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Anomalous commutator corrections to sum rules
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In this paper we consider the contributions of anomalous commutators to various +CD sum
rules. Using a combination of the Bjorken-Johnson-Low limit with the operator product expansion
the results are presented in terms of the vacuum condensates of gauge-invariant operators. It is
demonstrated that the anomalous contributions are non-negligible and reconcile various apparently
contradictory calculations.
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I. INTRODUCTION

The use of canonical commutators in the evaluation
of current algebra relations has produced many results
whose eBects are directly measurable. Still in many cases
the canonical evaluation of the commutators is ill defined,
as is clearly exemplified by Schwinger's calculation [1] of
(0[[J (0, x), J'(0, y)][0) for a conserved current 1". If a
fermionic current of the type @p"@ is replaced in the
above expression, and canonical commutation relations
are used, the above expression vanishes. In contrast, us-
ing general principles (such as Lorentz covariance and
the absence of negative norm gauge-invariant states), the
above vacuum expectation value is seen to be nonzero.

This fact has been used repeatedly (although some-
what sporadically) in the calculations of anomalous (i.e.,
noncanonical) contributions to various commutators, es-
pecially in the context of anomalous theories [2]. Similar
effects have also been shown to modify the (canonically
obtained) properties of the electroproduction sum rules
[3].

Faced with these problems in the canonical evaluation
of commutation relations, an alternative definition of the
commutators was proposed by Bjorken and by Johnson
and Low [4]. This definition preserves all the desirable
features of the theory, is well defined, and coincides with
the canonical results whenever the latter are also well
defined.

The starting point of the Bjorken-Johnson-Low (8JL)
definition of the commutator of two operators A. and
B is the tixne-ordered product T(AB), presented as a
function of the momentum transfer p. One then obtains
the Laurent expansion of this operator in pp (the energy
transfer). The term proportional to I/pp is identified as
(the Fourier transform of) the equal time commutator. i
Terms in this expansion containing positive powers of po
are associated with the covariantizing of the time-ordered
product [5] and can be ignored.

The applications of this method have been largely re-
stricted to perturbation theory (see, however, Refs. [6,7]).
On the other hand, many interesting applications of cur-
rent algebra reside in the area where perturbation the-
ory cannot be applied. In order to use the BJI defini-
tion in a wider range of situations, we first note that the
commutator is obtained by studying the relevant time-
ordered products in the limit of large energy transfers
and, therefore, that an operator product expansion [8]
(OPE) is appropriate. The procedure we follow is there-
fore to perform an OPE of the said time-ordered. prod-
uct, to then use renormalization group arguments to de-
termine the high-energy behavior of the coeKcient func-
tions, and thus to extract the terms that contribute to
the commutator. The result is then expressed in terms of
the residues of the coeKcient functions multiplied by the
matrix elements of the local operators appearing in the
OPE. In these calculations all symmetries of the the-
ory are manifest, and so the resulting commutator will
also respect them. A similar method was proposed by
Crewther many years ago [6] but was not developed sig-
nificantly.

This paper is organized as follows. In the following
section we describe the method in detail. Section III
presents a comparison of the present method with some
explicit perturbative calculations in 1+ 1 dimensions. In
Secs. IV and V we consider the anomalous commuta-
tor modifications to the current algebra approach to the
U(1)~ problem. Section V also presents some explicit
calculations pertaining the general arguments presented
in Secs. IV and V. Parting comments are presented in
Sec. VI. The Appendix contains the comparison of the
present method to the results of perturbation theory for
a (3 + 1)-dimensional model.

II. DESCRIPTION OF THE METHOD

In this section we develop a useful technique that al-
lows us to extract information about noncanonical con-
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It is of course possible for this quantity to be divergent. [91

This is reminiscent of the results obtained using sum rules
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tributions to equal time commutators without going
through the lengthy steps of loop calculations involv-
ing triangle, -box, and even pentagon diagrams. This
technique, which does not rely on perturbation theory,
is based on the Bjorken-Johnson-Low definition of the
equal time commutators and on the operator product
expansion (OPE).

