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Heavy mesons in a relativistic model
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Motivated by the present interest in the heavy quark efFective theory, we use the spectator
equation to treat the mesonic bound states of heavy quarks. The kernel we use is based on scalar
con6ning and vector Coulomb potentials. Wave functions are treated to leading order and energies
to order 1/mg in the heavy-light systems, and order 1/m& in heavy-heavy systems. Our results
are in reasonable agreement with experimental measurements. We estimate two of the parameters
of the heavy quark effective theory, and propose further calculations that may be undertaken in the
future.

PACS number(s): 12.39.Pn, 12.39.Hg

I. INTRODUCTION

Recently, there has been great theoretical interest in
hadrons containing b and c quarks. This has stemmed
largely &om the realization that, in the formal limit when
the mass of one of the quarks in a hadron is taken to in-
finity, symmetries above and beyond those usually as-
sociated with quantum chromodynamics (QCD) arise.
This realization has led to the development of the heavy
quark efFective theory (HQET) [1—3]. In the &amework
of this efFective theory, corrections to the formal limit
can be systematically included. One very important phe-
nomenological consequence of this has been a number of
attempts to extract V g &om experimental data, with lit-
tle model dependence in the result.

Despite the power inherent in HQET, there is still
much that this effective theory cannot tell us about the
properties of heavy hadrons. As an example, HQET al-
lows us to infer the absolute normalization of some of
the form factors necessary for describing the decays of
hadrons with b Bavor to those with charm. We also know
how to include, in a systematic way, corrections to these
normalizations due to the finite masses of the b and c
quarks, as well as those due to perturbative QCD ef-
fects. We can even deduce bounds on the slopes of these
form factors at a particular kinematic point. However,
we know nothing about the exact dependence of these
form factors on kinematic invariants. As a second exam-
ple, HQET leads us to the conclusion that the spectra
of B and D mesons should be very much alike, mod:ulo
1/m& and 1/m effects. However, this effective theory
tells us nothing about the details of the spectra, such as
the exact ordering of states or their masses. In essence,
HQET provides a &amework for systematically extract-
ing symmetry relations and the corrections to the formal
heavy quark limit but can predict neither the spectra of
the heavy mesons nor the approach to the heavy quark
limit. Until we know how to solve nonperturbative QCD,
the details mentioned above, along with many others, are
the realm of models: Such models continue to play a cru-
cial role in our understanding of QCD.

A model that is quite successful in predicting the
mesonic spectra is the relativised constituent quark
model of God&ey and Isgur [4]. Indeed, it was this
model and its applications to weak decays that origi-
nally suggested the existence of heavy quark symmetries
which in turn led to HQET. This model provides rel-
ativistic kinematic corrections to the standard nonrela-
tivistic quark model using a linear confining potential
and a color Coulomb interaction. Meson spectra calcu-
lated with this model are remarkably close to experimen-
tal masses in all fm.avor sectors. However, since one of
the objectives of heavy quark theory is the calculation of
weak decay amplitudes and form factors, it is necessary
to use a relativistically covariant model.

A covariant extension to the Godfrey-Isgur model can
be constructed using the spectator or Gross equation [5],
which has been used with some success in models of the
nucleon-nucleon interaction [6], as well as in quark mod-
els of mesons composed of equal mass quarks and anti-
quarks [7]. This equation can be related to the Bethe-
Salpeter equation by placing one of the intermediate-
state particles on the positive-energy mass shell. This
has the advantages that the prescribed constraint on the
relative energy is manifestly covariant and that in the
limit that the mass of one constituent goes to infinity
(the static or one-body limit), the wave equation reduces
to the Dirac equation for the light particle [8]. This is a
property of the full Bethe-Salpeter equation that is lost
when the infinite sum of contributions to the kernel is
truncated.

The spectator equation is one of a class of three-
dimensional reductions of the Bethe-Salpeter equation
that are often called quasipotential equations. The ap-
plication of the wave or vertex functions &om a quasipo-
tential equation to the calculation of current matrix ele-
ments requires that the matrix element also be subject to
the same constraints as resulted in the reduction of the
Bethe-Salpeter equation to the quasipotential equation.
As a result the quasipotential current operator is some
effective current operator which is related to the original
Bethe-Salpeter current operator. Although a variety of
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quasipotential equations can be constructed having the
correct one-body limit and expressed in covariant form
[9], there does not presently exist a general procedure for
obtaining the correct effective operators consistent with
the quasipotential reductions. This usually appears as
an inability to construct matrix elements for electromag-
netic processes that conserve current. A consistent pre-
scription for obtaining gauge-invariant electromagnetic
current matrix elements for the spectator equation is de-
scribed in Ref. [10] and has been successfully applied to
the calculation of deuteron elastic electromagnetic form
factors [ll]. Clearly, the properties of the spectator equa-
tion make it ideal for calculations of heavy quark decay
amplitudes near the infinite mass limit.

