
PHYSICAL REVIEW D VOLUME 52, NUMBER 9 I NOVEMBER 1995

Infrared behavior of the gluon propagator: Confining or confined~
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The possible infrared behavior of the gluon propagator is studied analytically, using the
Schwinger-Dyson equations, in both the axial and the Landau gauge. The possibility of a gluon
propagator less singular than 1/k when k ~ 0 is investigated and found to be inconsistent, de-
spite claims to the contrary, whereas an infrared enhanced one is consistent. The implications for
con6nement are discussed.

PACS number(s): 12.38.Aw, 12.38.Lg, 14.?O.Dj

I. INTRODUCTION

The gluon propagator A„(k) is gauge dependent and,
as such, is not experimentally observable. However, its
infrared behavior has important implications for quark
confinement. It can be shown that a gluon propaga-
tor, which is as singular as I/k4 when k + 0, indicates
that the interquark potential rises linearly with the sep-
aration. More formally, West [1] proved that if, in any
gauge, 4„„is as singular as 1/k4, then the Wilson oper-
ator satisfies an area law, often regarded as a signal for
confinement. Hence, quarks are confined through gluon
interaction.

Another suKcient condition for confinement is that a
propagator of a colored state should not have any singu-
larities on the real, positive k axis [2]. So, if gluons are
confined, then they cannot propagate on shell and 4„
must be less singular than 1/k2 when k2 ~ 0. Such a be-
havior of the gluon propagator was assumed by Landshoff
and Nachtmann [3] on purely phenomenological grounds,
being needed to reproduce experiment with their model
of the Pomeron.

Clearly (Fig. 1) the gluon propagator cannot both be
more singular and less singular than 1/k2 as k2 -+ 0,
but which is correct? The Schwinger-Dyson equations
provide the natural starting point for a nonperturbative
investigation of this in&ared behavior of the gluon prop-
agator. Extensive work has been previously performed in
both the axial gauge [4—7] and the Landau gauge [8—10].
(For a comprehensive review see Roberts, and Williams
[11].) A solution as singular as 1/k4 has been shown to
exist in both gauges [4—6] and [8—10], whereas a confined
solution for the gluon propagator, i.e., less singular than
1/k2, has only been claimed to exist in the axial gauge
[7]. The purpose of this paper is to explore why these
two diHerent behaviors have been found. Fortunately, in
studying just the in&ared behavior, there is no need to
solve the Schwinger-Dyson equation at all momenta. It
is this that greatly simplifies our discussion and allows
an analytic treatment.

In Sec. II we brieBy describe the Schwinger-Dyson
equation for the gluon propagator. The axial gauge
studies are reviewed in Sec. III, and the possible, self-
consistent solutions for the in&ared behavior of the gluon

propagator are reproduced analytically. In Sec. IV we
repeat the discussion for the Landau gauge and find that
a propagator less singular than 1/k2 when k2 m 0 is
not a solution of the Schwinger-Dyson equation. In Sec.
V we discuss the differing forms of the Schwinger-Dyson
equations used to deduce these results.

II. SCHWINGER-DY'SON EQUATION
FOR THE GLUON PROPAGATOR

The Schwinger-Dyson equations are coupled integral
equations, which interrelate the Green's functions of a
field theory. Since they build an infinite tower of coupled
equations, approximations and truncations are necessary
to solve them. The Schwinger-Dyson equation for the
gluon propagator yields a relation for L„ in terms of
the full three- and four-point vertex functions I' and
I'4„, the quark and the ghost propagators and cou-
plings. The equation is displayed diagrammatically in
Fig. 2. Here we only consider a pure gauge theory, i.e., a
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FIG. 1. Possible behavior of the gluon propagator A(k ),
which is the coefBcient of the g~ or b„„component of
A„„(k). (a) confining gluon, A (k ), (b) confined gluon,

(k )
' with c very small, and (c) infrared vanishing

gluon E ~ k . All are matched to the perturbative behavior
for k larger than a few GeV.
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same tensor structure as the Bee one (though importantly
this contradicts the result of West [12)). Thus, for pz -+ 0
it is assumed that
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&~ (p' ~) = —+—(p' &)M~- .
p2 (2)

The gluon vacuum polarization tensor II~„(p2, p) is de-
fined by

nA
IIAP ~ A

gv n p

FIG. 2. The Schwinger-Dyson equation for the gluon prop-
agator. Here the broken line represents the ghost propagator.
The symmetry factors 1/2 and 1/6 and a negative sign for
every ghost and fermion loop arise from the usual Feynman
rules.

world without quarks. This is reasonable, since we expect
it is the non-Abelian nature of /CD that is responsible
for confinement.