According to the BJL limit prescription, the definition
of the commutator of two operators is obtained from the
high-energy behavior of Green's functions:

lim ipp d xe '+'
O'. TA x 2 B —x 2

d me' '"(a[[A(O, x/2), B(0,—x/2)]~P), (2.1)

where pp is the timelike components of the four-
momentum. The time-ordered product T is not Lorentz
invariant and difFers &om the corresponding covariant
Green's function by terms involving b functions of xp
and its derivatives (corresponding to a polynomial in po
in momentum space). If the left-hand side of (2.1) is eval-
uated using covariant perturbation theory, then all poly-
nomials in pp should be dropped. The covariant time-
ordered product will be denoted by T*.

Since we are interested in the large momentum behav-
ior of (n~T'AB~P), it is appropriate to express this object
as a sum of local operators (OPE) where the coefficient
functions summarize the pp ~ oo behavior:

d xe '" (a~T'A(x/2)B( x/2)~P)—

This can be avoided provided the operators considered
are renormalization group invariant, such as the trace of
the energy-momentum tensor or the fermion mass terms.
Note that even if A and B are renormalization group in-
variant, the time-ordered product T(AB) need not have
this property. In the most favorable cases the opera-
tors are renormalization group invariant and the canoni-
cal evaluation of the dimensions remains valid.

Another characteristic of the method is that the results
are evaluated in terms of a set of unknown constants, the
residues of the coeKcient functions c„. For the applica-
tions that we consider, this will not be a disadvantage:
these constants multiply the matrix elements (o.~O„~P)
which, in most cases cannot be evaluated to all orders in
perturbation theory. Thus, the final result will be given
in terms of these "condensates" multiplied by the said
constants.

III. SIMPLE EXAMPLE

As an application of the previous remarks, we con-
sider a model containing fermions coupled to external
non-Abelian gauge fields. We then choose A = J',
B = J„~, where Q denotes the right- or left-handed,
gauge-invariant fermionic current, and a, b denote color
indices. Thus, we consider

T„', = f d xe '~ &T„(. / )TZ 2(
'—x/2) .

Similarly we define

C„„= lim ipo7„„
Pp ~OO

where the local operators Q„are evaluated at x = 0.
Taking the BJL limit of the previous expression, we find

where, as mentioned above, all terms in the c„growing
as a power of pp can be dropped.

It is well known that the matching of dimensions of
the operators T(AB) and D„ in the OPE must take
into account the anomalous dimensions of these objects.

(where the terms growing like a polynomial in po are
dropped, as discussed in the preceding section). In writ-
ing the operator expansion of this object we have to pick
terms that have the same dimensionality and that pos-
sess the same symmetries; in particular, we can restrict
ourselves to gauge-invariant operators.

In n dimensions, 7 (mass); hence we can restrict
ourselves to operators O„ofdimension equal to or greater
than (n —2) on the right-hand side of the OPE. We will
consider here the (1 + 1)-dimensional case, leaving the
1+3 case to the Appendix, as it does not bring up any
new ideas or physics and is somewhat more involved.

In 1+1dimensions 7 has a canonical dimension of zero.
Moreover, the Dirac matrices satisfy p5p~ = e~ p„, which
implies that we need only consider the vector currents,
which we denote by J . The current is given explicitly
by

I

i —( el ( +'/' l (J„(*e) = —
Wl ~+ —lp/T & expl A (y)"y I @I ~ ——

I
+Hc.

—./2 ) & 2)

Double commutators can be defined using a straightforward generalization involving a double limit.
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where T denote the (anti-Hermitian) group generators, "H.c." denotes the Hermitian conjugate, and A" = A"T
denotes the gauge field (the coupling constant is absorbed in the definition of A).

The OPE of 7 [defined now for the vector currents by replacing J -+ J in (3.1)] is then given by

r„„'=;„'.&+,„'„,(p)J"+,„'„,(p) J'+ ". , (3.4)

where ll denotes the unit operator, J is defined in (3.3), J~ denotes the singlet vector current @p~vP, and the ellipsis
denotes terms that will not contribute once the BJI limit is taken; the c-number functions c„must have dimension
—1 for r = 1,2 and 0 for r = 0. Using the fact that 7 must be symxnetric under a ++ b, p ~ v, and p ++ —p, the most
general form of the coeKcient functions is

co„'. = ~-b[(g,- + nP~P-IP'],

abc
(p) = dabc[cr(gpppv gvppg) + P(egsppv &vppp) + 'Yepvpp]p'