In this article we use the spectator equation to con-
struct a constituent quark model of heavy mesons. In
particular, we will use the spectator equation as a ba-
sis for construction and expansion of the heavy meson
spectra and wave functions in 1/mg, where mg is the
heavy quark mass. This allows us to study the heavy
meson spectra in the approach to the heavy quark sym-
metry limit. By choosing a reasonable set of model pa-
rameters we are able to obtain a respectable fit to the
observed heavy meson masses and to predict the approx-

P2 k2

V

FIG. 1. Feynman diagrams representing the equation for
the Bethe-Salpeter vertex function.

imate masses of heavy mesons which have not yet been
observed.

This article is organized as follows. In the next section,
we describe the model that we use for heavy mesons, in-
cluding the derivation of a wave equation &om the spec-
tator equation. In Sec. III we display our results. In Sec.
IV, we present some conclusions.

II. MGDEL

A. Qq and qQ rnesons

The spectator equation is most easily understood in
relation to the Bethe-Salpeter equation. The Bethe-
Salpeter vertex function for two bound fermions is rep-
resented by Fig. 1 and can be written as

I (p, P) = iJ,V(p, |i;P)ii~~ (k„,)ii'*'(1'ig, iii, )I (k, P),

where p =
2 (pq —p2), k =

2 (kq —k2), V is the Bethe-Salpeter kernel, and S& (k;, m, ) is the &ee Dirac propagator(2)

for particle i. The Dirac indices are suppressed for simplicity.
The spectator vertex function can be obtained from the Bethe-Salpeter vertex function by placing one of the

fermions on its positive-energy mass shell. For our model the heavy quark (particle 2) is placed on shell while the
light quark (particle 1) remains off shell. This is achieved by a replacement of the propagator

S~ (k2, m2) m —27ri 8
~

k — + E(k2, m2)
~

A (k2, m2),
(2) m, (', P' +(2l

E k&m, q 2 (2)

where

A+ (k2, m2) = ) u& l(k2, s2, m2)u~ l(kg, s2, m2),

and replacing p, k, and kq by the corresponding quantities p, k, and k~ with particle 2 on mass shell. The on-shell
energy is given by E(p, m) = gp2 + m2. The spectator vertex function is then

r(p P) = V(p, k; P)S~~l (k), mg)A+ (k2, m2)r(k, P). (4)

Defining the spectator wave function as

@., (p, P) = S~ (P„m, )u ' (p„.„m,)r(P, P),
the wave function satis6es the wave equation

( i) dsk
S~~l (pg, m )@„j(p,P) = ) V„, (f), k;P)g, , (k, P),

2) 2
Sg

where

V„, (p, k; P) = u( l(pg, s2, m2)V(p, k; P)u~ )(kg, s2, m2).
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This wave equation is covariant and can be easily boosted &om frame to frame. It is generally easier to solve
the wave equation in the bound-state rest frame where the angular expansions of the wave function and potential
are defined. In the rest frame P = (W, O), pi = —pg = p, ki = —k2 = k, pi = W —E(p~ m2)~ p2 = E(p~ m2)~
ki = W —E(k, m2), and kz ——E(k, m2) where W is the bound-state mass. The wave equation can be written as

d3k
(W —E(p, m2)) —p ' p —mi @»(p, W) = s ) V... (p, k; W)@., (k, W),

1 2 IS2

where

V„, (p, k; W) = 6 (—p, s2, m2)V(p, k; W)u (—k, s2, m2).

Since we wish to examine the approach to the limit m2 ~ oo, it is useful to rewrite this equation in a noncovariant
form by de6ning

@,(p) —=
E(

'
)
@,(p W) (1O)

U„,, (p, k; W) =, , V„,, (p, k; W)
Ejp, m2 j 7 m2

to give

d3k
p( ) (W —E(p, m2)) —~(') p —mi @„(p)= ) U„,, (p, k; W) 4,, (k).

I
Sg

(12)

It is necessary to assume some form for the kernel V in order to expand about the infinite mass limit. Here we
assume that the kernel is of the simplest form which can be reduced to that used in Ref. [4]. We choose the kernel to
be

V(p, k;P) =V, (Q )+.p( ) p( )V„(Q ),

where

Q2 = (k —p)' —[E(k, m2) —E(p, m2)]

V (Q ) is a vector potential which is a color Coulomb interaction and the confining force is the result of the scalar
potential V, (Q ). This choice of interaction assumes that the Lorentz gauge is used in the color Coulomb interaction.

Using the explicit form of the Dirac spinors in (12) and the Dirac p matrices to reduce particle 2 to the Pauli spin
space, and defining a wave function which is an operator in the Dirac space of particle 1 and the Pauli space of particle
2, 4 = g, , y, , 'k... (12) becomes

1

(
" (W —E( )) — " — @( ) =

(2vr)s 4E(p, m2)E(k, m2)

~

~(2) . p~(2) . g
(E(p, m ) + m )(E(k, m2) + m2) )

~(2) . ~(2) . k+~(')
l
1+ V-(Q')

(E(p, m2) + m2) (E(k, m2) + m2) )
~(2) . p~(2)

i
V„(Q') C(k). (15)

q (E(p, m2) + m2) (E(k, m2) + m2) )

