg) = Mo(QQ) + 1 GeV .

An important feature in heavy QQ spectroscopy is the
existence of narrow states spanning a mass range from

Mo(QQ) through 1 GeV up to the two-body open-
llavor threshold (i.e. , Q to DD or T to BB) So fo.r char-
monium hybrids, for example, one anticipates H states
in the resonance region not far above the open charm
threshold of 3.73 GeV. In our simulations we actually
find the first charmonium hybrids at M(H, ) = 4.1—4.2
GeV.

Such a prediction is particularly exciting. Char-
monium spectroscopy is rather well understood up to
about 3.8 GeV, so searches for unusual states should be
straightforward near this mass. Since only a few open
charm channels occur below 4.3 GeV, for a considerable
range of hybrid masses one might anticipate rather nar-
row hybrid resonances. This possibility receives addi-
tional support &om the flux tube model [16,17], which
predicts that the dominant two body decay modes of the
lowest lying hybrids are an I = 0 and L = 1 qq meson
pair. These S+ P thresholds are rather high in mass,
about 4.3 GeV for cc hybrids and 11.0 GeV for bb hy-
brids. The possibility that relatively narrow hybrid char-
Inonium states may exist within this 3.8—4.3 GeV window
provides an exciting opportunity for e+e facilities such
as BEPC, KEK, and a Tau-Charm Factory. If there are
indeed hybrids at these masses, one expects that they
should. be produced copiously by gluon &agmentation at
large momentum transfers, for example at the Tevatron.
Detection of the g or @(3685) as a signature of hadronic
cascade decays of metastable hybrid charmonia has been
discussed in Ref. [10]. (A double cascade from the cc
continuum to a hybrid and. thence to cc was proposed for
a Tau-Charm Factory by Bugg; see Ref. [38].) In prac-
tice the usefulness of cascade decays in hybrid searches
will depend on their branching &actions to conventional
quarkonia.

Determination of the production and decay character-
istics of hybrid states is beyond the scope of this study,
but we note in passing that progress in this area has been
made recently by analytical modelling of Aux tube exci-
tations [17,18]. In these references the decay amplitudes
of some recently discovered 1 +, 0 +, 1, and 2 +
u, d-Qavored mesons were found to be in good agreement
with the predicted properties of hybrid mesons, so the
Aux tube model may be a useful guide to strong decay
modes as well as masses. Vhdths of the hybrid charmo-
nia calculated in this model support the suggestion that
some of these cc hybrids are likely to be narrow.

The production of 1 charmonium vector hybrids
seems especially promising. As the Aux tube has an or-
bital excitation about the qq axis, and the qq themselves
have an effective centrifugal barrier due to the Aux tube
angular momentum, which suppresses the radial qq wave
function at small r, we anticipate that the e+e widths
I'„(V,) should be significantly smaller than those of the
conventional ec states g and g(3686).

In light quark systems this wave function suppression is
not dramatic (see for example the Particle Data Group
summary of V ~ e+e [39] for I = 0 and I = 2 qq
states following the analyses of Ref. [40]), and so we an-
ticipate a significant light hybrid leptonic width I'„(p~).
The principal difhculty here may lie in distinguishing be-
tween light conventional and hybrid vector states unam-
biguously. The recent analyses of the light vector sector
by Donnachie and Kaiashnilmva [41) actually do support
the presence of additional vector states, some of which
they suggest may be hybrids.

The recent studies of hybrid decays in the Aux tube
model [17,18] may allow tests of these possible light vec-
tor hybrid. s. Since the qq pair in Vg has S&q ——0, whereas
conventional qq vector states (either sSi or sDi) have
Szz ——1, there are characteristic selection rules for decays
that discriminate between these spin-singlet and -triplet
states In .particular, if the qq are in a spin singlet (as
in the Vg vector hybrid case) the flux tube decay model
forbids decays into final states of two spin-singlet mesons.

For J++ = 1 states this selection rule distinguishes
rather clearly between conventional and hybrid vector
mesons. It implies that in the decays of a light p~ hybrid
pg + hier, although pg ~ ai7r is allowed. Analogously,
u~ + bier for hybrid. 1 erg decays; this is opposite to
the case of conventional Iq qq mesons, for which the
aim channel is suppressed relative to hiir or bi7r [42,43].
The extensive analysis of data in Ref. [40] revealed the
clear presence of a p(1450) [39] with a strong aim mode
but no evidence for hivr, in accord with expectations for
a hybrid. Furthermore, Ref. [40] finds an ~(1440) with
no evidence for decays into bum, again in conQict with
expectations for conventional qq ( Si or sDi) states but
in accord. with predictions for hybrid decays.

The branching fractions reported for the p(1450) [40]
(see also [18]) suggest that there may be mixing between
pg and radial p basis states in this region. If these hy-
brid states near 1.5 GeV are con6rmed, this mixing may
explain the low mass relative to the 1.8—2.0 GeV typi-
cal of other hybrid candid. ates. There may also be sig-
ni6cant spin-dependent mass shifts in hybrids that were
not incorporated in the present study, which reduce spin-
singlet masses (such as Vg) relative to the spin-triplet
states (0 +~ +, 1 +~+, 2 +~+ ). To test this possibil-
ity, analogous experimental investigations of 1 hybrid
charmonia in e+e would be very useful. In contrast,
in bb systems the suppressed wave function at contact is
expected to make Hp hybrids essentially absent in e+e
annihilation. For this reason the charmonium system
may be optimal for hybrid searches; conventional cc spec-
troscopy is reasonably well established, and since the D-
wave coupling I, (@(3770)) is not negligible, it may be
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possible to observe a moderately suppressed V vector
hybrid signal in e+e annihilation at a Tau Charm Fac-
tory [38]. DifFractive photoproduction of charmonium
hybrids, p'P —+ XP, may also be possible, for example,
at HERA.

If the mass of the V is indeed below or near 4.3 GeV
(D"D threshold), then hadronic cascades to conven-
tional charrnonium states, in particular the @(3097) and
@(3685), may be important and could provide a good
tag [10]. The E835 experiment at Fermilab may be able
to observe production of hybrid charmonium through
hadronic cascade decays to @me. and @rl.

For hybrids which lie above D*'D threshold, heavy-
quark symmetry or detailed decay models may be used
to distinguish the spin-singlet H &om the spin-triplet
@ states through their decay systematics. More detailed
theoretical study of this and related questions is now war-
ranted.

To summarize, we find that heavy-quark hybrids in the
Qux tube model lie below 8+P thresholds, and for hybrid
charmonium this implies that the lightest states should
have rather narrow widths. We anticipate that produc-

tion by gluon jets may be particularly promising and for
this case some quantitative estimates already exist [10]
based on the masses found here.

In conclusion, we And that the lightest hybrid masses
in the flux tube model are M(II„d) = 1.8—1.9 GeV and
M(II ) = 4.1—4.2 GeV. These results, combined with re-
cent detailed studies of hybrid decay modes [17,18], pro-
vide a clear set of theoretical predictions for hybrids for
comparison with experiment.
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