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The chiral theory of mesons of two Bavors has been extended to mesons containing strangeness.
The theory has been studied at the tree level. Two new mass relations between vector and axial-
vector mesons have been obtained. In the chiral limit, the physical processes of normal parity and
abnormal parity have been studied. Because of the universality of the coupling of this theory many
interesting results have been obtained. In the chiral limit, theoretical results are in reasonable
agreement with data.

Chiral symmetry is one of the most important fea-
tures revealed &om quantum chromodynamics (QCD).
Based on chiral symmetry and the principle of minimum
coupling, a meson theory of two Aavors has been pro-
posed [1] and the theoretical results are in good agree-
ment with the phenomenology of pseudoscalar, vector,
and axial-vector mesons made of u and d quarks. In this
paper we generalize the study of Ref. [1] to K, rI, ri',
K*(892), P, Ki(1400), and fi(1510) mesons containing
the third flavor-strange quark. The paper is organized
in the following way: (1) the formalism of the theory;
(2) new mass relations between vector and axial-vector
inesons; (3) vector meson dominance (VMD) and kaon-

form factors; (4) decays of 7. lepton; (5) decays of P,
K*, Ki(1400), fi(1510), and rI' mesons; (6) decays of
K*(892) ~ K7rvr; (7) electromagnetic decays of mesons;
(8) summary of the results; (9) conclusions.

I. THE FORMALISM OF U(3)I, xU(3)& CHIRAL
THEORY OF MESONS

Using U(3)L, x U(3)R chiral symmetry and the min-
imum coupling principle, the Lagrangian of quarks of
three Havors and other fields has been constructed as

2 = g(z)[ip 0+ p. v + eoQp A+ p. ass —mu(2)]Q(z) + m, (p,
"p„, —+. ~"~„.+ a,". a„;+f"f„)

+ m2(K„' K'—"+ K,"Ki„)+ m', (P„P"+—f."f.„)+ @(x)l,g~p . Wg(x)1. + GEM + Zg + L],p,~„,

where a„= r;a'„+ A Ki„+ (s + ~As) f„+ (i

+ (-', + ~&s)~„+ ( —,
' —~i, As)P„, A„ is the pho-

toii field, Q is the electric charge operator of u, d, and s
quarks, W„' is the W boson, u = exp(psi(r;vr, + A K +
rt + g') j, and rn is a parameter. In Eq. (1) u can be
written as

u = —(1+p5)U+ —(1+ps)U,=1 1

2 2
(2)

where U = exp(i(v';m; + A K + q + g') ). In Eq. (1) the
vP are u, d, and s quark fields which carry colors and
other quantum numbers of quark. All other fields are
colorless. The physical fields related to a~ and v„will
be defined below. As mentioned in Ref. [1], in QCD
the boson fields v&, a~, and pseudoscalars are not funda-
mental fields and they should be bound state solutions
of QCD. Therefore, in Eq. (1) there are no kinetic terms
for those fields and the kinetic terms will be generated
&om quark loops (see below). As a matter of fact, the
relationship between boson fields and quark fields can be
found &om the Lagrangian (1). Taking the p' and a'„
fields as examples, and using the least action principle

bd
ha'„'

bC

b:.
we obtain the relationships1- .- 1-

p„= —
2 0&"Yg 0 a„= —

2 4'&"Yg 'Ysl.
m1 ml

Substituting these relations into Eq. (1), except for the
term —m@uvP, the hadronic part of the Lagrangian (1)
becomes the Nambu —Jona-Lasinio model [2]. The intro-
duction of the pseudoscalar fields into the Lagrangian (1)
is based on the nonlinear o model, where u of Eq. (1) is
a series of pseudoscalar fields. In principle, the relation-
ships between pseudoscalar fields and quark fields should
be found by the least action principle, but they are not
as simple as the relations shown above. This is the diKer-
ence between the present theory and the Nambu —Jona-
Lasinio model.