Expanding Eq. (15) to order 1/m2, we find

i o f
l

—W' '. p —mi @(p) = V (q ) + ~' ' V (q )
p' ) d3k

2m2) (2vr) s

p(i) . ($7.(~) ~(2) . k + ~(~) . p~(2)) V' (q2)
~
y(k)

1
2m2
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where q = k —p.
Equation (16) can be Fourier transformed to coordinate space, multiplied from the left by p( ', and then rearranged

to give the wave equation

HC (r) = W4 (r),

where the Hermitian Hamiltonian is H = Hp + Hq with

a, = ~(') . -V+ p(')m, + p(')V. (r)+ V„(r)+m„

1
2m2-

~().~ +~().~() &~~ (18b)

where r" is the unit vector in the radial direction.
Equation (18a) is the Dirac equation for particle 1 with

scalar and vector potentials plus the mass of the heavy
quark, particle 2. The solutions of the Dirac equation
with such a potential have been extensively studied. The
operators

j(~) j(~) ~ $'(2)

are a set of mutually commuting operators which com-
mute with Hp, where j( ) = L + S( ) S( ) = -Z( ) =

2
1 (1)~(l) ~(1) p(1) (g(1) '(1) 1

) d S(2) 1 (2)2~5
The eigenstates of Hp can then be labeled by the cor-
responding set of quantum numbers (n, j1,m~, , ~1, s2 j.
The wave equation associated with Hp can then be writ-
ten as

(zo)

where

I

terms on the right hand side of (18b) commute with the
set of operators given in (19). However, the third term
does not commute with any of these operators, but in-
stead commutes with

(z', J„v ), (»)

..„,~~, ( ) 1 ..„,~M, ( )
(~) 3 (P)t (o)

where J = j( ) + S(2) and 'P is the parity operator.
The eigenstates of the total Hamiltonian H = Hp + Hy
can then be labeled by the set of quantum numbers
(n, J, Mg, P)

The eigenstates and eigenenergies of the Hamitonian
H can be calculated directly. However, the objective of
the calculations presented here is to produce wave func-
tions which can be used in the calculation of form factors
and decay constants as an expansion in powers of the in-
verse of the heavy quark mass m2. In order to maintain
consistency in this expansion, the masses and wave func-
tions should be calculated perturbatively. The erst order
correction to the quark bound state mass is given by

with

(~)
nKygym&& sg % l

( GM221 (2 ) +22221
(Q)r

iF„22 (2 ) ym22 (~)
X&2 2

where

j JM ( ) ) 21~1 ~2 2~J)
mph' )sg

X~,.' (&) = ) (2 e, —sx jism, , )Ye, (B)2„, (22)
mg ~81

and y„and y„are the Pauli spinors for particles 1 and
2, respectively. The eigenvalue r1 ——k(j1+ 2) can be
any nonzero integer. The values of S and E associated
with various values of xq are displayed in Table I.

Note that the zeroth order invariant mass TV „. is
determined by n, xq, and jq or, equivalently, by n, jq,
and E. The parity of the Qq bound state is given by
& = (—1)'+'

The first term on the right hand side of (18b) is the
kinetic energy of particle 2. Both the 6rst and second

x@ „. (r).
The bound-state mass to Grst order is

v, (2) = t)r + c,
3

V„(r) = ——) —'erf(p;r).
3-= pi=1

(27)

The vector potential is, as in Ref. [4], based on a
parametrization of the running QCD coupling constant.

(26)

The scalar and vector potentials in the calculations
presented here have the form

TABLE I. Values of g and f for various values of ~.

eg (0
rc.i ) 0

e

2 ——
j +-

e
jz+ ~

2 ——

B. QQ rnesons

The situation for mesons made of a heavy quark and
the corresponding antiquark is somewhat more compli-
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cated. The problem is that the prescription of placing
particle 2 on mass shell in the Bethe-Salpeter vertex
equation (1) to obtain the spectator vertex equation (4)
is clearly asymmetrical. This results in a spectator vertex
function which is no longer an eigenfunction of the charge
conjugation operator. The solution of this problem is to
construct a set of coupled equations for the vertex func-
tions which have either particle 1 or particle 2 on mass

shell [7]. These equations have been solved in Ref. [7] for
qq systems containing only light quarks.

However, since we are interested in expanding about
the infinite mass limit, this additional complication is
not necessary and a Hamiltonian with leading 1/mq cor-
rections can be constructed &om (4). The starting point
is the spinor decomposition of the Dirac propagator of
particle 1 in the meson rest kame

mq u (k, s), mq)u (k, s~, mq) v (—k, sI, mq)v (—k, s~, mq)
Sy ) )mq +

E(k, mq) W —2E(k, mq) + i.g lV —ig
1

(29)

Using Eqs. (29) and (3) in Eq. (4), we can write [12]

d3k
F(p, P) = ) V(p, k;P) u('&(k, s'„mq)u( ~(—k, s~, mq)@, +. .. (k)

1 2

q) e(-, '., (k),
where

and

(+) mq u (k, s~, mq)u (—k, sq, mq)F(A:, P)
E(k, mq) W —2E(k, mq)

