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Gluon plasma with a medium-dependent dispersion relation
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The statistical mechanics for systems with a medium-dependent dispersion relation are formu-
lated and applied to construct a model for the gluon plasma equation of state with a temperature-
dependent particle mass. This simple model gives us an example of a system with temperature-
dependent efFective Hamiltonian. We 6nd that to satisfy the thermodynamical relations in these
systems, standard statistical mechanics formulas have to be supplemented by special requirements.
The self-consistent statistical model formulation is used to describe Monte Carlo lattice data for the
thermodynamical functions of SU(2) and SU(3) gluon plasma.

PACS number(s): 12.38.Mh, 11.55.Fv, 12.40.Ee

I.. INTRODUCTION

Recently a phenomenological model of the gluon
plasma (GP) was considered [1,2] to describe the Monte
Carlo (MC) lattice data in SU(2) and SU(3) gluodynam-
ics for the thermodynamical functions of the deconfined
phase, i.e. , at temperatures T above the critical value T .
It was assumed that the system of interacting massless
gluons (the same arguments can be applied when quarks
are included [2]) can be efFectively represented at T )T,
as an ideal gas of "massive" noninteracting "gluons" (and
"quarks"). The gluon dispersion relation for a particle of
energy w* and momenta k in such a system is assumed
to be

OO

e;g(T, m) = k dk
0 exp(io/T) —1 ' (3)
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io*(k, T) = k' + m'(T)

where a temperature-dependent "gluon mass" rn = m(T)
appears due to the medium eKects. The ideal gas pic-
ture of gluons and quarks with "thermal masses" was
further used in Refs. [3,4] for some physical applica-
tions. The "massive gluons" were always treated as non-
interacting "quasiparticles" with quantum numbers of
real gluons and have, therefore, only two states of po-
larization (transverse polarized modes).

In the present paper we investigate some peculiar fea-
tures of physical systems with a medium-dependent dis-
persion relation. To illustrate the problem we begin with
the ideal Bose gas formulas for a particle of mass m and
zero chemical potential. The pressure and energy density
are given by [5]

OO

p;~(T, m) = Tk d—k in [1 —exp( —io/T)]
0

(2)

where io = (k2 + m2)i~ and d is the degeneracy factor
[d = 6 for SU(2) and d = 16 for SU(3) gluons]. Both
Eq. (2) and Eq. (3) with io = io*(k, T) (1) together
were assumed in Refs. [3,4] as the starting point for the
GP equation of state. However, when the particle mass in
Eqs. (2) and (3) is T dependent the fundamental thermo-
dynamical relation between the pressure p(T) and energy
density e(T) [5], namely,

(4)

is not satisfied. One can easily check that the only so-
lution of Eq. (4) for m(T), with p(T) and e(T) given
by Eqs. (2) and (3), is m = mo ——const. This implies
that the ideal gas model (2) and (3) is thermodynami-
cally consistent for particles of constant mass only any
temperature dependence m = m(T) violates the thermo-
dynamic identity (4).

In Refs. [1,2] only the ideal gas form for the pressure
function (2) with a temperature-dependent mass was as-
sumed. The energy density is then calculated &om the
thermodynamic relation (4). In this case the energy den-
sity function of T and m does not have the ideal gas form
(3). One can equally well start with the ideal gas form
(3) with io = io'(k, T) (1) for the energy density and solve
difFerential equation (4) to find a p(T) function. The ob-
tained p(T) is again difFerent from the ideal gas formula
(2). One can, therefore, construct two different "ideal
gas" formulations with diiferent m(T) functions Rom the
same MC lattice data fitting either pM~(T) by Eqs. (1)
and (2) or eMC(T) by Eqs. (1) and (3). Both these two
procedures have, however, a disadvantage. They do not
correspond to a system of quasiparticles with the disper-
sion relation (1) and, as a consequence, the gluon mo-
mentum distribution function has no physical meaning.