As in Ref. [1] the use of the method of path integral
in integrating out the quark fields leads to the effective
Lagrangian of mesons. In terms of dimensional regu-
larization, to the fourth order in covariant derivatives in
Minkowski space, the real part of the effective Lagrangian
describing the physical processes of normal parity takes
the form
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N, D r' Di „ t 1 N, D & Dim' —I
I

2 ——ITD„UD~Ut ——,—I' 2 ——
I
T(v„.v" +a„.a"")

(4~)' 4 g 2) " 3(4~)' 4 g 2)
Tr(D„UD Ut + D„UtD U)v"" + — ' Tr(D„UtD„U —D„UD„Ut)a""

2(4~)2 " " 2 4~ 2

N+ ' TrD„D„UD"D"Ut — ' Tr(D„UD"UtD„UD" Ut
6(4vr)' " " 12(4') 2

D„U'D"UD. U'D U —D„UD„U'D"UD" U')

+ m1(—p; p~; + u"u~ + a,. a~, + f~f&) + m2(—K* K' ~ + K1 K1&) + mz(—r/)&p" + f~f,&),

where

D„U = B„U —i [v„,U] + i(a„,U),
D„Ut = B„Ut —i[v„,Ut] —i(a„,Ut),

Vyv —)9gvv )9vv~ —i[vs) vv] —Z[ag) avj)

a~v = )9~av Bva~ —1[a~)Vv] —1[V~)a„],
D„D„U= 0„(D„U)—i[v„,D„U] + i(a, D„U),

D D„Ut = 0„(D„Ut) —i[v„,D„Ut] —i(a„,D„Ut)

Following Ref. [1], the effective Lagrangian describing
the physical processes with abnormal parity will be eval-

I

uated in terms of the quark propagators.
In this paper except for the kaon form factor f (q~), all

studies have been done in the chiral limit. In the chiral
limit, the following definitions [1] are used in this paper:

,D ( D)
16 (4vr)' 4 q 2) '

8 N, D t' D) 1 J"2

3 (4vr)2 4 q 2) 6m2

According to the arguments of Ref. [1], the physical me-
son 6elds have been de6ned as

1 ~ 1
pm —p, K' m —K',

g g

1
(d M —4J,

g
1 C

G Op 7r

1 C
, Kg„——B„E,g(1- 2.', )

2
vr m —vr, Kf

2 I
g

1 C

f~~, , f~ — &~na-
g(l —,', , ) ~

~2 c
f,„-+, , f,„——c)„r)„

g(1 —,.',.)
2 2K) r/ M f g ) t7 + f (6)

where 1)o ——( ~cos8— ) (~
and r), = (—~cos8 — ssin8)1)+ (—~sin8+ scos8)r)',
0 is the mixing angle of g and g . In the chiral limit,
we take f = f~ = f„= f„. In the chiral limit, the
following two equations of Ref. [1] are held in the case of
three Qavors:

II. NEW MASS FORMULAS OF VECTOR
MESONS AND ITS CHIRAL PARTNERS

In Ref. [1] two mass relations between a1, p and
f1(1285), u have been obtained

( 1 l 2
E2

Il —,Im = +m,
2vr g ) g

2gm
E' ( 2cl

gr
Following Ref. [1] we have

g = 0.35.

(8)

z'
, , I

m2/ —— , +m'.
2vrg r g

Using the same xnethod for obtaining Eqs. (11),we obtain
two other mass formulas

E'
, , Imx, —,+me. ,2~2g2 ) & g2

Use of the substitutions (6) leads to the physical masses
of vector mesons as

1 2 2 1 2 2 2
m = m = —m1, m&. ———m2, m@ ———mz. (10)p g2 g2

2 )I f) (1510)

If we input m, m~, and f, we obtain

(12)
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2
g

2mp

2
g 1
m2 4

(14)

where g and gz are defined in Ref. [1]. In order to com-
pare with this sum rule, the four mass formulas (ll), (12)

mf, (1285) = 1.27 GeV, ma, (1400) = 1.38 GeV,
m f (1510) = 1.51 GeV. (13)

The deviations f'rom data are about 1%. In Table I, the
masses of these mesons are obtained by taking g = 0.35.