(31)

mq 6 (—k, s), mq)u (—k, sz, mq)F(I", P)
E(k, mq) W

Multiplying the terms of (30) to the left, respectively, by

E(p, mq)

and

"(-p» q) "'(—» q)E(p, mq)

means that Eq. (12) can be rewritten as the pair of coupled integral equations

d3k
[W —2E(p, m )]@(+„(p)= ) U,++. .. ,, (p, k; W)@.. ., (k) + U+. .. ,, (p, k; W)@.. ., (k)

I IB1 )82

and

where

W@( ~„(p) =),U +, , (p, k; W)@.+. ..(k)+U, , (p, k; W)@(. .. (k)
d k

I IB1)Bg

(36)

U++, , (p, k;B1,Bg ') B1,B~

U, + .. ., (p, k;W) =

U, , (. k.

m
W) = u( l(p, s))u( l(—p, sg)V(p, k; W)u('l(k, si)u( l(—k, s~),E p, mq E k, mq

m2
W) = u (p~ s), mq)u (—p sq) V(p k W)v (—k s))u (—k sz),E p, mq E k, mq

m2
, 6( i(—p, s) )u( i(—p, sg)V(p, k; W)u('i(k, s', )u(~~( —k, s~),E p, mq E k, mq)

m2
W) = 8 (—p, s), mq)u (—p, s~)V(p, k; W)v (—k, sz)u (—k, sz).

p)mq )mq

(37)

(38)

(39)

(40)

These coupled equations can then be reduced to Pauli spin space and expanded in powers of 1/mq. In this case,
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only U++4~+& contributes to order 1/m&. Defining a wave function which is an operator in the spin spaces of both
particles as

Eq. (35) becomes

where

I
1& 2

r p' l d'A:
~

W —2m~ —
~ C(p) =,U(p, k)C(k),

mg ) (27r)s

(41)

(42)

U(p, k) = V, (q ) + V„(q~)— (V,'(q') + V„'(q')) (k' —p')

+V.(p)(p'+k +rr' pa' k+o pa*.k)
y'y (q~) (p y k —~( ) . p~( ), k ~( ) . p~(~) . k)

P ( &) (
(~j~(~) . k~~(&) . ~(&)) .

(
(&)~(&) . kg ~(2) ~(&) (43)

Equation (42) can then be Fourier transformed to coordinate space to extract the Hamiltonian

with

H =Hp+Hg, (44)

where

H] H/ + Hhyp + Hs/ + HSR + HyR) (45)

Q2
Hp ——— + V. (r) + V„(r) + 2m&, (46a)

H, =
~

— V V, (r) —[V„(r) —V, (r)]V + [V,'(~) —V„'(r)]-
mQ BT

(46b)

1 1 1 , „ f „ „ 1 l - - fl 1&
gyp ——

~
— V'(r) ——V (r)

~

S iS r ——S
~
+ ')7 V (r) ~

—S
3 ) i3 2) (46c)

Hso =, [3V„'(r) —V,'(r)] S L,2m2
Q

(46d)

HS(V)R —
~ k ) V ) FS(V)R(X)
Q

(46e)

and S = S~ & + S~ &. Here Fs~v~R(x) is the Fourier transformation of dV, ~„&(q )jdq . For our choices of V, (r) and
V„(r), we find

b (L~ O O~ 1) c fl O 1 O
HsR= ~

—3——r ——
~

—
~ ~

——+-
m&~ q 2r Or Or~ r ) m&~ (r Or 2 Or~

L'l
(46f)

V(r) ~ 1 ~', z f q 4 q q O 8O O
HvR =

~ L —
~ ) npe ~*'

~
10'; —4pr +8pr ————4 (46g)
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LSJM ( ) ~ L LSJM ( )
(0) (o) (o) (47)

where

(O) iinL (&)
@~LSJM, (r) = „yLs'J(fl) (48)

and

y„;(n) = ) (LM, SM, ~ZM, )I;,(n) ~SM, )
ML, ,MS

Equation (46a) is the nonrelativistic Hamiltonian for
equal mass quarks in scalar and vector potentials. H
contains central and orbital contributions Hhyp is the
hyperfine interaction consisting of a tensor-force term
and a spin-spin interaction. HsQ is the spin-orbit inter-
action. HsR and HvR are scalar and vector retardation
terms associated with the third term on the right hand
side of (43). Note that our spin-dependent interactions
Hhyp and Hs Q have the same forms as those in many
other quark models (see, for example, [4,13,14]), but the
spin-independent interactions do not.

The spin-independent correction includes H, HsR,
and HvR. In these contributions, HsR, HvR) and the
term [V,'(r) —V„'(r)] & in H are gauge dependent. HSR
and HvR are &om the second term in the expansion of
V(Q ) = V(q2) —,V'(q ) (k —p ) + O(1/m&s).
Had we chosen the Coulomb gauge, these terms would
not exist. Most other quark models do not include re-
tarded interactions. (Reference [15] gives another ex-
pression for the retardation effect. ) We will show that
with the scalar and vector potentials in (27) and (28),
retardation contributions are comparable with the spin-
dependent interactions.