III. AXIAL GAUGE STUDIES

In the axial gauge the gluon propagator is transverse
to the gauge vector n„, so

axial gauge formalism: n„A " = 0 .

Studies of the axial gauge Schwinger-Dyson equation
have the advantage that ghost fields are absent and the
four-gluon vertex terms, Fig. 2, may be projected out of
the Schwinger-Dyson equation. However, they have the
drawback that the gluon propagator depends not only on
p but also on the unphysical gauge parameter p, defined
as

(n p)'
'Y =

n2p2

and in general must depend on two scalar functions E
and H

A„„(p',q) = , [F(p', q)M„„+—H—(p',q)N„„], (1)

with the tensors given by

Projecting the integral equation with n„n„/n, the loops
involving the four-gluon vertex give an identically zero
contribution because of the tensor structure of the bare
four-gluon vertex and the fact that the gluon propagator
is transverse to the axial gauge vector, that is

n„L""= 0 = L""n

Thus the relevant part of the Schwinger-Dyson equation
of Fig. 2 becomes

d4e

x A~~(q)I'p~„( k, p, q)— —

I' „p(p, k, —k, —p)b, (k),
2 (2vr)4

where q = p —k, the last term is the tadpole contribu-
tion, and all color indices are implicitly included in the
vertices. Once the full three-gluon vertex is known, we
have a closed equation for the gluon vacuum polarization
II„„.

The vertex is constrained by the Slavnov-Taylor iden-
tity in terms of this vacuum polarization:

q„I'""~(p,q, k) = II"~(k) —II"~(p) .

Separating I'~"~ into a transverse and a longitudinal
part, where the transverse part is defined to vanish when
contracted with any external momentum, the Slavnov-
Taylor identity exactly determines the longitudinal part
[13] if it is to be free of kinematic singularities. Thus,

I'„.,(p, »q) = ap 4+(q ~&)

1 ( 1
p' —q' &+(p' ~) &(q' ~))

x(pvq~ —q,-p. q)(pp —qp)

+cyclic permutations .

ppnv + pun~ 2 ppp~M„„=g„„— n'p +n
(n pj

np n~N„= g„„—n2

The &ee propagator is obtained by substituting E = 1
and H =0.

In all previous axial gauge studies it has been assumed
that any in&ared singular part of the propagator has the

This longitudinal part is responsible for the dominant
ultraviolet structure of the vertex. Moreover, it is as-
sumed that it entirely embodies the in&ared behavior,
and so the transverse part can be neglected. The as-
sumption is motivated by the fact that the transverse
part (as defined) vanishes, when the external momenta
approach zero.

Using the explicit expressions, Eq. (2) for b, , Eqs. (4)
and (5) for I', and multiplying with n„n„/n2, we find, in
Euclidean space,
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—q. n Sp F((.")—,, (hp k q —(pq )+ . . . Pp(q+y)
F(q') —F(k') F(q') F(—p') F(k')

2

x k. n hp F(q ) —— (8p k. q —kpq ) + p (p+ k)p
F(q') —F(k') F(k') —F(p') F(q')

P P p2 —k2 F p2

g2C~ d4k F(k') ( k'n'
2 (2m)4 k2 (, (n. k)~)

This is the equation found by Baker, Ball, and Zachariasen (BBZ) [4] who studied its solution numerically. They
came to the conclusion that the only consistent infrared behavior for the function F(p2) is