Weinberg's first sum rule [3] is

can be rewritten as

2m
2g

m2m f, (1285)
2g

m2K (1400)
2ga

f (151O)
2ga

mp
2g
2m
2g

2mg y

2g
2

m@
2g

f2m',

g2(4g2 f2m2) '

f2m,'
g2(4g2 —f2m2) '

f2m',

g2(4g2 —f2m2) '

f2m',

g2(4g2 —f2m~)
'

mg+
mgo

mg&

mp

m@

g
m+1

m fy (1510)

(r') ~+
(r') ~

A+ (K~+, )

((K'.)
A+ (K,,)
((Ki's)
r(K+)
r(K.O. )

B(~ -+ K'(892)v)
r(~ -+ Kg (1400)v)

r(y ~ K'Ko)
r(P-+ K+K )

I'(K*(892) + K7r)
I'(K+* + K+p)
I'(K " -+ K p)

B(K'(892) w Km. 7r)

f&(1510) m K (892)K
r (Ky (1400) m K*(892)7r)

B(Ki(1400) ~ Kp)
B(Ki (1400) —+ Ku) )

r(K, ~ K~)

r(&' ~ &~+~-)
r(&' ~ &~'~')

r(n -+ ~~)
r(4 -+ n~)
r(p ~ nv)
r(
r(n' ~ wv)
r(n' -+ p~)
r(&' ~ ~&)

TABLE I. Summary of the results.

Experimental
186 MeV
138 MeV
494 MeV
498 MeV
548 MeV
958 MeV
770 MeV
892 MeV
1020 MeV

1402+7 MeV
1512+4 MeV

0.081(l + 0.05) GeV
0.34 + 0.05 fm

0.054 + 0.026 fm [11]
0.0286 + 0.0022

—0.35 + 0.15
0.03 + 0.0016
—0.11 + 0.09

0.256(l + 0.015) x 10 GeV
0.493(l + 0.016) x 10 " GeV

(1.45 + 0.18)%

1.52(1 + 0.03) MeV
2.18(l + 0.03) MeV

49.8 + 0.8 MeV
50.3(1 + 0.11) keV
116.2 (1 + 0.10) keV

0.53 x 10
35+15 MeV

163.6(1 + 0.14) MeV
(3.0+ 3.0)%
(2.0 + 2.0)'%%up

87.8(+0.12) keV
41.8(+0.11) keV

0.466(1 + 0.11) keV
56.7(1 + 0.06) keV
57.5(1 + 0.19) keV
7.0(1 + 0.26) keV

4.26(1 + 0.14) keV
60.7(1 + 0.12) keV
6.07(1 + 0.18) keV

Theoretical
Input
Input
Input
Input
Input
Input
Input
Input
Input

0.35 input
1510 MeV
1640 MeV

0.086 GeV
0.33 fm

0.0582 fm2

0.0239

—0.284
0.0245
—0.287

0.233 x 10 ~~ GeV
0.483 x 10 GeV

1.46%
0.373&0

1.11 MeV
1.7 MeV

39.4 MeV
43.5 keV
175.4 keV
&7x10

22 MeV
126 MeV

11.1'70

2.4'Fo

440 keV

85.7 keV
48.6 keV
0.619 keV
91.4 keV
61.4 keV
7.84 keV
4.88 keV
63.0 keV
5.86 keV



52 U(3)L, XU(3)~ CHIRAL THEORY OF MESONS 5187

III. VECTOR MESON DOMINANCE (VMD)
AND KAON FORM FACTORS

Il""(8—p— —0 po) + A"js
P

(
— Ii" (8„w —8—~„)+ A"j„j,

1 1 1 1
9) = 9~f, 2' f- (16)

the P dominance is derived &om Eq. (1):

I"" (~~4 ——-~ 4 ~) + A"if, fy =—

(17)

where the p meson couples to the current j&.
The electric kaon form factor can be studied by VMD.

