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A U(2)L, xU(2)R chiral theory of pseudoscalar, vector, and axial-vector mesons is proposed and
studied at the tree level. VMD is a natural result of this theory. The physical processes of normal
parity and abnormal parity have been studied by using the same Lagrangian leading to a universality
of coupling. Two new mass relations between vector and axial-vector mesons have been found.
Weinberg's first sum rule and new relations about the amplitude of az decay are satisfied. The
KSFR sum rule is satisfied reasonably well. The p pole in the pion form factor has been achieved.
The theoretical results for the processes p —+ mvr, cu —+ mvr, aq —+ pm, and vrp, 7 —+ pv, w —+ aqv,

-+ pp, &u ~ rry, p + rrp, fi ~ prrrr, fi ~ rlrrrr, p ~ rIp, u -+ rip are in good agreement with
the data. The arm scattering lengths and slopes have been found to be the same as obtained by
Weinberg. In particular, the p resonance in the amplitude T& of vrvr scattering has been obtained
from this theory. Two coefBcients of chiral perturbation theory have been determined and they are
close to the values used in chiral perturbation theory. This theory has dynamical chiral symmetry
breaking.

PACS number(s): 11.30.Rd, 13.25.—k, 13.75.Lb, 14.40.—n

Chiral symmetry is one of the most important features
revealed from quantum chrornodynamics (QCD). Chi-
ral perturbation theory (CPT) is successful in describ-
ing many aspects of pseudoscalar meson physics [1,2]. It
has been well known for a long time that vector meson
dominance (VMD) [3] provides a fruitful mechanism in
understanding the electromagnetic properties of hadrons.
A chiral Lagrangian has been used to study physics
of vector and axial-vector mesons before the advent of
QCD [4]. Weinberg's sum rules [5] of p and ai mesons,
and the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin
(KSRF) sum rule [6] of the p meson are also among ear-
lier works in this field. On the other hand, in Ref. [7] in
terms of large N, expansion 't Hooft argues that QCD
is equivalent to a meson theory at low energies. In prin-
ciple, all mesons should be included in this meson the-
ory. Of course, in chiral perturbation theory the efFects
of other mesons have been included in the coefBcients
of the Lagrangian up to O(p ). As a matter of fact, in
Ref. [8,9] the authors have found that the vector meson
dominates the structure of the phenomenological chiral
Lagrangian. Various efFective theories including p and aq
mesons have been studied in the past decade [10]. In Ref.
[11] a new realization of chiral SU(3)L, xSU(3)~ symme-
try has been proposed, in which the light vector mesons,
as well as the pseudoscalar mesons, are intimately in-
volved. The Wess-Zumino Lagrangian [12] is an impor-
tant part of the effective meson theory. Witten [13] and
other authors [14,15] have generalized the Wess-Zumino
Lagrangian to include vector and axial-vector mesons by
requiring gauge invariance. In Refs. [14,16] the general-
ized Wess-Zumino terms have been used to study meson
physics, where abnormal parity is involved. In this pa-
per a U(2) L, x U(2) ~ chiral theory of pseudoscalar, vector,
and axial-vector mesons has been studied and we try to
unify the phenomenology of mesons within this theory
in the chiral limit. The paper is organized as follows:
(1) formalism of the theory; (2) definitions of the phys-

ical fields; (3) new mass relations between p, ai, and ur,

fi(1285); (4) VMD; (5) decays of p ~ 2rr and cu ~ 2n",

(6) pion form factor; (7) decays of ai -+ prr and ai ~ err;
(8) reexamination of Weinberg's sum rules; (9) decays of
v ~ pv and v -+ aiv; (9) rrrr scattering and determina-
tion of the coefficients of CPT; (10) decays of u ~ prr,
io m err, p + err, and rr m pp; (11) decays of fi(1285);
(12) decays of p -+ rjp and io ~ rip; (13) large N, ex-
pansion; (14) dynamical chiral symmetry breaking; (15)
derivative expansion; (16) summary of the results.