F(p ) (x —as p i 0,2 1 2

p2

and that this is independent of p as a numerical approximation.
Schoenmaker [6] simplified the BBZ equation further by exactly setting p = 0. Doing this, the contribution of the

tadpole diagram vanishes. Moreover, approximating F(q ) by F(p2+ k2), which should be exact in the infrared limit,
allows the angular integrals to be performed analytically. Consequently, Schoenmaker finds the simpler equation

P iF(p') 1) 32-' ~
dk

i 12p'+

t' 1k2 2 k2
+I ———+-

6 p' 3 p' —k')

f 3k' 5
+I + ———

I
E2( 4p

ik4

3 p2 —k2)

5k' 2 k' l ( k'
I
Fi+ I—

2 p' 3 p2 —k') q24ps

OO

+ dk
4 4k'

('7 p2 2 p'
+I 6k +3p k )IF'

4p2)

Ei ——F(p +k ),
E, = F(p'+ k') —F(k'),

E(p'+ k')E(k')
F(p')

I

forming the k integration, we obtain an output function
1/Fo„t(p ) to be compared to the reciprocal of the input
function. To do this, the gluon renormalization function
is approximated in the infrared region by a Laurent ex-
pansion in powers of p and at large momenta by its bare
form: i.e.,

In general, this equation has a quadratic ultraviolet di-
vergence, which would give a mass to the gluon. Such
terms have to be subtracted to ensure the masslessness
condition

2
lim II„„=0, i.e. , —= 0 for p2 ~ 0,

F(p') =~ „;") ~-(p'/v')"+' f» p' & ~'

forp ) p

where

is satisfied. This property can be derived generally from
the Slavnov-Taylor identity and always has to hold.

The complicated structure of the integral equation, Eq.
(7), does not allow an exact analytic solution for the
gluon renormalization function F(p ) to be found, and
most previous studies [8,10,4,7] solve the equation nu-
merically. However, the possible asymptotic behavior of
E(p ) for both small and large p can be investigated
analytically.

We determine which in&ared behavior of E(p ) can
give a self-consistent solution to the integral equation
by taking a trial input function F;„(p ) and substituting
it into the right-hand side of the equation. After per-

to ensure continuity at p = p . p is the mass scale above
which we assume perturbation theory applies. g can be
negative to allow for an in&ared enhancement. Equation
(9) is a sufBciently general representation for finding the
dominant self-consistent in&ared behavior. Of course,
the true renormalization function is modulated by pow-
ers of logarithms of momentum, characteristic of a gauge
theory. However, these do not qualitatively afFect the
dominant infrared behavior and can be neglected. Indeed
to make the presentation straightforward, we only need
approximate F(p2) by its dominant infrared power (p )"
for p & p to test whether consistency is possible, and
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this is what we describe below. However, as we shall see,
if g is negative then potential mass terms arise, and these
have to be subtracted. Only in this case do higher terms
in Eq. (9) play a role too, and it is necessary to consider
other than the leading term in the low-momentum input.
Otherwise, higher powers make no qualitative difference,
as we have checked. Consequently, we present only the
results with the lowest powers in the representation, Eq.
(9)

To illustrate the idea, let us take the trial in&ared be-
havior to be just

(p'I"
F(p ) oc (i.e. , a„= 0 for n ) 1) . (10)

Note that the masslessness condition, Eq. (8), restricts
g to be less than 1. Furthermore, we demand that in
the high-momentum region the solution of the integral
equation matches the perturbative result, i.e., for p~ ~
oo, we have F(p2) = 1, modulo logarithms.

Taking g = —1, for example, i.e.,

F;„(p) =A—

in Schoenmaker's approximation Eq. (7) gives

p i

—1
i
=const.