The aim of this paper is to propose another scheme
of statistical mechanics formulation for systems with
a medium-dependent dispersion relation. Our proce-
dure respects thermodynamic self-consistency and we
find that, for systems with io = co*(k, T), neither p(T) nor
e(T) has the simple form (2) and (3). They should con-
tain additional medium contributions. It turns out that
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only the entropy density preserves the ideal gas form.
The formulation is then used to construct a statistical

mechanics model with m = m(T) to describe the existing
MC lattice data in SU(2) and SU(3) gluodynamics.

The outline of the paper is as follows. In Sec. II
we formulate the requirements of thermodynamical self-
consistency for statistical mechanics for systems with a
medium-dependent dispersion relation. The formulation
is then used to construct a model for the GP with a
temperature-dependent mass in Sec. III. We use this
model to fit the MC lattice data of SU(2) and SU(3) glu-
odynamics in Sec. IV. Section V concludes our work with
a summary of the results and an outlook.

which are valid, of course, for any T- and p-independent
operators H and ¹

For an ideal gas Hamiltonian [5]

i=1 k
(12)

where the index i corresponds to the particle internal de-
grees of &eedom, e.g. , difFerent spin and color states for
gluons, evaluations of Eqs. (5) and (6) are straightfor-
ward. For large V, i.e., in the thermodynamic limit, the
summation over k in Eqs. (5) and (6) can be substituted
by the integration over the momentum phase space

II. STATISTICAL MECHANICS OF SYSTEMS
WITH A MEDIUM-DEPENDENT

DISPER.SION RELATION

To construct a thermodynamically consistent statisti-
cal mechanics model with a medium-dependent disper-
sion relation, we briefly recall how thermodynamic iden-
tities are obtained in statistical mechanics. For a system
with Hamiltonian operator H and conserved charge num-
ber operator N, the statistical mechanics definitions of
pressure, energy density, and conserved charge number
density, are [5]

(5)

(7)

where p is the chemical potential and the "thermody-
namic limit" when V goes to infinity is assumed. The
thermodynamic identities are

and Eqs. (2) and (3) are easily obtained. They corre-
spond to the case )a = 0 in Eqs. (5) and (6) and a&t, , and
ag, in Eq. (12) are the Bose creation and annihilation
operators, respectively. The calculations of Eqs. (5)—(7)
with II given by Eq. (12) for fermions and nonzero p,

values are also obvious. They lead to the well known
ideal gas expressions where the function a)(k) for parti-
cle ("quasiparticle") excitation energy can take any arbi-
trary form.

When a)(k) in Eq. (12) is replaced by a)*(k, T, )a), we
still obtain ideal gas expressions &om Eqs. (5)—(7). For
example, both p(T) and e(T) as obtained &om Eqs. (5)
and (6) with a) = a(k), T) (1) and p = 0 would still have
the ideal gas form (2) and (3). However, a problem imme-
diately arises. The Hamiltonian of the system becomes
temperature dependent and the statistical mechanics def-
inition of the energy density (6) contradicts the thermo-
dynamic relation (4). This occurs because the identity
(10) is no longer valid. The recipe for solving this prob-
lem is evident: upon introducing a temperature- and/or
chemical-potential-dependent eR'ective Hamiltonian II ff
one should additionally be required to satisfy identities
(10) and (ll) to guarantee the thermodynamic consis-
tency of the model.

Similar requirements take place in the theory of nuclear
matter [6] where the quasinucleon dispersion relation

where s is the entropy density. They reduce to Eq. (4)
with s = dp/dT when p = 0 and mean nothing more
than the identities

(8 Tr (e ~~ &~l~~) l—
OT

(10)

(8 Tr (e ~~ &~)~~) l

a(k), T, p) = (k +M ) + U,

with an effective nucleon mass M(T, p) and "potential
energy" U(T, p), appears due to the presence of the in-
teraction between nucleons and the scalar and vector
fields in the mean-field approximation. These "fields"
contribute to the effective Hamiltonian of the system and,
therefore, produce additional "field" terms in the p and e
functions to restore the thermodynamical consistency of
the model (see Ref. [7]).