1 G b pp p~pp+—,f-b. —(g~.P-+g-.P.)+ -( ~.P-+ -.P.)+ g~-P. +p' 2 2 p' (3.5)

'.-p(P) = , -b[ (g—~.P- —g-.P~) + ( ~.P- —-.P~) +p'

Denoting by P the spatial component of the momentum, the commutator for the vector currents, obtained by replacing
Z -+ J in (3.1) and (3.2), is given by~

Coob =—. f b [(a+ c+ d) Je ~ bJ,],Z"

—.Cox —— xl8~bP ——d~b, [(p + p) Jo + n Jx] + 2 f b, (bJo + aJx ) —b b [(v + xv) Jo + u Ji],
Z

(3.6)

ab C—.Cii = cf~b, Jo .—

In the case where the theory has only right-handed couplings, these relations imply d = 0 and

i[Jxx(O, X/2), Jxx(0, —X/2)] = hubb (X—)
— f b Jxxb(X) . (3.7)

This expression should be compared to those obtained
in Ref. [10], which has the same form, except that Jxx
is replaced by AR ——Ao+ Aq. The discrepancy can be
understood by following the procedure used in Ref. [10].
What was done was to evaluate various matrix elements
of the commutators and then to exhibit some local oper-
ators that have the same matrix elements. These oper-
ators are not unique, however. For example the matrix
elements of AR and JR between the vacuum and the one

gauge-boson state are proportional to each other in the
zero-momentum limit (the limit in the case of JR is taken
symmetrically, Grst averaging over the direction of the
momentum and then letting the magnitude go to zero).
It is easy to see that the results of the diagrammatic cal-
culations are consistent with those presented in Ref. [10]
when AR is replaced by —2m JR. It is in this sense that
the above calculation in consistent with the explicit dia-
grammatic evaluation (up to the undeterxnined constants

The conventions we use are tr(T T ) = —h b, [T,T ] = f b,T', trT (T,T ) = —d b .
Note that the coefBcient functions for the operators vPT'g, gg, @T'ps@, and @psvP will be of the form ~ (mass paraxneter)/p

and so will not contribute in the BJL limit.
The constants (, . . . , iv can be evaluated perturbatively. We will not need their explicit expressions.
In our conventions e = +1.
Note that in 1+ 1 dimensions, J~ o

——J~„~ ——J~.
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xI and a + b, which we do not evaluate at this point).
We also point out that the above expressions have the
expected form when taking the matrix elements of the
commutators for states containing fermions.

The above expressions of the anomalous commutators
have the additional advantage of being manifestly gauge
covariant. The terms proportional to b(X') are generated
by the matrix elements of the canonical contribution to
the commutator. The only irreducible noncanonical con-
tribution is the Schwinger term oc 8 bb'(X). We shall
see in the Appendix that similar results hold in 3 + 1
dimensions.

The above results can also be used for calculating the
Schwinger term and seagull singularity for the commuta-
tors under consideration. Writing the expressions using a
timelike unit vector n [5], we obtain, for the commutator
of two vector currents,

g2
B„J5"=lv, v= F F .

16vr2
(4.1)

The charge associated with this current is denoted by
q. = fd'*J,'

In the effective Lagrangian description the efFects of an
instanton (anti-instanton) localized at 2: is described by
a potential [14] U (U ) with the identification (1 is the
number of light quark Qavors)

index theorem for which there are subtleties connected
with spontaneous symmetry breaking. These modi6ca-
tions are sufhcient to explain the differences between the
two approaches.

To specify the notation we denote by J5 the gauge-
invariant anomalous current which, in the presence of l
massless fIavors, satis6es

&[Jxx(&/2) Ja( &/2)]—~(& ~) lv(x) ++ SImU (x), (4.2)

~ubg(2)( ) + gab;exp b(2)(

where

f-"(l&~--l~ J + I~.-l~.:J:), (3.8)

S„„' = h rlie„„in e

Prom this it follows that the corresponding seaguB van-
ishes.

Thus, the method is seen to work to lowest order in
perturbation theory. The disadvantage is that the 6nal
result is expressed in terms of a few unknown constants,
which, if required, can only be obtained doing detailed
calculations. Moreover, for higher orders in perturbative
calculations the anomalous dimensions of the various op-
erators must be taken into account. We have seen that
the apparently gauge-variant results obtained in the liter-
ature can be reinterpreted as generated by the canonical
terms in the commutator.