A(v'/p') + (J '/v') if p' ( s ','-(P') — 1;f ~ ) ~

~

This violates the masslessness condition of Eq. (8) and
so has to be mass renormalized. As explained above, now
terms in F(p ) of higher order in p2 will generate a con-
tribution to the right-hand side of the equation, making
it possible to find a self-consistent solution by these terms
canceling the explicit factor of 1. Consequently, we can
approximate Eq. (9) by

We then find, after mass renormalization,

g&~A= 1+
beaut (p ) 32 il 96 p 12

(v'l——ln i-
&p')

5 (A2)
+—»I12 (p2) (12)

F' (p') ~ (p')'

where c is small and positive to ensure a massless gluon,
Eq. (8). Once more we want the integral equation for
II„„to agree with perturbation theory in the ultraviolet
region, but F;„(p ) oc (p )

' grows for large momenta
and hence spoils the ultraviolet behavior. So to check
whether this input function gives self-consistency in the
in&ared, we input the trial form

(p'/s ')' if p' ( u'
F'-(p') = 1;f„2)„2

~

~

Inserting this into Eq. (7), we find, after mass renormal-
ization,

where A is the ultraviolet cutofF introduced to make the
integrals finite. The ultraviolet divergent constant can
be arranged to cancel the 1, and we find self-consistency
modulo logarithms. It is this result that Schoenmaker
found [6] supporting the earlier result of BBZ [4]. How-
ever, importantly, self-consistency requires A, Eq. (11),
to be negative, as also found by Schoenmaker.

More recently, Cudell and Ross [7] have taken Schoen-
inaker's equation, Eq. (7), and investigated whether one
finds self-consistency for a gluon renormalization func-
tion, which is less singular than 1/k2 for k2 m 0, i.e. ,
which corresponds to confined gluons. The trial input
function they use in their investigation is

( 2)1—c

+Ds
I
—,

I&~')
(p2 )

+D4/ —
i

+.. .
(~') (14)

where Ei, Fp, and E3 have been expanded for small p, and only the first few terms have been collected in this
equation so that

7 —8c
12(3 —c)

A'
Dg —— ——+ —ln )12(1 —c) 3 12 p2

2(2 —2c) 6 (p )
2407 353c 3 1 1+2c 7+c 7
1440 360 8c 24(5 —c) 12(4 —c) 12(2 —c) 12(1 —c)

1 —4c 3 —7c 2 2
+ + + —(2 —c)@(1)——(2 —c)4'(1 —c) + —(2 —c)@(1—2c),

6(2 —2c) 6(l —2c) 3 3 3
7 —gc

24c
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where 4 is the logarithmic derivative of the 1 function.
Again the 1 can be arranged to cancel with the constant
term, and the dominant in&ared behavior is indeed

1—c
-+

~

—
~

for@ ~0.
+out P (P ) (15)

Hence a gluon propagator less singular than 1/p2 for
p —+ 0 can be derived &om Schoenmaker's equation as
Cudell and Ross [7] have found. Note once again that
terms of higher order in Eq. (9) do not qualitatively alter
the result. Thus, we see in the axial gauges that appar-
ently both confined and confining solutions are possible
for the gluon propagator. However, the singular confin
ing behavior must be an artifact of the approximation
that one of the gluon functions H vanishes, since West
[12] has shown that in a gauge with only positive norm
states a singular gluon renormalization function is not
possible. Moreover, the approximation of setting p = 0
in the BBZ equation, Eqs. (6) and (7), has been seri-
ously questioned in Ref. [14]. It is therefore sensible to
ask what the behavior in covariant gauges is, to which
we now turn.

IV. LANDAU GAUGE STUDIES

The advantage of Landau gauge studies is the much
simpler structure of the gluon propagator, which is de-
Gned by

,&(s') ( u,s-'l
jkv 2 gpv )

However, other problems arise, and the following approx-
imations have to be made.

In any covariant gauge, ghosts are necessary to keep
the vacuum polarization transverse and, hence, are
present in the Schwinger-Dyson equation of the gluon

propagator, Fig. 2. However, in all previous studies
[8,10] the ghost loop diagram is only included in as much
as it ensures the transversality of the gluon propagator,
assuming that otherwise it does not acct the in&ared be-
havior of the propagator. This assumption is supported
by the fact, that in a one-loop perturbative calculation
the ghost loop makes a numerically small contribution to
|-"(p').

The four-gluon terms cannot be eliminated as in the
axial gauge and are simply neglected. This can be re-
garded as a first step in a truncation of the Schwinger-
Dyson equations.