THE FORMALISM OF U(2)&xU(2)& CHIRAL
THEORY OF MESONS

In this paper only two Havors are taken into account
and we do not need to worry about the processes forbid-
den by the Okubo-Zweig-Iizuka (OZI) rule. The rl' meson
will not be discussed. Therefore, the U(1) problem is not
an issue of this paper. In Qavor space the mesons are
coupled to quarks only. The background Geld method
is a convenient way of deriving an efFective Lagrangian
of mesons. The ingredients of this effective meson the-
ory are pseudoscalar mesons (pions and u and d quark
components of rl), vector mesons (p and u), axial-vector
mesons [ai and fi(1285)], quarks, lepton, photon, and
W bosons. Using U(2)L, xU(2)R chiral symmetry and
the minimum coupling principle, the Lagrangian is con-
structed as

l: = vP(x)[ip cl+ p v+ eoQp A

+p . ass —mu(z)]Q(x)

+ mo(p,"p„; + ar"ar„—+ a,"a„;+ f"f„).
2

+1((x)Lg p Wv/r(x)L, + l:EM+ l:~+ l:i pto, (1)

where a„=v;a'„+ f„, v~ = 7;p' + u~, A& is the photon
field, Q = ~2+ s is the electric charge operator of u and d

0556-2821/95/52(9)/5165(19)/$06. 00 52 5165 1995 The American Physical Society



5166 BING AN LI 52

quarks, W' is the W boson, and u = exp(its(w;vr; + rl));
m is a parameter. In Eq. (1) u can be written as

(2)

where

= —p - 8+ zp v —zp ap5 + mu,

u = exp( —z)ps(~;m; + g). (7)
where U = exp(i(v;. vr; + rI)). Since mesons are bound
states solutions of QCD they are not independent de-
grees of freedom. Therefore, in Eq. (1) there are no ki-
netic terms for meson fields. The kinetic terms of meson
fields are generated kom quark loops. Using the method
of path integration to integrate out the quark fields, the
efFective Lagrangian of mesons (indicated by M) is ob-
tained:

From this effective Lagrangian it can be seen that the
physical processes with normal parity are described by
ZR, and the ones with abnormal parity are described by

. In terms of Schwinger's proper time method [17] we
have

(8)

exp z d xZ = d d exp i d xZ . 3

The functional integral is used and the quark fields are
regulated by the proper time method [17]. A review of
this method has been given by Ball [18]. This integration
can be done in Euclidean space (leaving out the photon
and W boson first):

8& ——ln detP,

where

9 —ip v —ip ap5 + mu.

Equation (4) can be written in two parts:

1 t 1
ZR, = —lndet(17t17), Zi = —lndet(17/'Dt),

2
'

2

where the trace is taken in color, flavor, and Lorentz
space. Inserting a complete set of plane wave and sub-
tracting the divergence at w = 0, we obtain

1 D d p 27

x (e —e ')b (x —y) ~„

where
I

'V = p 8+ zp p —zp. v —zp - cp5+ mu,
i)It = -~ 8 —z~. J +z~. v —z7-Q75+mu,

Lp ——p +m. (10)

In Ref. [18], the Seeley-DeWitt coefficients have been
used to evaluate the expansion series of Eq. (9). In this
paper we use dimensional regularization. After complet-
ing the integration over w, the Lagrangian ZR reads

1 D d p w 1

+n=1

x Tr((P. B —zP v+ zP ass)(P. 0 —zP v —zP. ass) + 2zP. (0 —zv —zaPs) + mP Du)

where p ~ Du = pI'D„u and

D~u = Opu —z[v~, v] + z(a~, uJ. (12)

To the fourth order in covariant derivatives in Minkowski space the Lagrangian takes the form

N, ~D ( D) „ t 1 N, D f D)
m —I'