IV. CURRENT ALGEBRA AND THE U(l)
PROBLEM

In this section we will consider the efFects of anoma-
lous commutators in the study of the U(1)~ problem. In
this area the results obtained using instanton calculations
[ll] were criticized [12] on the basis of certain inconsis-
tencies, which arise when the commutators involved are
evaluated using canonical expressions. We will see that
the relations derived in Ref. [12] are, in general, modi-
6ed due to the anomalous terms in the commutators; this
point is also xnade in Refs. [13]and [14], where it is noted
that con6gurations carrying topological charge afFect the
pion decay constant. Reference [12] also points out sev-
eral apparent contradictions concerning the periodicity
of the 8 angle within the instanton and the canonical ap-
proaches. This problem was investigated in Refs. [13]and
[14] and found to be rooted in a misapplication of the

where v is defined in (4.1). The potential U is propor-
tional to a quark-determinant operator involving all light
flavors [11,14].

The problem arises because U has chirality 2l, and so
the right-hand side of (4.2) has a nontrivial commutator
with the axial charge (as constructed in the effective the-
ory). In contrast, v apparently commutes with Qs, thus
raising questions about the above identi6cation. This
contradiction can be solved by using the BAAL definition
of the commutator between v and J5.

As a 6rst step we consider, for example, the vacuum
correlator

d xe *" (0(T'v(x/2) J5 (—2:/2)~0)

=) . ."(p)(ol&.lo) . (43)

The lowest-dimensional (nontrivial) operator that con-
tributes to the right-hand side is the trace of the energy-
momentum tensor, which we denote by O. We expect
the commutator to be a renormalization group invariant
quantity; in this case the coefficient function associated
with 0 will have the form c~o(p) = cop" /p2. We hasten
to point out that the OPE is valid only for large p, so
one cannot interpret this forxn of c~e(p) as corresponding
to a massless pseudoscalar excitation. We then obtain

= ico(0)O)0) . (4.4)

Since we expect both co and (0~0~0) to be nonvanishing,
it follows that the commutator of v with Qs is nontrivial
also, within the context of /CD.

A straightforward perturbative calculation shows that, at
least to one loop, ce g 0; see below.
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D = 2) mfqfqf
f

(4.5)

When quark masses are included the above equation is
modified, since more operators become available. Specif-
ically, one can include on the right-hand side of (4.3) a
term containing the operator D, where

and v is defined in (4.1); we have assumed that the
anomaly equation, 0 J5 ——L+lv, is an operator identity.

Now, following Refs. [9] and [12], we consider (5.2) for
the cases 0 = lv and 0 = L; cancelling the correlator
of 4 and v, which appears in both these expressions, we
obtain

l d xOTvxv0 0 = 0 5, 40 —lvO 0
(mf and qf denote the mass and field associated with the
quark flavor J') In t. his case the corresponding coefficient
function in the OPE (4.3) takes the form cLi ——ciip" /p,
and (4.4) becoines

d'xOTLxLO 0

(5 4)

d xe'i'"(Ol[v(o, x/2), J, (0, —x/2)]lo)

= &ce (01810) + &cL) (OIDIO) . (4 6)

As we will see below, co D do not, in general, van-
ish. Hence, the commutator between v and Qs receives
noncanonical contributions. Model calculations [14] also
show that the expression for the said commutator ac-
quires a noncanonical piece proportional to (olOlo). The
right-hand side of (4.6) should vanish for massless quarks
in the p -+ 0 limit; this is verified within a specific model
in Sec. V.

i[Qs, 4] = 2(1+8)D, D = 2) mfqfqf,
f=x

(5.5)

where b = 0 if the commutator is evaluated canonically.
Finally, we have i [Qs, v] = co8+ c~D, where 8 denotes
the trace of the energy-momentum tensor. Thus we ob-
tain, for the case of two light flavors (I = 2),

The T product on the right-hand side equals the cor-
responding T' product. This is because the approach
described in Sec. II shows that there are no Schwinger
terms in the equal time commutator of A(x) and A(y);
the corresponding seagull is therefore zero [5]. The com-
mutator [Qs, 4] is proportional to D = 2 P mqq; we will
write