The operators (Ho, L, S,J,J,), where J = L + S,
are a set of mutually commuting Hermitian operators.
The eigenstates of Ho can then be labeled by the corre-
sponding set of quantum numbers Jn, L, S, J, MJ). The
wave equation associated with Ho can then be written as

2

[16,4], while in our model the leading spin-dependentfA Q
e8'ects are of order, ' . Since o., is small in the heavy

quark system [n, (m2) 0.35 and a, (m&) 0.22], we ex-
pect the annihilation effects on QQ spectra to be small.

C. Solution of the wave equations

The zeroth order Dirac equation (20) for Qq mesons
and the zeroth order Schrodinger equation (47) for the
QQ are solved by direct integration of the radial wave
equations using an adaptive Runge-Kutta routine with
an intermediate-point shooting technique for obtaining
the eigenenergies [17]. The zeroth order Dirac equa-
tion (20) has also been solved using a Galerkin matrix
diagonalization-variational technique using harmonic os-
cillator basis states. The direct integration and varia-
tional solutions are in agreement.

III. RESULTS

o.2 ——0.15) n3 ——0.2)

pg
——0.5, p2 ——1.581, p3 ——15.81 (52)

are fixed at the same values as given in Ref. [4]. The
remaining vector potential parameter o.q is reexpressed
as

Once the zeroth order solutions are found, the per-
turbed energies can be calculated using (24) and (50).
The masses associated with the bound states are given
by (26) and (51). These depend on the quark masses
m„, m„m, and mb as applicable for each meson; the
parameters of the scalar potential (27), b and c; and the
parameters of the vector potential (28), n, , and p; for
i = 1,2, 3. The model contains a total of 12 parameters.
In obtaining the results shown here, the vector potential
parameters

(49)
A ] Acrjt CI2 A3 ) (53)

is the spin spherical harmonic.
The hyperfine interaction (46c) mixes states with

LL = +2 for S = 1. As a result, I is no longer
a good quantum number for solutions of the complete
Hamiltonian. However, these states have the same par-
ity and charge quantum numbers since P = (—1) + and
C = (—1)L+s for @~ol. The first order correction to the
mass can then be written as

where o,„;t is the value of the running coupling constant
at Q2 = 0 as parametrized in Ref. [4].

o.„;tand the remaining model parameters are adjusted
to fit the masses of a selection of mesons. The resulting
values are listed in Table II. The fitted meson spectra for
the Qq sector are listed in Table III and the fitted meson
spectra for the QQ are listed in Table IV. Additional

JPC LSJM ( ) i LSJM ( )
(x) 3 (o)t (o)

—Ec + Ehyp + ESO + ESR + EVR) (50)

where P = (—1)L+i and | = (—1)L+s. The bound-state
mass to first order is

W„p ——W„~ + 8'„Jp~.(o) (~)

One may also include an annihilation term in the
Hamiltonian. However, this term first appears at order

Parameter
~crit

ms
mc
mb

Value
0.674
0.180 GeV2
0.02 GeV
0.258 GeV
0.400 GeV
1.53 GeV
4.87 GeV

Comments
Limiting value of n,

String tension
See Eq. (27)

TABLE II. Parameters of the model.
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TABLE III. Fitted meson spectra for Qq mesons.

Meson
D
D sc

Dj
D~
B

D,
D,'
B~
B,*

JP
0
1
1+
2+
0

0

0

Theory
1.85
2.02
2.41
2.46
5.28
5.33
1.94
2.13
5.37
5.43

Mass (GeV)
Experiment

1.87
2.01
2.42
2.46
5.28
5.33
1.97
2.11
5.38
5.43

Experimental values are quoted [18] to the nearest 10 MeV
due to ambiguities in assigning the calculated values to spe-
cific charge states.

states which were not used in the fitting procedure were
calculated and a detailed discussion of the results for the
Qq and QQ is presented in the following two subsections.

A. Qq sector

TABLE IV. Fitted meson spectra for QQ mesons.

Meson
Qc

&/O(»)
+co
Qcl
Qc2

Jll (2S)
T(lS)
ygo(lP)
x .(»)
Xg~ (1P)
T(2S)
X»(2P)
pbbs(2P)
gag(2P)
T(3S)

JPC
p +

1
0++
1++
2++
1
1
0++
1++
2++
1
p++
1++
2++
1

Theory
3.00
3.10
3.44
3.50
3.54
3.73
9.46
9.85
9.87
9.89

10.02
10.24
10.26
10.28
10.39

Mass (GeV)
Experiment

2.98
3.10
3.42
3.51
3.56
3.69
9.46
9.86
9.89
9.92

10.02
10.24
10.26
10.27
10.36

For the Qq sector, the zeroth order eigenenergy
E &.

——TV „- —m2 is independent of the heavy quark
mass, as would be expected in the heavy quark limit,
where the heavy quark should act as a static source. The
zeroth order spectrum depends only on the light quark
mass. Thy first order correction to the mass TV && is
proportional to 1/m2 and splits each of the unperturbed
states. These features are illustrated in Fig. 2 which
shows W „—m2 for a u quark as solid lines and

R'~gI —m2 —— „, , + JI, —m2 with a c quark as(o) (~)

the heavy quark (dotdashed lines) and with a 6 quark
as the heavy quark (dashed lines). Figure 3 is a similar
spectrum where the light quark is now an 8 quark.