The efFective Lagrangian of KKp consists of two parts:
kaons couple to the photon directly and kaons couple erst
to the vector mesons then the vector mesons couple to
the photon. In the chiral limit, the couplings between
kaons and p, u, and P mesons can be found &om Eq. (3):

Vector meson dominance (VMD) has been obtained
&om this theory [1]. Before this paper the Nambu —Jona-
Lasinio Lagrangian [2] has been employed to simulate
many properties of the VMD [4] and in Ref. [5] a lin-
ear o model has been used to unify many properties of
the VMD by computing various constituent quark loops
and working in the chiral limit. In these studies [4,5]
the vector mesons and pions are coupled to the quarks
and these couplings play the key role in obtaining VMD.
The Lagrangian [Eq. (1)] of this paper is different &om
Refs. [4,5]. In this theory the mesons are coupled to the
quarks too and the VMD is expected in this theory by the
same reason as in Refs. [4,5]. Comparing with Refs. [4,5],
the couplings between the mesons and quarks are deter-
mined in a di8'erent way.

In addition to the p and u dominance

~KKv P"(K+0„K + K B„K ),

+ u—)"(K+8„K + K B„K ),

+ p"—(K+0„K —K B„K ) (18)

1 m& 1 m 1 mp+z'(g') = — +-
3m —q2 6m —q2 2m —qCaP p

BI'~o (q')
Oq2

q2 —0

1 1

3m@ 6m2+ 2 , = —0.25 G V-',
2

BFKo
(r )~0 = —6

Bq
g2 —0

= 0.0582 fm . (22)

The comparison of (r2)~0 with data can be found in Ta-
ble I.

The VMD can be applied to study the form factors of
K ~ vrlv. Let us study K+ —+ vr lv first. The vertex of
K*(892)Km has normal parity and can be derived &om
Eq. (3):

In Eq. (18), Eq. (8) has been used. Using the substitu-
tions

e e ep„+ —-A„, (u„m —A„, Q„-+ —A„,
P JP

in Eq. (18), the direct couplings of KKp is obtained.
From the couplings —

2 &
I'„„(B„v„—D„v„) (v = p, u, P)

[Eqs. (16),(17),(18)], the indirect couplings of KKp can
be obtained. Adding these two couplings together, the
electric form factor of the charged kaon is found:

Because of Eq. (8) this form factor is normalized to be
one at q = 0 and the radius is determined to be

(r ) = + + =0.33fm . (21)
1 3=.

m@ m~ mp

The theoretical result agrees with the data [6] (see Table
I). In the same way, the electric form factor of the neutral
kaon is then derived:

Z~.~ 0 = ((7r O„K —0„—7r K )K+" + (~ B„K+—B„~ K+)K
g

2

c — '
i

1 ——
i

0 ~ ((O„K —8 K„)B"K
gf (4m) q g )

i ( 2c1
~

1 ——
~ ((0 7r cr„K —0"K 0„7r )K+" + (0„~ 0""K+—ct" ~ 0 K+)K„) .

8vrg ( g) (23)

In the decays of K —+ 7r/v, there are direct couplings KaW and indirect couplings KaK and K*TV. Using the
substitution obtained &om Eq. (1),

K~ -+ glV„sin0~ .g~
4

In Eq. (23), the direct coupling can be obtained. In terms of VMD, the coupling between K and W boson is derived
&om Eq. (3):
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—gg— ((B„K+—B„K+)8"W + (B„K„—O„K„)B"W+") .
1
4 (25)

From Eqs. (23),(24), (25) the indirect coupling is obtained. Adding the direct and indirect couplings together, the two
forxn factors of K+ ~ m lv are obtained:

f+(g') = 2 2 2f (q)= — (m —m, ),g2 m~. —q g2 m~- —q

m-'
A+ ———A =

2
——0.0239,

mg y

m m 0z+ ~ = —0.284.2+ mg+g
(26)

For K&& we 6nd the following quantities in the same way:

m2
f+(g') =, ', , f (g')-=—,, ( '. — '+),

g 2 m~. —q2 '
g 2 m&2. —q2

(27)

(28)

The comparisons with the experimental data are shown in Table I.

m2
A+ A- 2 0 0245

mg y

m' ™-"=—.287.
f+ m

In Eqs. (26),(27), the leading terms of chiral perturbation have been kept. The decay widths are computed to be

I'(K+s) = 0.233 x 10 GeV, I'(K,z) = 0.483 x 10 GeV.