To generalize this procedure, we consider an effective
Hamiltonian H,@(cq, c2, ...) depending on phenomenolog-
ical parameters ci, c2, ... which are assumed to be func-
tions of temperature T and chemical potential p (or
chemical potentials p, if the system has several conserved
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charges). To satisfy the thermodynamic identities (8)
and (9) for H = H,~ with T a-nd/or p-dependent pa-
rameters cq, c2, ..., one should require additionally

( Op ) ( Bp i
E~c ) 2 „., Eoc2i r,,,.„... 0

7
~ ~ ~

(14)

for the pressure function p = p(T, y„ci, c2, ...) defined in
Eq. (5) with H = H, rr Req. uirements (14) are equivalent
to Eqs. (10) and (11).

To apply this formulation to our statistical system of
quasiparticle excitations we observe that in general the
Hamiltonian (12) should be rewritten as

OO k2dk

2vr2 p exp[(&u' —p)/T] ~ 1
—:n;g(T, p, a*),

n(T, p, ci, c2, ...) =

(19)

S(T) P) Cl, C2, ...)
E'+P —PA

T
6';g + P;g —PA;g

T s;g(T, p, ~").

It is a T a-nd/or p-dependent system energy density
without quasiparticle excitations. However, the statisti-
cal mechanics expressions for quasiparticle number den-
sity n(T, p, ) (7) and entropy density s(T, p) (9) preserve
their ideal gas form:

d

H.g = ) ) ~*(k) a„,.ai, ; + Ep,
i=1 k

where

(15) As we shall see this last fact is an important consequence
of the above formulation for phenomenological applica-
tions.

(d'(k) = ld(k) ci) c2, ...) Ep = EP(ci, c2, ...) .

(16)
III. GLUON PLASMA WITH m = m(T)

p(T, p, cl) c2& ".)
OO

= gT kdk
27l p

(~* —~) &xln 1 ~exp
~ T )

(17)

e(T, p, ci, c2, ...)

d k2dk ~*
+ B', l82' p exp co* —p T g 1

where the upper sign is for bosons and the lower for
fermions. The first terms in Eqs. (17) and (18) are
the standard ideal gas expressions p;d (T, p, , at '), and
e;g(T, p, u') and the second ones are additional medium
contributions with

B' = B*(ci ) c2, ...)—: limv-+~ V

Ep in Eq. (16) is the system energy in the absence of
quasiparticle excitations. This zero point energy is of
constant value Ep in the standard case of a medium-
independent at(k). It is usually subtracted from the sys-
tem energy spectrum. It cannot be done, however, for a
T and/or p--dependent dispersion relation at*(k) as the
system's lowest state energy Ep becomes also a function
of T and/or p. This function is defined by the require-
ment of thermodynamic self-consistency (14).

Calculating now the thermodynamic functions p(T, p)
and e(T, p) &om Eqs. (5) and (6) with the effec-
tive Hamiltonian (15) and quasiparticle number operator
N = P,. i g& a&,.ai, ; (for sixnplicity, we do not write
down explicitly possible antiquasiparticle terms where
p, ~ —p) we find

Turning to our problem of the GP with m = m(T),
we have p(T, m) = p;g(T, m) —B*(m), and e(T, m)
e;g(T, m)+B*(m) from Eqs. (17) and (18). p;g(T, m) and
e;g(T, m) are given by Eqs. (2) and (3) wither = ~*(k,T)
defined by Eq. (1). For m(T) = mp ——const, these
expressions satisfy the thermodynamic identity (4) with
B* = B = const. If mp = 0 Eqs. (19) and (20) coincide
with the well known bag model equation of state for the
GP, e.g. , Ref. [8].