Note that to zeroth order the ordering of the ji

8+1/2 states is reversed for the I. = 2 states in comparison
to the E = 1 states. This phenomenon, called multiplet
inversion, has been predicted [19] for Qq mesons with
m, 2 )& mq. It results &om the dominance of the Thomas
precession over the spin-dependent forces in this limit.

For the states presented here, the root mean square
momentum of the zeroth order wave function is approx-
imately 0.9 GeV. Clearly, both u and 8 quarks are very
relativistic. In addition, it is possible to obtain some
sense of the convergence of the p/m expansion for the
corrections to the infinite-heavy quark-mass limit since

while "' '- —. Therefore, the higher order
correction that are neglected here should be considerably
larger for the the c quark than the 6 quark. Indeed, this
problem will become worse with increasing n since p,
should increase with increasing n. This is seen in the
shift of the 0 states relative to the unperturbed states
which increases with n.

Figures 4—8 show predictions for the masses of Qq
mesons, W, to first order in the perturbation (solid
lines). In the spectra for mesons with u and s quarks,
the available data are plotted for comparison as dotted
lines. Reference [18] has also listed states D~(2.440) and
D,g(2.573) with uncertain quantuin numbers. We be-
lieve they correspond to the state 1+(2.41) in Fig. 4,
and the state 2+(2.58) in Fig. 5, respectively. For the bc
mesons, calculated masses from [4] are plotted because no
data exist at present. For the bc mesons, "' ' 1. This
shows that although the mass of the c quark is relatively
large it is quite relativistic in this case.

In these figures, the results are in good agreement with
the data, which vindicates our choices of potentials and
parameters. However, the calculated hyperfine splittings
are all larger than in the data. The agreement is much
better in the b-flavored mesons than in the c-flavored
mesons. There are three possible reasons for this discrep-
ancy. First, as has been mentioned earlier, this model is
expected to work better for 6-flavored mesons than for
c-flavored mesons due to the more rapid convergence of
the nonrelativistic expansion applied to the heavy quark.
Second, these calculations do not include any effects as-
sociated with possible strong decay of the heavy mesons.
The coupling to these strong decay channels will result
in shifts in the meson masses as well as decay widths for
heavy mesons above decay thresholds. These shifts will
be greatest near the decay thresholds.

The third possible reason for the large hyperfine split-
tings may have its origin in the parametrization of n, (r),
particularly at small r. While many functional forms
may be used for this parametrization, each form may be
expected to lead to quite difFerent I/mg contributions,
especially in the hyperfine term. This question is cur-
rently under investigation.

The third term on the right hand side of (18b) has ofF-

diagonal matrix elements between states with jq differing
by unity and with X differing by either 0 or 2. These mix-
ings do not affect the spectrum to order but should

mQ
result in shifts in some states at higher order in all of
these systems. This should be particularly apparent for
the 1+ states which are nearly degenerate to order

'lA Q
for all Qq mesons calculated here.
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1.2— 2

2
1

3

3

10 - 0.

0.9—

+ O.S-

0.7—

0.6-

+
1

FIG. 2. This figure shows R' —m, 2 for bG

and c6 to the zeroth order and to the 6rst
order. l& and ji are the quantum numbers for
orbital angular momentum and total angular
momentum of the 6 quark. The states have
been labeled as J

0.4-
0

0.3-

——————0

W -m2 for mesons with u quark(0)

.—.—W,„-m
——— W -mhU 2

1=Op=1/2 1=1'=1/2 1=14=3/2 1=2j=3/2 1=24=5/2

One very interesting aspect of this calculation is the
mapping of our model onto the heavy quark effective the-
ory, with a view to evaluating some of the parameters and
dynamical quantities (such as universal form factors) of
the effective theory. While we do not endeavor to per-
form such a calculation for all such quantities here, some
comments are merited.

Although we have included all of the 1/mq terms that
arise Rom the spectator equation, it is not clear that
these correspond to all of the 1/mg terms of HABET. In
particular, in the spectator equation, the heavy quark is
treated as being exactly on its mass shell. In contrast, in
HABET, the heavy quark is allowed to be slightly off its
mass shell (via the equation p„= mdiv„+ A,'„), and this
leads to terms that may be absent &om the formulation

presented here. The full rami6cations of this are also
under investigation.

Until this question is resolved, we dare not examine
quantities that are intimately bound up in the 1/mg
structure of the effective theory or the model. We can,
however, examine quantities that depend only on the
leading order structure of the model, as we believe that
this is a reasonably accurate representation of the effec-
tive theory. In particular, in the effective theory, one
expects that the heavy quark should act as a static color
source. This very important feature is reproduced in the
model, as the leading dynamical behavior is described in
terms of a Dirac equation for the light quark.