XV. DECAYS OF 7 —+ K'(892)v AND 7 w K) (1400)v

In a calculation similar to w ~ pv and 7 ~ aqv [1], we obtain

I'(w -+ K'(892)v) = sin Ocg m~. m
~

1—

I'(& -+ Kiv) = G . 2 2 ( 1 l m&.
327r 2vr2g2) m~ ( m~2 )

~

1+2
~

=0.326 x 10 GeV,m' )
B(w ~ K~ (892)v) = 1.46%,

mlc
i
1+2 '

i
=0.831x10 GeV,m'

y

B(w ~ Ki (1400)v) = 0.373%.

V. DECAYS OF Q, K'(892), Kg(1400), AND fg(1510) MESONS

In this theory, the vertices of PKK, K'Km, KqK*x, KqKp, KqKur, and fq (1510)K*K contain even numbers of ps,.
therefore, they are the processes with normal parity and the vertices of these processes can be derived from Eq. (3).
In this section the calculation of the decay widths of these processes is provided.

VI. DECAYS OF P —+ KK

In the chira]. limit, the vertex of this process is derived from Eq. (3):

24,a@. = QIJ (K+8"K + K 0"K ).
i2 2

g
In deriving Eq. (30), Eq. (8) has been used. The numerical results of the decays are

0 01 (P ~ K K ) = 1.11 MeV, I'(P ~ K+K ) = 1.7MeV, = 0.66.I' + K+K
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VII. DECAY'S OF K'(892) m X'm
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In the chiral limit and using Eq. (3), the vertex of this process is derived:

l:Ic Ic = —(V 2~+(K„B"K —K„B"K ) + ~2' (K„B"K+—K+B"K )

+7r (K„B"K+—K+B"K —K„B"K + K„B"p,K )) .

The numerical results of the decay widths are

F(K' -+ K or+) = 25.4 MeV, I'(K' ~ K+vr ) = 14.0 MeV, It t ——39.4 MeV.

(32)

(33)

VIII. DECAY'S OF K'g(1400)

In the chiral limit, the vertex of Kq -+ K'vr is found from Eq. (3):

l:Jr, lr. = f g;~'(AK „~K "+Bp"p"K~„K ),
2 & 1 l '

2 2 1 2c1 f' 3
(ma, mz') I

1 ——
I I

I—
f q 2m2g2p '

q g p q 4vr'g2) '

2 /' 1 ) ' 1 ( 2c1
f g 2+2g2) 2vr2g2 ( g ) '

where mls is determined by Eq. (12). In deriving the expression for A [Eq. (34)], Eq. (12) has been applied. The
numerical results are

F(K& -+ K*+~ ) = 42 MeV, F(K~ m K' ~+) = 2F(K& m K'+~ ), F«, ——126 MeV. (35)

The vertex of K&Kp can be found from Eq. (3) and it is
just the formula obtained by rearranging Eq. (34):

I

A = —
(

1 —
) m&, —m&. —(m&, —m )

x
2c 3 ( 2ci
g 4vr2g2 ( g) J'

(36)

The decay width of K~ —+ Kp is calculated to be

I (Kq —+ Kp) = 19.3 MeV,

B(Kg m Kp) = 11.1(l + 0.075)%%uo.

In the same way, if we ignore the mass difFerence of p and
~ mesons we obtain

F(Kg -+ K~) = —I (Kg —+ Kp).3

The numerical results are

F(Kq m K~) = 4.12 MeV, B(Kq -+ K(u) = 2.4'%%uo.