V. ANGMALGUS WARD IDENTITIES
2i d xOTv x v0 0 = b —co ODO —co 000

rr„' '(p) = f a'xe " (okra, „(x)o(-o)~'o) . (5.1)

The requirement that there be no light isosinglet pseu-
doscalars [9,12] implies that p II~+l will vanish as p -+ 0.
It follows that, by the definition of the T symbol,

0= dxOTB-J5xQO 0 + 0 5GO 0

dxOTLxQO 0 + dxOTlvxQO 0

(ol [Q., &(0)]
I
o) (5.2)

where

22 ) mf qf +sqf
f=1

In the preceding section we remarked that the oper-
ator v can have a nonzero commutator with the gauge-
invariant axial vector current Js; in particular, [v, Qs] g
0. These results are supported by a straightforward ap-
plication of the efFective Lagrangian proposed in Ref. [14].
It is, of course, possible for the constant co (and cia if
mf p 0) to vanish, but this would not be consistent
with the effective Lagrangian approach. We also point
out that v will mix under renormalization with opera-
tors which have nonzero chirality.

Should the above commutator be different &om zero,
the anomalous Ward identities will be modified. Consider
then a gauge-invariant operator 0, and define

—4f.m.', " ", (5.6)
(m~ + m(g)

The first two terms come &om the anomalous commu-
tators, while the last term is generated by the canonical
commutator and the TEL contributions as evaluated in
Ref. [9].

The above calculations show that, in general, we can
expect deviations &om the canonical expression for the
dependence of measurable quantities on the CP-violating
parameter 0. It is, of course, possible for the noncanon-
ical terms to vanish; still, explicit perturbative calcula-
tions and efFective-Lagrangian arguments favor cQ + 8
0. Since the dependence on 0 disappears from all physi-
cal observables when one fermion is massless, we expect
co(ol8lo) —b'(OlDlo) to vanish when any quark mass is
zero. We can then write

d4xOTvx v0 0 = —2 2m2 ]
mg + mo(

(5.7)
for some constant A. The conditions under which A = 1
(or even if this is at all possible) cannot be determined
using general arguments. We will see below that low-
energy models of the strong interactions predict 1—A 1
(see below) so that the estimates of physical quantities
on the strong CP angle 0 are altered only by a factor of
order 1 (except, of course, in the case A = 1).

In the following section we present several calculations
where the various coeKcients and vacuum condensates
are evaluated within explicit models.
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A. Explicit calculations

(+ .)'+ 2(1+~-)D (5.8)

where P denotes the beta function for n = g2/4vr and p
the mass anomalous dimension. Assuming the presence
of l fermions, we obtain

ce =&, P(a) = — n'+O(n') . (5.9)
ns 11 —2l/3

2~

We now consider c~, which can be extracted &om the
matrix element of Tv J~~ between the vacuum and a two-
fermion state. It is easy to see, however, that the graphs
for this matrix element are all O(n2); in contrast c~
O(n). The OPE for Tv Js contains both 8, de6ned in
(5.8), and D. It follows that the O(n) term in c~ should
be canceled by a similar term in cD, hence,

1—
cD = 2cg (5.10)

Finally, we calculate b by evaluating the matrix ele-
ment of T*LJ5 between the vacuum and a two-fermion
state. We skip, for brevity, the description of the graphs;
the Gnal result is

(5»)

to Grst order in n. These calculations show that, at least
to first order in perturbation theory, all the anomalous

In this section we present several computations. We
have evaluated the OPE coefIicients c~, c~, and b to
lowest order in QCD; we also evaluate the condensates
(0~8~0) and (O~D~O) in a chiral model of the strong inter-
actions.

Perturbative calculations. We Grst consider the calcu-
lation of c&~. The OPE of the product T*J5 v contains,
to lowest order, three operators: D defined in (4.5), 0„„
the energy-momentum tensor, and 0™ its trace. For the
calculation at hand we evaluate the matrix element be-
tween the vacuum and a two-gluon state; the relevant
graphs are presented in Fig. 1.

In order to obtain the OPE coefBcients in the p ~ oo
limit we need only consider the diagrams contracted with
the momentum carried by the axial vector current; i.e. ,
we multiply each graph by (p + q/2)" (the momentum
of the axial vector current) and contract the index Ii. A
simple calculation uses

coefIicients are Gnite and nonvanishing, as claimed pre-
viously.