Two quantities of interest in HABET are A and Aq,
which are de6ned by

103

112 -———-—

.—- ——.—3
2

11 0~ W
—————-0 2'

1.0-
~0.9

~ 0.8-
0.7-
0.6 -—'—-——

+
1

+ +0 ——-—-— 0

+2
1' FIG. 3. This figure shows W —mq for bs

and cs to the zeroth order and to the 6rst
order. /1 and jq are the quantum numbers for
orbital angular momentum and total angular
momentum of the u quark. The states have
been labeled as J

0.5— —-0

0.4-

0.2
1=09=1/2 l=lg=1/2 l=lg=3/2 1=2'=3/2 1=24=5/2

W -mz for mesons with s quark(&)

- —.—W -mcs 2
——— W, -mbs 2
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FIG. 4. cu spectrum. In this figure, solid lines represent
the results of our calculation for the masses of cu mesons, TV,
to first order in the perturbation; dotted lines represent the
data.

FIG. 7. b8 spectrum. See caption of Fig. 5.

MM =m~+A+o~
(mg )

3.60—

3.20-
3.09

2.80-

2.61

2.40-

1.94

1.60
0

3.58
3 50 3e53

3.42 3.S2
341 346

3.15 3.16

3.133.01 3.06
2.9Q 3.002.88 2.90

2.82 2 86

2.73

2.52 .. .....

238 251

2.58

2.13

2 4
I I I

0 1 2

data—this work

3 4
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3.25
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(M(v) hg(iD) hg M(v)) = 2MMA~.

A is crucial for the efFective theory, as it appears as the
coefEcient in the 1/mq expansion: The expansion coef-
ficient is written as A/mg. A is, in essence, the con-
tribution to the mass of the meson from the mass and
kinetic energy of the "brown muck. " The left hand side
of the second expression above is proportional to the ki-
netic energy of the heavy quark. The meson states in the
bra and ket above are the leading order representation,
and so correspond. to our zeroth order calculation. From
our model, we obtain A = 0.45 GeV for the ground state
pseudoscalar-vector doublet, and Aq

——0.67 GeV . These
values are in reasonable agreement with other values in
the literature [3]. Further aspects of the relationship of
our model to HABET are discussed in Sec. IV.

FIG. 5. c8 spectrum. See caption of Fig. 5.
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FIG. 6. bu spectrum. See caption of Fig. 5. FIG. 8. bc spectrum. See caption of Fig. 5.
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FIG. 9. cc spectra. See caption of Fig. 5.
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data
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B. QQ sector

Figures 9 and 10 show the spectra for cc and bb mesons
as calculated with Eqs. (44)—(51). As before, the calcu-
lated masses are shown as solid lines and the experimen-
tal masses as dotted lines. The DD and BB thresholds
are shown as horizontal dotdashed lines across Figs. 9
and 10, respectively. Reference [18] has also listed states
h (1P) with mass 3.526 GeV and g, (2S) with mass 3.590
GeV. We believe they correspond to the states 2 Sp(3.67)
and j. Pi(3.51) in Fig. 9, respectively.

The bb spectrum is in quite good agreement with the
data for the states lying below the BB threshold. The
agreement deteriorates as the masses approach and cross
the BBthreshold. As argued in the previous section, this
may be the result of the absence of coupling to strong
decay channels. The agreement for the cc is less satisfac-

tory. This may be an indication of the inadequacy of the
truncation of the nonrelativistic expansion at order

mQ
In both cases the hyper6ne splitting of the spin triplet
states is too large.

Since the hyper6ne tensor interaction has nonzero off-
diagonal matrix elements for states with spin 1 and with
L differing by 0 or 2, there should be mixings of states
such as Sq with Di and P2 with F2. These mixings
do not affect the spectrum to order, but should result

mQ

in shifts in some states at higher order in both the bb and
cc spectra.

Table V shows the individual contributions to the
masses W of a number of bb states Rom TV( ~, Ez1 Ehyp7

Eso, EsR, and E~R. The retardation contributions EsR
and E~~ are clearly gauge dependent since they would
not appear in the Coulomb gauge. E, is also gauge de-
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FIG. 10. bb spectra. See caption of Fig. 5.
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data
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pendent. These contributions may also be sensitive to
the choice of quasipotential prescription. To this order
Ehyp p EsQ should be independent of these factors. Note
that the scalar and vector retardation contributions are
of opposite sign and. therefore tend to cancel. However,
the sum of these contributions is comparable with Ehyp
and. Eso. The assumption that the scalar retardation
potential depends only on the square of the exchanged
four-momentum Q is uncontrolled and it is possible to
propose forms for this retardation potential which would
eliminate the scalar term altogether. Indeed. , elimination

of the scalar retardation results in a small improvement
of the description of the higher 1 states in the BB
mesons. The efFect of this ambiguity on the Isgur-Wise
function will be explored in a future article.

IV. CONCLUSION AND OUTLOOK

We have constructed this model for heavy mesons
based on a relativistic bound-state equation, namely, the

TABLE V. Zeroth order and various first order interaction energies in the bb spectrum.