With these assumptions, we again find a closed in-
tegral equation for the gluon vacuum polarization II„„
once the full three-gluon vertex is known. In the Landau
gauge, the Slavnov-Taylor identity for the three-gluon
vertex involves the ghost self-energy, which is simply set
to zero, and the proper ghost-gluon vertex function G„.
However, in the limit of vanishing ghost momentum the
ghost-gluon vertex is approximately equal to the gluon
propagator. With this simpli6cation the Slavnov- Taylor
identity has the same form as in the axial gauge and is
given in Eq. (5). Once again neglecting the transverse
part of the vertex, we obtain a closed integral equation

d4k

xA ~(k)b, ~ (q)l'p~„( —k, p, —q), (17)

where once more the color indices are implicit and q =
p —k.

A scalar equation is obtained by projecting with

1
(4p"p —S g" ) .

3p'

This projector has the advantage that the g„„term in Eq.
(16), which is quadratically divergent in four dimensions,
does not contribute. Thus we find

2C 1 Gk2G= 1+ — d'k G( ')A(k' ') ~ ( B(k' ')
a(p2) 96~4 p2 G(J ')

(k') —&(&') G(q') ~ k. ~ G(q') —&(k') ~ k2 (18)

where

A(k', p') = 48( ") —64( ") +16(
k2p2q2 k2q2 k2p2q4

~(k2 „2) 18'' 18&'(k .p) 2(k. p)' p'
q4 k2q4 k2q4 k2q4

~(k. 2) 4(k. &)'+6&'(k. p) 6(k. p) 8p'
k2q2 k2q2 q2

(„„) "' (" )' ( )' ( )
q2 p2q2 k2p2q2 q2

+22
"' -42(" ")'

k2q2 k2q4

p2(k p)2

q

p p2(k p)
k2q4 k2q4

q2 k2q2 k2q2

Brown and Pennington [10] studied this equation numerically and found
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2

G(p ) = A —for p + 0p'

to be a consistent solution. This result is in agreement with Mandelstam s study of the gluon propagator [8].
Again, approximating G(q2) by G(pz + k ) allows us to perform the angular integrations analytically in Eq. (18),

giving

67p

I ' I ' &75= 1+ — dk Gr —1 —10—+ 6—+
G(pz) 48~z pz

~
,

&
p2 p4 p2 —k2

&
4

21k' k k l ~ k ( 27 11 k
+G,

~

———+7——3—~+G,
4 p2 p4 p ) (p~ —k2 ( 8 4 p

&p2 p' i29 3p ) ldk' G, —,—6+
~k' p' —k2

~ 4 4k')
~

( 3 1p'i ( p' /3
8k2

39k' k' p') )
, +4—,—5

4 pz p4 k2)

15p'i l
8k')~

(19)

where

Gi ——G(p +k ),
G2 = G(p +k ) —G(k ),

G(k')G(p'+ k')
G(J ')

Note that the integral equation has the usual ultravio-
let divergences, but infrared divergences are also possible.
The ultraviolet divergences can be handled in the stan-
dard way to give a renormalized function G~(p )—this
will not be discussed here. However, we have to make

the potentially inft..ared divergent integrals finite in order
to calculate the integrals. The infrared regularization
procedure proposed by Brown and Pennington [10] is to
use the plus prescription of the theory of distributions,
which is defined as

foroo)k &0,&s'l
qkz) kz

and in the neighborhood of k = 0 it is a distribution
that satisfies

OO OO

dk
~

—
~

S(k, p ) = dk [S(k,p ) ——S(0,p )]+ dk —S(k, p ). (20)

Simply taking

k') +

as an input function once again leads to a mass term, and higher terms in the expansion Eq. (8) are necessary. Then
we do have the chance of Bnding self-consistency for a gluon propagator as singular as 1/k4 and, hence confining
quarks. With

A(s'/p')++ (p'/v') if p' & v',
if@2) p2, (21)

we find, after mass renormalization,

1 g C'x 479 p 13 p &y'l 81 25=1+ — + ln —
/

————ln/
t(p2) 48' 24 pz 8 p (p2) 4 4 I p2) (22)

The ultraviolet divergent constant can be arranged to cancel the 1, and again we find self-consistency. This is the result
found numerically by Brown and Pennington [10] with a positive infrared enhancement to the gluon renormalization
function, i.e. , A ) 0.