(
2 ——

)
TrD„UD"U —— ' —I'

(
2 ——

[
(2w„„u""+ Trp„p"" + 2f„ f""+ Tra„„a"")

(4~)' 4 q 2) " 3(4vr)' 4 I 2 j
Tr(D„UD„Ut + D„UtD U jp "

2 4vr ~

+— ~Tr(D„UtD U —D„UD„Ut)a "+ TrD„D„UD»"Ut

N
12(4~)' Tr(D UD"UtD„UD"Ut + D UtD~UD„UtD"U —D UD„UtDI"UD"Ut}p p v

+ mo ((u„(u„—+ p' p'~ + a'„a'~ + f~f"),
2

(13)

where
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D„U = O„U —i[p„,U] + i(a„,U),
D„Ut = D„Ut —i(p„, Ut] —i(a„,Ut),

~pv ——t9p(uv v~p )

fp = ~wf —~ fp
pp~ = ~pp~ ~~pe i[ps ~ p~] [ay~ a~])

apv ~gsav elva@ %[ager pu] l[ppo au]s

D D„U = 0„(D„U)—i[p„,D„U] + i(a, D„U),
D~D„Ut = B„(D„Ut)—i[p~, D„Ut] —i(a~, D„Ut).

There is a correspondence between the schemes of reg-
ularization used in this paper and in Ref. [18]. Using
this correspondence and transforming the formalism of

I

Ref. [18] to Minkowski space, it can be found that except
for the mass terms this formalism [Eq. (13)) is the same
as the one presented in Ref. [18].

The imaginary Lagrangian [Eq. (6)] describes the phys-
ical processes with abnormal parity. The generalized
Wess-Zumino Lagrangian should be derived &om l'.

y

The mass terms of the vector and axial-vector fields are
part of l:R, [Eq. (13)] therefore, if we take the vector and
axial-vector fields as gauge fields technically l'.

p would
be locally U(2)1, x U(2)~ gauge invariant. We can com-
pute l.y without the vector and axial-vector fields first,
then add these fields into l.y by requiring gauge invari-
ance as in Ref. [13]. DifFerentiating 2& [Eq. (6)] and
inserting a complete set of plane waves we obtain

D
bC& = — Tr&[p +m —8 —2ip. a —m(q. Bu)] D 8D

1 d p 2 2 2 1 t
2 (2 )~

—[p2 y m2 —0 —2ip 0+ m(p Ou)] Db'Dt),

where D and Dt are given in Eqs. (10) without the vector and axial-vector fields. From this formula an expansion
which is similar to Eq. (11) is obtained as

D ). . .Tr([8'+ 2ip. 8+m(p. Bu)]"(—p 0 —ip p+ mu)mbu

—[8 + 2ip. 8 —m(p. Bu)]"(p. 0+i'd p —mu)mhu).

Nonzero terms come from n = 4 and in Minkowski space we have

P PT g UUtg UUtg UUtg UUtgUUt
487r2

In order to finish this variation a new parameter v. has to be introduced and U is a function of x, y, z, t, and ~. When
'T = 1 U becomes physical. The expression of l p at n = 4 is just the form of the Wess-Zumino Lagrangian given by
Witten [13]:

P~T,g UUtg UUtg UUtg UUtg, UUt
240vr2

As pointed out by Witten [13], the boundary of the inte-
gral is a five-dimensional disk and the Minkowski space is
the boundary of the disk. Following Ref. [13] the vector
and axial-vector fields can be added to the Lagrangian
by trial and error. In Ref. [14] the Bardeen form of the
anomaly [19]has been accepted and an arbitrary constant
in their formula has been chosen to be one. The authors
of Ref. [14] claim that their Wess-Zumino Lagrangian
with spin-1 fields agrees with Witten s expression [13]
except for an inadvertently omitted term. Therefore, the
Wess-Zumino Lagrangian with spin-1 fields is obtained
&om the Lagrangian [Eq. (1)] and it is the leading term
of l:y in derivative expansion.