B. Model calculations

In order to obtain estimates of the condensates (0~8~0)
aiid (O~D~O), we consider a chiral model, which obeys the
same symmetries as QCD. In order to generate Green's
functions involving v, we modify the QCD Lagrangian
by adding a term 0v/2, with 8 an external source (for
details see Ref. [15]). The Lagrangian takes the form [15]

—Vp + Vj fry„Ut8" U + (V2 trMU + H.c.)

+VsBps . 80+ V4(88) (5.12)

8 = 20KO+ const,
1 2m

K = —2[V4(0) + —Vi(0) —Vs(0)]B„B"— Vg(0)
l L

(5.13)

which shows that the vacuum correlator (O~T*vv~O) is
proportional to m in the limit of zero momentum trans-
fer.

The various condensates can also be evaluated within
this model. From Ref. [15] we get

where V; = V, ($0 + 0), V,~2 real, and V;(n) = V;*(—a).
The meson Geld, denoted by U, belongs to the unitary
field U(l); we will write U = exp(i/0/l) Z with Z ESU(l).
For l = 3, Z describes the pseudoscalar meson octet and
$0 describes the pseudoscalar isosinglet (the g'). The
field Z describes the usual pseudoscalar meson multiplet
[under SU(l) Havor]; $0 describes the pseudoscalar singlet
(i.e. , the g for l = 2, and the g' for I = 3).

This model is an accurate representation of QCD at
low-momentum transfers, so we will not use it in obtain-
ing the BJL definition of the commutators (which involve
the p ~ oo limit). We can, however, use this model to
evaluate the condensates (0~0~0) and (O~D~O) and the low
momentum limit of T vv. We will, for simplicity, work
in the SU(l) symmetric limit, where M = mIL.

To lowest order, in a momentum expansion the corre-
lator (O~T'vv~0) can be obtained by replacing U in 2 by
the solution to the classical equations of motion [15]. A
simple calculation shows that the Lagrangian then takes
the form

p-q/2: p+q/2=

+ Cf'OSSGCf

FIG. 1. Lowest-order dia-
grams contributing to the OPE
coefficient of 0 in the operator
T J~v.
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(OIDIO) = —2lm f, (0[0[0) = 4Vp(0) —4lm f.',
(5.14)

where m denotes the (degenerate) meson mass and f
the corresponding decay constant. Perturbative calcula-
tions suggest that co remains nonzero as m —+ 0; hence
consistency of the OPE with the above expressions for
T'vv, (O~D~O), and (0~0~0) requires Vp(0) to vanish as
m b 0. It follows that both condensates (O~D~O) and
(0[8~0) vanish in this limit. This result justifies the
claims made at the end of the preceding section con-
cerning the behavior of the condensates in the zero mass
limit. Similar results are obtained using the (closely re-
lated) model of Ref. [14].

Within this model i jd x(O~T'vv~0) = —2(m f )
which corresponds to A = 0 in (5.7). Thus, the possibility
of having A = 1 and a dynamical cancellation of the
dependence on the strong CP angle is not realized, at
least within this model.

VI. CONCLUSIONS

The method requires some knowledge about the behav-
ior of the coefficient functions (which appear in the OPE)
at large momentum transfers p. In asymptotically &ee
theories this is available via the renormalization group.
The final results are expressed in terms of the residues
of the coefficient functions (i.e. , the constant multiplying
the term behaving as I/pp) and of the matrix elements
of various local operators (the "condensates"). These
quantities can be evaluated explicitly within perturba-
tion theory; in the non-perturbative regime the conden-
sates cannot be evaluated explicitly but can be used to
parametrize the results.

Whereas the OPE coefficients can be evaluated per-
turbatively to any desired order of accuracy, the conden-
sates are not calculable in this manner; for these quanti-
ties effective models must be considered. Unfortunately
the effective theories are valid only at small momenta,
and this implies that the p ~ oo limit of the OPE co-
efficient functions cannot be accurately evaluated using
these theories. Explicit calculations verify several claims
made on general grounds: there are nontrivial noncanon-
ical contributions to the commutators. These contribu-
tions can be used to reconcile the operator and instanton
approaches to the U(1)A problem.