(39)

Comparing F(Kq -+ Kp) and F (Kq -+ Ku) with
F(Kq ~ K'a), the former are much less than the lat-
ter. Except for phase space, the diAerences of the for-
mulas for these three processes are caused by the masses
of p, ~, and K* in the amplitude A. The cancellations
in A [Eq. (36)] cause the smallness of F(Kq -+ Kp) and
F(Kg m Ku)).

IX. DECAY OF Kx —+ KP

Using VMD [Eq. (16)], following vertex is derived from
the vertex of KqKv:

i &1 1 1) 2 f 1 ) '
2 2 2 2c 3 f 2c)

~&&y= —-el —+ ———
I

—
I

1 — » /
mz, ™KmK + 2 211 ——

I

~

2 (f~ f fy j f ( 2n. ~g~p ' ' g 4vr2g2 ( g )
The numerical result is

F(Kg m Kp) = 440 keV.

(40)

(41)
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X. DECAYS OF fg(1510) -+ K'(892)K

From Eq. (3), the decay amplitude of this decay is found:

1
(K+(p~)K* (») I~If~(p)) = —(2~)'~'(p —pi —p. ) /8m y Eg Ea.

1 / 1

f ( 2m2g

e„(p)e" *(Ag" + Bp~~p2),

( 2c) ( 3
') & g) &

(mg —mrs. ) l
1 ——

l l

1—

( 1 ) ' 1 ( 2c&B= ——l1—f. ( 2~2g2) 2~2g2 ( g)

I'(fq -+ %+K* ) = 5.48 MeV, I'
t, q

——21.9 MeV.

There are four channels in this decay and the numerical results are

(42)

(43)

XI. DECA@8 OF ~' -+ ~~~

In this theory, the vertex of this process contains four factors of p5. Therefore, this is a process of normal parity
and the vertex should be derived from Eq. (3). It is well known that the masses of the pion and q are proportional to
light quark masses [7], therefore, in the chiral limit, m, m„~ 0. However, because of the U(l) problem [8] m„, does
not approach zero in the limit of chiral symmetry. Therefore, in the chiral limit only the mass of the g meson can
be kept in the amplitude of q' ~ parer. The calculation shows that in Eq. (3) only the terms at the fourth order in
derivatives contribute to g' ~ gerber. Consequently, in the amplitude of this decay there is a factor of

~4 ~, . Therefore,
this theory predicts that the width of this decay is very narrow. The amplitude is found to be

( '(I ) '(I' )~(p)l~l~'(p')) = (2 )'~'(p' p —k ——I )
/16m@ Eq(ug(u2

8 2 1 ( 2cl'—
I

1 ——
I ( iq+q2+q)s+l 1 ——

If4(4~)' 2 ( g) ' ' '
q g) g'

2cl 1 t' 2cl 4c, , 1 t' 2cl-
l

1 ——
l +, q,'m„', + -

l

1 ——
l2E gr

( 2c)'
m'„,

g)

g'), l (q. + q. )m,

(44)

where q~2 = (p' —kg)2, q22 = (p' —k2)2, and qs2 = (p' —p)2.
The contribution of the quark masses to the mass of q'
is about 0.376 GeV; therefore, in the chiral limit m„
0.582 GeV. Using this value we obtain

I'(g' m ger+sr ) = 85.7 keV,
I'(g' -+ ga m ) = 48.6 keV.

In the range of (0.958 GeV)2 ) m2, ) 0, we obtain

(45)

22.1 keV ( I'(g' ~ qvr+m ) ( 145.2 keV,

12.5 keV ( I'(g' -+ gm vr ) ( 82.4 keV.

Equation (46) shows that, indeed, the decay widths are
always small and the data (see Table I) prefers a nonzero
I,„ in the chiral limit. This is consistent with the study
of the U(1) problem in m„~ [8]. Therefore, phenomeno-
logically, in the Lagrangian (1) a mass term of g' should
be added. The study of the U(l) problem could bring
something new to the present theory. However, this is
not the task of this paper.