If the particle mass is temperature dependent m =
m(T), the additional requirement

f Bp(T, m) )
Om j~ 0 (21)

d I dmdT' m2K' T

X fk2dk l
23

p (u*(k, T') exp[(u'(k, T')/T'] —1

B*(T)= Bp

up to an arbitrary integration constant Bp ——B'(Tp).
Our equations will then take the form

should be satisfied. It is a special case of our general
requirements (14). The condition (21) was introduced in
Ref. [7] as a self-consistency equation for phenomenolog-
ical extension of the mean-field theory approach of Ref.
[6], where B* has the meaning of the scalar field energy
density. Explicit evaluation of [Op;g(T, m)/Bm]z in Eq.
(21) leads to

dB* d k2dk 1

dm 2vr2 p u (k, T) exp[or*(k, T)/T] —1

(22)

If B'(m) is known, Eq. (22) gives us an equation for the
function m(T) and the model is completely defined. If,
on the other hand, the function m(T) is known we can
calculate B'(T) from Eq. (22) as
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p(T, m) = p;, (T, m) —B'(T),
e(T, m) = e;g(T, m) + B'(T) .

(24)

(25)

IV. MODEL RESULTS FOR SU(2)
AND SU(3) GLUODYNAMICS

For a constant zero value of the gluon mass Eqs.
(24) and (25) are, as we already mentioned, reduced to
the standard bag model equation of state [8] p(T, m =
0) = psB —B,e(T, m = 0) = esB + B, where a posi-
tive constant value of B ("vacuum pressure") is assumed
and psB and esB stand for the corresponding Stefan-
Boltzmann expressions: ps' = dm T /90 and EsB
dvr2T4/30. This equation of state cannot reproduce MC
lattice data pMc(T) and eMc(T) for SU(2) [9] and SU(3)
[10] gluodynamics, since e = esB + B ) esB, while
~MC «SB

The form of Eqs. (24) and (25) was first used in Ref.
[11] to fit MC lattice data for the SU(3) GP. It was con-
sidered as an extension of the bag model with two in-
dependeiit functions m(T) and B'(T). The MC lattice
data used in Ref. [11] were, however, rather poor and
their fitting led to the constant values m = m = 2.5T
and B* / = Bo: I 25T Therefore the problem
of a temperature-dependent gluon mass and the self-
consistency condition (22) [or (23)] which relates these
two functions was not discussed.

The physical meaning of our B'(T) terms in Eqs. (24)
and (25) can be rather different Rom that in the bag
model, and we have no a prioH estimate of its numerical
value and even of its sign.
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FIG. 1. MC lattice data of SU(2) gluodynamics [9] for
the energy density (open boxes), pressure (open circles), and
entropy density (full triangles) at T ) T normalized to their
Stefan-Boltzmann limits.

obtained from the prescription p;g(T, m) = @Me(T), as
it has been done in Ref. [1], and Rom the prescription
e;g(T, m) = eMc(T). As seen in Fig. 2 and Fig. 5 below
for the SU(3) case our m(T) functions (full triangles) are
qualitatively similar to those obtained in Refs. [1,2] (cir-
cles), but they are, of course, rather difFerent quantita-
tively, as our statistical mechanics model is quite difFerent

In this section, we use the GP model constructed in
the preceding section to describe MC lattice data for the
pressure and energy density of SU(2) [9] and SU(3) [10]
GP's. A straightforward way to find the function m =
m(T) is to compare the model (23)—(25) with MC lattice
data for the entropy density because it does not depend
on B*(T):

6.0

5.0— sU(2)
p(T, m) + e(T, m)

p;g(T, m) + e;g(T, m)
T 8;&&~T, m~i ~ (26) 4.0—

Namely, as we have already shown in the more general
case of Eq. (20), just the entropy density function pre-
serves its simple ideal gas form without any additional
medium contributions.