In this paper we considered the BJI definition for the
commutators and applied it in conjunction with the oper-
ator product expansion. The method can be applied both
in the perturbative and nonperturbative regimes. As an
application of the first case, we considered the anomalous
commutator between chiral currents in 1+1 and 3+1 di-
mensions. We showed that in this case the results in the
literature can be reinterpreted to yield a gauge-invariant
expression for the commutators. The method proposed
here is consistent with these results.

In the nonperturbative regime we considered the cur-
rent algebra relations between the instanton number den-
sity v and the gauge-invariant anomalous axial charge.
We showed that, in general, this commutator is nonvan-
ishing, in accordance with the results obtained using in-
stanton calculations. We also noted that this conclusion
is based on the nontrivial chiral transformation proper-
ties of the instanton density, and this leads to some mod-
ifications of the expressions resulting &om the anomalous
Ward identities.
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In this appendix we consider the more complicated case
of the OPE of the two-current correlator in 3+ 1 dimen-
sions. In order to keep the discussion at a manageable
level we will consider the case

7„(p) = f d 2:e ~ r J„5(x/2) J„( 'x/2') . —(Al. )

Now 7 has xnass dimension =2, leading us to a more
complicated OPE. The relevant terms are
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7„„'(p) = —, u, 'p p„z„+u,'p p„S': +( ,'uV„F„~ ,'uV„F„+u,'n S'„„)pp'. '

+uS Jsypv + u7 ~5vpp + uS J p epvpo+~ab(+1~5@'pv + u2 Jsvpp++3'J p epvpcr, ) (A2)

We use the following conventions: Fp„= e„„p FP, with Fp =— BpA' —8 Ap + f b, ApA The covariant . derivative is

given by 'D„Fp = O„Fp + fz A„Fp
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where

abc {f) (d)
fabc + &, dabc (A3)

(note that 17 E „=0 due to the Bianchi identities).
Applying the BJL limit to the preceding expression, we obtain

lim par„„(pj = if d T e'~'"(J„~(0,~/2j, J (0, —x/2jj

[ 1 (gvpEp0 + gvOEpi) + u2 (gpiE 0 + gpOE ')]p + (u3 +pEvo + &4 vEp0 + &5 +OEpv)

+up J5/igvo + u7 J5vgpo + us J &pvpo + 4b['vl J5pgvo + v2 Jsvgpo + v3 J & papo] (A4)

The equal time commutator for the p, = v = 0 case is
given by

i[J;,(0, «/2), J,'(o, —«/2)]

= —i(u, b'+ u2 ')B' V'h(x)

+[('4 + u7 )J50 + (~ b(v1+ v2) J50]$(x), (A5)

where B denotes the chromomagnetic field O' = Eo;.
The commutator for the space component of the vector
current and the time component of the axial vector cur-
rent is

elements of id, b, f, dE& "A& and S7r f b, JIt 0 coincide.
These results can be used to calculate the correspond-

ing Schwinger terms and covariantizing seagulls. Follow-
ing the procedure described in Ref. [5], we obtain

S„„. = —[u1 '(g„E„p+g„pE„' )

+ 2 (9Pa vP + 9PP n)v]n (A7)

[J;.(*/2) J.'(—*/2)l~( *)=&„.'~'"(*)+~„'...~ ~"'(*),

where the Schwinger term equals (the computation is
straightforward and only the results will be presented)

i[J05(0, «/2), J (0, —x/2)]

= iu2 'E' x Vb(x)

and the corresponding seagull is

(AS)

+[(usb' —u5 ')'D0B + u7 'J5+ 8 bv2J5)h(x),
(A6)

where E denotes the chromoelectric 6eld E' = Eo;.
These results are, as in the (1 + 1)-dimensional case,

manifestly gauge covariant. We have veri6ed that they
are consistent with the explicit loop calculations pre-
sented in [10]; for example the two-gauge-boson matrix

We also remark that (again following the procedure de-
scribed in Ref. [5]) when both currents are conserved
the requirement that the T* produce be Lorentz covari-
ant implies tLabc ~abc ~abc + ~abc + ~abc p, and
Lcg ll7 v$ v2 0 Finally we note that the con-
ditions under which the Schwinger terms cancel against
the seagull contributions to the Ward identities is simply
~abc + ~abc 0
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