These divergences do not arise in an axial gauge when p is set equal to zero as Schoenmaker does, Eq. (7).
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Now we check whether it is possible in the Landau gauge to find the behavior Cudell and Ross discovered using
Schoenmaker's approximation in the axial gauge. With

(p'Iv')' if »' &» ',
'-(» ) = 1;f 2)

)

we find, again after mass renormalization,

(23)

1 g~C~= 1+, Di+ D2
I

—, I

(p'l
&oug p 487r

(p2)+D.
I

—,
I&~')

(p2 )+D41 —
I

+ "
i» ') (24)

where

Dg ———

D3 ———

3 5+ 6c 25 (A2i—+ + —»I
2 1 —c 4 (p2)

3 3 (A'l
+ —ln

I4(2 —2c) 4 (p2 )
1971 29c 37 6 —13c 59 —32c 155 —64c 127 —49c 23 —llc
60 2 20c 2(1 —c) 4(2 —c) 8(3 —c) 8(4 —c) 4(5 —c)

+ + + + + + +
55+ 6c 3+ —8(2 —c) iII (—2c) —8(2 —c)4 (1),8(2 —2c) 4(3 —2c)

61+ 6c
8(1 —2c)

125 + 61c
8 (1 —2c)

Thus the dominant in&ared behavior is

( 2)
G- (p') & p')

and self-consistency is spoiled by a negative sign, since c is small and positive.

V. CONFINED GLUONS

A gluon propagator, which is less singular than 1/k2 for k2 —+ 0 and, hence, describes confined gluons, appears
to be a self-consistent solution only of the axial gauge Schwinger-Dyson equation using Schoenmaker s approximate
integral, Eq. (7). In the Landau gauge this behavior of the gluon propagator is not possible: A minus sign spoils
self-consistency. We should therefore comment on the origin of this crucial minus sign.

Starting &om BBZ s integral, Eq. (6), there is no difFerence in sign between the two gauges. Equation (6) is Bose
symmetric (as it should be) and can therefore be rewritten as

(1 —p) = p (1 —p) — A(o~)(k)d (o)(q)2k nKp (k, p),
p2 2 g2C~ d4k n (k —q) gp

(25)

where

K,.(k, p) = &,.+(q') —,, (S,.k. q —k,q. ) ++(")—+(k') I (k') I (p') ~(q')—
k2 —q2 p2 —k2 E(p2)

whereas, taking the starting equation of Schoenmaker's paper [Eq. (3.5) of Ref. [6]] we find

2 d4k n. k—
( 2 (1 —p) = p (1 —p) ——g C~ Zp (k, q) [

—2k nKp (k, p)],

where

(26)

Zp (k, q) = (i) b.(o~)(k)b, (0)(q) .

Schoenmaker formulates his equation in Minkowski space. Performing a Wick rotation to transform to Euclidean
space by d kM —i id4k~, we find that Schoenmaker's equation, Eq. (26), becomes



52 INFRARED BEHAVIOR OF THE GLUON PROPAGATOR: . . . 5227

2

( 2)
(1 —p) = p (1 —p) +

( )
4(~)(k)b, op (q)2k nK p(k, p), (27)

which difFers &om Eq. (25) by a crucial minus sign.
We therefore see that in the axial gauge using BBZ's

integral equation for the gluon propagator, and simplify-
ing the angular dependence in the way Schoenmaker does
in order to make an analytical discussion of the infrared
behavior of the propagator possible, yields an integral
equation very similar to the one found by Brown and Pen-
nington [10] in the Landau gauge. These equations lead
to the correct perturbative behavior at large momenta.
In contrast, a self-consistent solution of the gluon propa-
gator less singular than 1/k2 for k2 ~ 0 cannot be found
in either gauge. Schoenmaker s own equation, which is
the starting point for the study of Cudell and Ross [7],
has an incorrect additional minus sign. This should have
been heralded by the self-consistent enhanced gluon of
Eq. (11) having a negative sign, using Schoenmaker's
equation. In an axial gauge this sign should have been a
little worrying for a wave function renormalization of a
state with positive definite norm.