In Fig. 1 the MC lat tice data of Ref. [9] are
shown for the energy density, pressure, and entropy den-
sity of an SU(2) GP (at T ) T ) normalized to their
Stefan-Boltzmann limits esB(T), psB(T), and ssB(T):—
s;g(T, m = 0) = 4vr T /15. The corrections of all ther-
modynamic function data for the Rnite size lattice efI'ects

are done according to the procedure of Ref. [12]. Re-
quiring our entropy density function (26) to be equal to
the MC lattice data sMC(T) of Fig. 1, we find the m(T)
values at the corresponding values of temperature. They
are shown in Fig. 2, where we also show the m(T) values
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a
'G- ~

2.0 I i I & I i I i I i I i I i I

0.8 1.0 1,2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

FIG. 2. Gluon "thermal mass" m = vn(T) obtained from
the fit to MC SU(2) lattice data [9] for the entropy density
(full triangles), energy density (open boxes), and pressures
(open circles) in Fig. 1 by the corresponding expressions for
the ideal gas entropy density (26), ideal gas energy (3), and
ideal gas pressure (2). The "pressure fit" (open circles) was
done in Ref. [1].
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&om the formulation of Refs. [1,2].
Then, with condition (23) and the MC lattice value

for pM~(To) to define the integration constant Bo, we re-
construct corresponding B*(T) values as shown in Fig.
3. Once m, (T) and B*(T) are found we can proceed to
calculate the functions p(T, m) and e(T, m) according to
Eqs. (24) and (25). The obtained pressure and the en-
ergy density are compared with MC lattice data [9] in
Fig. 4. Ideal gas formulas (2) and (3) for p(T) and e(T)
calculated with the same m = m, (T) of Fig. 2 deter-
mined &oin sMC(T) are also shown in Fig. 4. It is seen
that the lack of thermodynamic self-consistency in this
approach leads to rather strong deviations of p;q(T, m)
and e;~(T, m) from pMC(T) and &Me(T) data.

The complete agreement of our model results with MC
lattice data is not surprising. If the MC lattice data
for p(T), e(T), and s(T) are thermodynamically con-
sistent [i.e., they satisfy identity (4), or, equivalently,
s(T) = dp/dT = (p+ e)/T], as they are, then only one of
these functions, say p(T), is really independent: e(T) and
s(T) can be calculated &om p(T) using thermodynamic
identities. But in our model we also have one "indepen-
dent" function m(T). Therefore, if we fit completely the
MC lattice data for s(T) and satisfy the thermodynami-
cal identity (4) due to our Eq. (23), the model pressure
and energy density (24) and (25) have to coincide with
the MC lattice data too.

For the MC lattice data of an SU(3) GP [10]our fitting
procedure is essentially the same. We show only our re-
sults for the functions m(T) and B*(T) in Figs. (5) and
(6). These two functions are connected by Eq. (23) and
our inodel equations (24) and (25) are again in complete
agreement with the MC lattice data pMC(T) and eMc(T)
[10].
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V. DISCUSSIONS AND CONCLUSIONS

We construct a thermodynamically self-consistent sta-
tistical mechanics model with m = m(T) to describe MC
lattice data for SU(2) and SU(3) GP's. Complete agree-
ment with MC lattice data for p(T) and e(T) can be
achieved as we have an arbitrary function m = m(T)

FIG. 4. MC lattice data of SU(2) gluodynamics [9] for
the pressure (open circles) and energy density (open boxes)
at T ) T normalized to their Stefan-Boltzmann limits. Full
lines are obtained from Eqs. (24) and (25) with m(T) in
Fig. 2 found from the entropy density (full triangles) and
the function B'(T) given in Fig. (3). The dashed lines are
obtained from Eqs. (2) and (3) with the same m(T) function
but without B*(T) contributions.
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FIG. 3. The B'(T) function found from Eq. (23) with
m(T) in Fig. 2 obtained from the MC SU(2) lattice data for
the entropy density.

FIG. 5. Gluon "therinal mass" m = m(T) obtained from
the fit to MC lattice SU(3) data [10] for the entropy density
(full triangles), energy density (open boxes), and pressures
(open circles) by the corresponding expressions for the ideal
gas entropy density (26), ideal gas energy (3) and ideal gas
pressure (2). The "pressure fit" (circles) for these SU(3) data
was done in Ref. [2].
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FIG. 6. The B'(T) function found from Eq. (23) with

m(T) in Fig. 5 obtained from the MC SU(3) lattice data [10]
for the entropy density.

which is found &om sMg(T) data. We cannot, how-
ever, make definite conclusions about the physical va-
lidity of this model. To clarify its efBciency some other
properties of the GP should be calculated and compared
with the MC lattice data. Note that ~*(k, T) is more
a system "microscopic" characteristic than the thermo-
dynamic functions themselves and all other properties of
the GP (e.g. , the "heavy quark p-otential" in the GP) can
be found in terms of the gluon distribution function with
a medium-modified dispersion relation.