XII. DECAY'S OF K'(892) m Kp AND Kmm

The decays of K* + Kp and Kurt have been studied in
Ref. [9] by using the gauging Wess-Zumino Lagrangian.
As mentioned in Ref. [1], the formalism obtained from
this theory is the same as the one in Ref. [9]. However,
in this theory the couplings are universal and VMD is a
result of the present theory and not an input. According
to VMD, the decays of K* -+ Kp are associated with
K* + Kv. Therefore, the processes of K* + Kp have
abnormal parity. The vertices of K*Kv can be found
&om the calculation of —K* (gA p"@), which is similar

g
to (u„(gp"@) in Ref.—[1]:

2g 7I

where P is a pseudoscalar meson and v' is a vector
meson. From Eq. (47) the following vertices are derived:
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r(K'* ~ K'&) = 175.4 1 eV. (52)

Using VMD [Eqs. (16),(17)], we find

ZIcp. ~+~ = — —s"" pK+BpK+B„A
4vr2g

The decay width is computed to be

r(K+* -+ K+~) = 43.5 l eV.

In the same way, we obtain

s""—PK OpK B„A,
27l g

and the decay width is

(4S)

(49)

(50)

The experimental value of the branching ratio of K* +
Kvrvr is less than 7 x 10 4 [6]. To understand so small
a branching ratio is a crucial test for the present theory.
There are three channels:

K-* -+ K-~'~', K-~+~-, K'~-~'.

The decay K * M K m m consists of K * + K
and K * + K m . The vertices are found from
Eqs. (47),(32):

l:g -~++.~0 ——— —8 K l9pK~ l9p7l
N, 2

2vr2g2 f
Z~ .Ic+ o = K—B"K+7r (53.)7t' p,

These two vertices lead to the following amplitude for
K-* ~ K-~'~'

(54)

where p', p, k~, and k2 are the momenta of K*, K, m, and vr, respectively. It can be seen that there is cancellation
in Eq. (54). This cancellation has been obtained in Ref. [9]. The calculated width is

I'(K * m K vr 7r ) = 0.214 keV. (55)

The second channel K * -+ K vr+m consists of three processes: direct coupling K *K+vr+vr and indirect
couplj. ngs: K ' ~ K *sr and K * ~ K sr+, K * + K p and p —+ vr+m . The direct coupling is derived &om
—K "(@A p„g) with a calculation similar to the one from which the direct coupling urvrvrvr has been found in Ref. [1]:

(
1 ——+, I

s"" K„4I' ~ p ~pp d.b.f.~.,
6"i „„, b

4~'« -r & g g')
where P stands for pseudoscalar field. Equation (56) leads to

i (2 l' ( 6c 6c2)&z-.z+ + — =—,] —I ]
1 ——+, [

s" PK„D„K+8 x Bp7r+
2 2vr2g q )" q g g' (57)

From Eqs. (32),(47) the following vertices are obtained:

K—~Ko~~+
2 27r g vr

K c)"K+
pg

Z~--lc+ po
——— ——s K„OpK B„p

N, 2

4vr'g'

0
Zpo~~ — E3jA p 7' 8 KQ )

g P

where Z~o is Rom Ref. [1]. These vertices lead to the amplitude

„„p, , 1 (2l'( 6c 6c2)
+ — = e' e&(p')p„'k+ —k p ~

—
~ ~

1 ——+
2&2~2g ( p ( g g'

N
~2g3 (pl k )2 ~2
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where p', p, and. k are the momenta of K *,K, and vr, respectively. The width is computed to be

I'(K ' m K sr+sr ) = 1.21 keV. (60)

In the same way, the amplitude of K * —+ K *sr vr is obtained:

gr~P I I 1 (25' 6 6e 6c'l
go — o = —s " ~e„(p')p'„A:(( k p ~

—
~

1 ——+f " " 2m'g ( y ( g g')
N 1 1

~2~2gs (p' —ko) 2 —m2~. (p' —k )2 —m2~.