G(k2) k2

k k+b (28)

of this type have only been found using approximations
to the gluon Schwinger-Dyson equation with an incorrect
sign. Possible consequences for models of the Pomeron
are discussed elsewhere [16].

We should also mention the related work of the group
of Habel et al. [17]. They too start &om an approximate,
but larger, set of Schwinger-Dyson equations, which is
then to be solved self-consistently. However, the method
employed is completely different. The philosophy [17] is
to obtain the solution of these equations as power series
in the coupling, as in perturbation theory, and to include
nonperturbative e8'ects by letting each Green's function
depend upon a spontaneously generated mass scale b(g2).
The gluon propagator is assumed to be of the form (see
Fig. 1)

VI. SUMMARY AND CONCLUSION

We have studied the Schwinger-Dyson equation of the
gluon propagator to determine analytically the possible
in&ared solutions for the gluon renormalization function
G(p ). In both the axial and Landau gauges, one can
find a self-consistent solution, which behaves as 1/k2 for
k2 —+ 0 and, hence, a propagator that is as singular as
1/k4 for k ~ 0. This form of the gluon propagator
is consistent with area law behavior of the Wilson loop,
which is regarded as a signal for confinement. Numerical
studies [4,10] have shown that a gluon propagator with
such an enhanced behavior in the in&ared region, which
connects to the perturbative regime at a finite momen-
tum (as indicated by experiment), can indeed be found as
a self-consistent solution to the boson Schwinger-Dyson
equation. Such a behavior of the boson propagator has
been shown to give quark propagators with no physical
poles [15]. Fiirthermore, extending these nonperturba-
tive methods to hadron physics, it has been found that a
regularized, in&ared, singular gluon propagator together
with the Schwinger-Dyson equation for the quark self-
energy gives rise to a good description of dynamical chi-
ral symmetry breaking. For instance, one obtains values
for quantities such as the pion decay constant that agree
with experimental results [11].

A gluon propagator, which is less singular than 1/k for
k -+ 0 and, hence, describes confined gluons, cannot be
found in either the axial or the Landau gauge. Solutions

representing confined gluons. This grossly violates the
masslessness condition of Eq. (8). In general, gluon
masses can only arise in four dimensions if the vertex
functions have singularities themselves corresponding to
colored massless scalar states; otherwise the Slavnov-
Taylor identities sufficiently constrain the vertex func-
tions to require the inverse of the gluon propagator to
vanish at k ~ 0. Not only do the vertices of Habel et al.
have these massless singularities, but self-consistency can
only be found if the three-gluon vertex is complex, when
conventional understanding of its singularity structure
would lead us to expect it to be real for momenta, which
in Minkowski space are spacelike. Subsequently Hawes,
Roberts, and Williams [20] and Bender and Alkofer [21]
have shown that with this gluon propagator, Eq. (28),
the solution of the quark Schwinger-Dyson equation does
not describe a con6ned particle. They therefore also con-
clude that the full gluon propagator in @CD cannot van-
ish in the infrared region.

To summarize, at first sight there appears to be a dis-
tinction between a confining and a confined gluon. A
confining gluon is one whose interactions lead to quark
confinement. b, (k ) 1/k behavior is of this confining
type. In contrast, it is sometimes argued that A(k2) must
be less singular than 1/k2 to ensure that gluons them-
selves do not propagate over large distances. However,
whether gluons are confining or confined are not real al-
ternatives. Gluons must be both. They confine quarks by
having very strong long-range interactions. They them-
selves are confined by not having a Lehman representa-

However, as remarked at the end of Sec. IV, axial gauge
studies are seriously marred by the simplifying assumption
that H = 0 in Eq. (1).

This remark equally applies to the work of Zwanziger [18j
and the lattice studies in [191.
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tion, which any physical asymptotic state must have [11].
While in&ared singular gluons satisfy both criteria,

softened gluons, though confined, do not generate quark
con6nement or dynamical chiral symmetry breaking,
which are features of our world. Remarkably, a study of
the field equations of @CD reveals that this theory nat-
urally exhibits these aspects with an infrared enhanced
gluon propagator.
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