State
1 'Sp

W
9.41
9.46

9.5315
9.5315

-0.0602
-0.0602

Ehy p
-0.0367
0.0122

(Gev)
@so
0.0000
0.0000

@SR
0.0072
0.0072

@VR
-0.0297
-0.0297

@SR + @VR
-0.0224
-0.0224

2 Sp 10.00
2 Si 10 02

10.0892
10.0892

-0.0708
-0.0708

-0.0192
0.0064

0.0000
0.0000

0.0175
0.0175

-0.0192
-0.0192

-0.0017
-0.0017

3 'Sp
3 S1

10.37
10.39

10.4511
10.4511

-0.0839
-0.0839

-0.0146
0.0049

0.0000
0.0000

0.0302
0.0302

-0.0160
-0.0160

0.0142
0.0142

4 Sp 1066
4 S1 10 68

10.7411
10.7411

-0.0992
-0.0992

-0.0125
0.0042

0.0000
0.0000

0.0447
0.0447

-0.0144
-0.0144

0.0303
0.0303

5'Sp
5 S1

10.91
10.93

10.9928
10.9928

-0.1162
-0.1162

-0.0113
0.0038

0.0000
0.0000

0.0608
0.0608

-0.0135
-0.0135

0.0473
0.0473

6 Sp 1114
6 S1 11 15

11.2202
11.2202

-0.1345
-0.1345

-0.0105
0.0035

0.0000
0.0000

0.0781
0.0781

-0.0128
-0.0128

0.0653
0.0653

1 P
1 Pp
1 P
1 P2

9.88
9.85
9.87
9.89

9.9438
9.9438
9.9438
9.9438

-0.0610
-0.0610
-0.0610
-0.0610

-0.0023
-0.0074
0.0049

-0.0001

0.0000
-0.0243
-0.0121
0.0121

0.0126
0.0126
0.0126
0.0126

-0.0169
-0.0169
-0.0169
-0.0169

-0.0043
-0.0043
-0.0043
-0.0043

2 P1
2 Pp
2 P1
2 BPg

10.27
10.24
10.26
10.28

10.3321
10.3321
10.3321
10.3321

-0.0752
-0.0752
-0.0752
-0.0752

-0.0016
-0.0056
0.0036

-0.0001

0.0000
-0.0182
-0.0091
0.0091

0.0244
0.0244
0.0244
0.0244

-0.0143
-0.0143
-0.0143
-0.0143

0.0101
0.0101
0.0101
0.0101

1'D
1 D1
1'D2
1 DB

2'D
2 Dl
2 D2
2 DB

10.15
10.14
10.15
10.15

10.47
10.46
10.47
10.47

10.2072
10.2072
10.2072
10.2072

10.5277
10.5277
10.5277
10.5277

-0.0637
-0.0637
-0.0637
-0.0637

-0.0792
-0.0792
-0.0792
-G.0792

-0.0008
-0.0011
0.0016

-0.0001

-0.0006
-0.0009
0.0013

-0.0001

0.0000
-0.0097
-0.0032
0.0064

0.0000
-0.0080
-0.0027
0.0053

0.0186
0.0186
0.0186
0.0186

0.0315
0.0315
0.0315
0.0315

-0.0139
-0.0139
-0.0139
-0.0139

-0.0125
-0.0125
-0.0125
-0.0125

0.0047
0.0047
0.0047
0.0047

0.0190
0.0190
0.0190
0.0190

1 I"B 10.36
1 I 2 10 35
1 IB 10 36
1 I'"4 10.36

10.4164
10.4164
10.4164
10.4164

-0.0717
-0.0717
-0.0717
-0.0717

-0.0004
-0.0004
0.0008

-0.0001

0.0000
-0.0047
-0.0012
0.0035

0.0250
0.0250
0.0250
0.0250

-0.0124
-0.0124
-0.0124
-O.G124

0.0126
0.0126
0.0126
0.0126
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spectator equation. The calculated spectra are in quite
good agreement with the experimental data. The pa-
rameter values we have are reasonable, and comparable
to other models of similar type. The model is derived by
expanding the spectator equation in I/Mg, where Mg
is the mass of the heavy quark. This treatment is ex-
pected to work better for 6-favored mesons than for e-
fl.avored mesons since in c-flavored mesons, v 2c, but
in 6-flavored mesons, v 5c, and our results confirm this
expectation.

The retardation contribution to the QQ mesons, which
is missing in other quark models, has a noticeable effect.
Annihilation effects have been neglected, as they are sup-
pressed by additional powers of a, (Mg), which is a small
parameter.

In addition to the questions currently being investi-
gated [parametrization of n, (r), I/mg terms], this work
opens up many avenues of investigation. Of primary im-
portance is the application of the model to decay pro-
cesses of heavy mesons. In particular, the calculation of
the Isgur-Wise functions that describe the semileptonic
decays, not only for decays to pseudoscalars and vectors,

but also to excited states, are of great interest. Expres-
sions for the Isgur-Wise function have been derived and
evaluated in the context of the spectator equation and
will be presented in a future article.

The strong and electromagnetic decays may also be
treated with the wave functions that we have. These are
particularly interesting for the D* and D,* states, as the
former lie so close to the Dm threshold, while the latter lie
below the DK threshold, and thus decay radiatively. In
addition, quantities such as meson decay constants may
also be evaluated.
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