~2K 1
m'g' (y' —p)' —m' )' (61)

where p', p, A:, and ko are the momenta of K *, K,
, and m, respectively. The width is calculated

XIII. ELECTROMAGNETIC DECAYS
OF MESONS

I'(K * m K vr ~ ) = 1.23 keV. (62)

The total width is 2.65 keV which is below the exper-
imental limit. From Eqs. (59),(61) it can be seen that
there are cancellations also in these two amplitudes. In
these processes there are subprocesses of normal parity
and abnormal parity and the relative signs between these
subprocesses have been determined without any ambigu-
ity. Because all the vertices are derived &om the I a-
grangian (1), we have a universality of the couplings in
this theory. Both the smallness of the phase space and
the cancellations cause the smallness of the branching
ratio of K* ~ Kvrvr.

In this section the processes P ~ gp, g m pp, q' m
~, up, and g' —+ pp are studied. They have been studied
in Ref. [9]. The formulas obtained in this theory are the
same as the ones derived from the gauging %'ess-Zumino
Lagrangian in Ref. [9]. However, as mentioned above, in
this theory there is universality of couplings and VMD
is not an input. In the vertices of these processes the
number of p5 is odd and they are processes of abnor-
mal parity. In Ref. [1], (vjpsvj) has been evaluated [see
Eq. (177) of Ref. [1]]. In the same way (QAsp5@)) can
be computed. From (gpsg) and (@Aspsg) the vertices
of gvv and g'vv are found to be

N 4
(4vr)2 g2

(4m. )2 g2

sin8+ cos8 (B„~„g~p + O„p'„8 p&)—
3

(cos8 + sll18 (0~(d~g~lrJp + Opp (9~pp) +

sin8+ cos8 B„P 0 $~3 )
cos8 — sin8 0„$„0P~, (63)

3

I'(n ~ vv) =

"l2
16m s f2.2 m„, (

2
16vrs f2,

sin8 — cos8
3

cos8 + sin8
3

ms~ t' m'„l
'

1

—sin8 + cos8

n m' ( m')1—
96m4g2 f2

i

m2 )
—sin8 + cos8
3 3 j

where 8 is the mixing angle between g and g'. Combining
VMD [Eqs. (16),(17)] and Eqs. (63), the decay widths of
the physical processes are found:

m,' ( m„'&'1—

x — —sin8 + cos8
)

9 m'„, t' m,'(i
'

(x —cos8 + slll8
3

I'(p m gp) =

I'(q' m urp) = m„, ( m."i'
1—

32~4g~ f2, ( m2, )

x cos8 + sin8
3 )

(64)

There are two values for the mixing angle 8 [6]. 8 = —10
&om the quadratic mass formula and 0 = —23 &om
the linear mass formula. According to Ref. [10], the two



U'(&)L, X U(3)g CHIRAL THEORY OF MESONS 5193

photon decays of g and g' favor 8 = —20 . In this theory,
8 = —20 gives a better fit too. In the chiral limit, we
take f„=f„=f The numerical results are shown in
Table I.

XIV. CONCLUSIONS

In this paper two new mass formulas have been ob-
tained. The theoretical values of the hadronic decay rates
are lower than the data. The worst one is P ~ KK which
is less than the data by 30%. The corrections &om the
strange quark mass should alleviate these deviations. In
Ref. [7] the corrections of the strange quark mass to flc
and f„have been studied. All other results agree with
the data well. In particular, this theory provides a bet-
ter understanding of the smallness of I'(Kq ~ Kp, K~),
I'(K* ~ Kz.z) and the decay of rI' ~ parer. The values

for f, m, m„, m~, and g are not only inputs here; they
are also inputs of Ref. [1]. It should be pointed out that
the introduction of vector and axial-vector fields to the
theory is not based on gauge invariance, but on the min-
imum coupling principle. This opens a door to introduce
other mesons to the theory. In the chiral limit, the cutoK
determined in Ref. [1] is 1.6 GeV. The mass of fq (1510) is
closer to this value. However, we still obtain a reasonable
result for the decay fq(1510) -+ K'K.
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