One can be surprised that m(T) and the absolute value
of B'(T) found &om MC lattice data increase at large
T when the GP is expected to approach the Stefan-
Boltzmann limiting behavior of massless noninteracting
gluons. We note that to have the essential deviations of
the thermodynamic functions (24) and (25) &om their
Stefan-Boltzmann limits one needs large values of m/T
and B*/T4. These quantities in fact are large at T
near T, and we expect they will gradually go to zero
at T + oo. A possible physical origin of the m = m(T)
dependence was discussed in Ref. [1].

The analysis of systems with ~(k) = u'(k, T, p) pre-
sented here can be useful for other models of equations
of state of strongly interacting matter. We mention only
two examples. The first one is the "cuto8"' model of the
GP [13) with a texnperature-dependent "cutofF' parame-
ter K(T) used in Ref. [9]. It corresponds to the following
dispersion relation of the "ideal gas" excitations in the
GP:

(u'(k, T) = k 8(k —K(T))
+(k2 + M')x~2 B(K(T) —k) . (27)

The first term in Eq. (27) represents massless high-
momenta gluons and the second one is low-momenta
glueballs with mass M. A statistical mechanics treat-
ment of the system (27) leads to equations similar to Eqs.
(17) and (18) with p = 0 and the function K(T) should

be extracted &om the equation s;~(T, K) = sM~(T). The
second example concerns a temperature-dependent pion
dispersion relation. It was suggested by Shuryak [14] in
the form

(u'(k, T) = u (T)k +m, (28)

where u(T) is the temperature-dependent refraction in-
dex. It was extracted in Ref. [14] &om some "data"
for the pion energy density e (T), i.e. , using the equa-
tion e;g(T, w') = e (T), while our statistical mechanics
formulation requires again s;g(T, u') = s (T). We con-
sider both these problems in separate publications [15].
Note that one cannot reconstruct a function of two vari-
able w'(k, T) &om a function s(T) of one variable and
some model assumptions which reduce su* to one un-
known function of one variable must be made [e.g. , m(T)
in Eq. (1), K(T) in Eq. (27), or u(T) in Eq. (28)).

Statistical mechanics with any T- and p,-independent
Hamiltonian operator satisfies automatically the thermo-
dynamic identities. A statistical mechanics model with
a temperature-dependent particle mass gives us the sim-
plest example of systems with H = H, xx(T, p). For such
models the standard statistical mechanics formulas have
to be supplemented by special requirements to guaran-
tee that fundamental thermodynamic identities will be
satisfied. We have shown that these additional require-
ments can be presented in the simple mathematical form
of Eq. (14). Particular examples of this kind have been
known in the mean-field theory of nuclear rnatter [6] and
its phenomenological extension [7].

We have suggested a procedure to construct statistical
xnechanics models with a T and/or p-d-ependent disper-
sion relation w*(k, T, p) which should be constructed ac-
cording to Eqs. (15) and (16). The lowest state energy
Eo without quasiparticle excitations becomes a function
of T and/or y, in this case and has to be included in the
statistical model formulation for thermodynamic consis-
tency. The connection between u* and Eo is given by
Eq. (14).

In conclusion we repeat two main points of our study
for systems with w(k) = w'(k, T, p).

(1) The quasiparticle dispersion relation, e.g. , Eqs. (1),
(13), (27), and (28), should be used for or extracted from
the entropy density function. It leads to an unambiguous
definition for the quasiparticle distribution function.

(2) The pressure and and energy density for such sys-
tems contain an additional medium contribution which
is to be found kom the requirements of thermodynamic
self-consistency (14).
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