All the vertices of the meson physical processes of nor-
mal parity can be found &om ZR, [Eq. (13)] and all the
vertices of abnormal parity can be derived from l'.

p . l.R
and Zi are derived &om the same Lagrangian [Eq. (1)].
On the other hand, the meson fields are coupled to corre-
sponding bilinear quark fields in the Lagrangian [Eq. (1)]
and both the meson vertices of normal parity and abnor-
mal parity can be found by bosonizing the bilinear quark
fields of these couplings in terms of the quark propagator
determined by Eq. (1). In this paper both methods ob-

I

taining the vertices will be employed and it will be shown
that the vertices obtained by difFerent methods are the
same.

DEFINING PHYSICAL MESON FIELDS

In Eq. (13) there are divergences. The theory studied
in this paper is an effective theory and it is not renor-
malizable. In order to build a physical efFective meson
theory, the introduction of a cutofF to the theory is nec-
essary and the cutofF will be determined in this paper.
We define

I 2 N 2D ( D)
16 (4vr)™4 I, 2) '

8 % D f D) 1I"
3 (4~)~ 4 q 2) 6m'

(14)

The relationship between the cutoff and E, g will be ex-
plored. From the kinetic terms of the meson fields in Eq.
(13) we can see that they are not physical. The physi-
cal meson fields can be defined in the following way that
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makes the corresponding kinetic terms in the standard
form:

1 ( 1 ) ' cf„m —
~

1 —
~

f„——B„g.
g ( 2vrzgz) g

(23)

2 2
71 ) g M g)

2= 2=1 2m m mo ~P ~ g2
(17)

We can also make a transformation to ai and fi fields:

1 1
p M —p) (d M —Cai)

g g

where f and f„are pion and i) decay constants, and in
the chiral limit we take f = f„. Use of these substitu-
tions leads to the physical masses of p and ~ mesons

After the transformations [Eq. (19)], in order to make
the pion kinetic term in the standard form, in the chiral
limit the following equation must be satisfied:

Z' ( 2c)' I » f.'/1 ——
/

+ —mc
E g) (24)

Equation (24) makes the kinetic term of the i) meson
field in standard form too. Equations (20), (24) can be
simplified as

1 ' 1 2gm
(25)

/2
t9p~ia

2g

comes from the first term of Eq. (13). The transforma-
tion

a' M a' —cO~m'

is used to erase the mixing. In the chiral limit, c is de-
termined by canceling the mixing term

p2
2g

m2+— (20)

There is a siinilar mixing term between f~ and B~g and
the transformation

f„-+f„—cB„g

However, there are other factors for the normalizations of
axial-vector fields. In Eq. (13) there is mixing between
a'„and B„vr;, f„and B„i7. In the chiral limit the mixing

F' ( 2c)
f.' & g) (26)

NEW MASS FORMULAS OF VECTOR MESONS
AND ITS CHIRAL PARTNERS

, , /
m.' =, +m,'.(

27l g g
(27)

In the Lagrangian [Eq. (1)] the vector mesons and
axial-vector mesons are chiral partners. However, it can
be seen from Eq. (22) that vector and axial-vector meson
fields behave difFerently. Because of Eqs. (22), (23), in
the couplings of axial-vector fields to others there is an
additional factor (1 —1j2vrzgz)

The physical masses of vector mesons are defined by
Eq. (17). For the masses of axial-vector mesons there are
three contributors: the mass term in the Lagrangian [Eq.
(1)]; the contribution of the first term of the Lagrangian

[Eq. (13)], which is —,; and the normalization factor

(1—z» ) . By putting all these three factors together
we find the a~ mass to be

is used to cancel the mixing term. In the chiral limit, c
of this formula is the same as in Eq. (20). Prom the term

In the same way, we obtain the mass formula of the fi
meson:

TrD D„UD D~Ut
6(4~) z

/

1 — /m) —— +m
I 2m gz) g

(28)

of the Lagrangian [Eq. (13)], in the chiral limit another
term related to the normalization of a' field is found,
which can be written as

1 (B„a'„—B„a'„)(8"a'" —0"a'") . (21)

By combining this term with the kinetic term of a in
Eq. (13), the physical a'„ field is defined as

If we ignore the mass difference of p and u mesons &om
these two mass formulas we obtain

mf —mQ ~

The deviation of this relation from physical values (m
1.26 GeV and my ——1.285 GeV) is about 2%.

In the chiral limit, there are three parameters in this
theory, which can be chosen as g, f, and m~. We could
take f and m~ as input and choose

1 ( 1 l *, ca'„m —
~

1 —
~

a'„——O„vr'.
g ( 2''g') " g

"
In the same way, we obtain the physical f„ field

(22)
g = 0.35

to get a better fit. The couplings in all the physical
processes described by ZR and Zy are fixed by g and
c. This is the universality of coupling in this theory.
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VECTOR MESON DOMINANCE (VMD) 1 1 1 1

fp2' f 6 (36)

The formalism of VMD can be derived from the La-
grangian [Eq. (1)]. Before this paper the Nambu —Jona-
Lasinio Lagrangian [20] was employed to simulate many
properties of VMD [21] and in Ref. [22] a linear cr inodel
was used to unify many properties of the VMD by com-
puting various constituent quark loops and working in
the chiral limit. In these studies [21,22] the vector mesons
and pions are coupled to the quarks and these couplings
play the key role in obtaining VMD. The Lagrangian [Eq.
(1)] of this paper is difFerent from Refs. [21,22]. In this
theory the mesons are coupled to the quarks too and the
VMD is expected in this theory by the same reason as
in Refs. [21,22]. Comparing with Refs. [21,22], the cou-
plings between the mesons and quarks are determined in
a different way.

From Eq. (1) it can be seen that except for the kinetic
term of the photon, photon and vector mesons always
appear in the combinations

The ratio of —to —is 1:—, the same as the quarkfp f 3 )

model. The comparison between theoretical and experi-
mental values of fp and f can be found in Table I. The
photon-vector meson couplings shown by Eqs. (35) are
just the ones proposed in Ref. [23]. On the other hand,
there are interactions between p and ~ mesons with other
mesons; in general, these interactions can be written as

i„+~ i„.
Therefore, in addition to the direct coupling of the pho-
ton and p meson [Eq. (35)] another type of interaction
between photons and other mesons can be found by the
substitution [Eq. (32)]

p, .o—A g„+ —A„g„.
P 4P

1 o 1 1 1—p„+ —eA„, —(u„+ —eA„. (31)
The complete expression of the interaction between the
isovector photon and mesons is

Therefore, the interaction of the photon with other fields
can be found &om the interactions of p or u with other
fields by using the substitutions

F""(0 p——(9„p ) + A"j
P

(37)

f, 1 l (,8 p„+ —eogA —t9 p + —eogA~
) ~

' )
1 f 1 i ( 1

c)p I Ld + —epgA —8 (i)& + —epgAp, . (33)
4 " 6 "~ "~" 6

In order to make the kinetic term of the photon field in
standard form, it is necessary to redefine the photon field
and the charge to be

1
f 5e2 2$

A„-+
i
1+

18
5e2pg'5 '

A„, epee~ 1+

eoA~ ~ eA

From Eq. (33) the couplings between the photon and
vector mesons are derived:

1 e
Fi (~op ~ pp)2 p

1 e
Fpyi(c)~id~ —(9ii(d p), —

p 1
p„—+ —egA„,

2
1~„—+ —egA„.
6

Incorporating the photon field into the Lagrangian [Eq.
(13)], from the kinetic terms of pP and u mesons in the
Lagrangian we obtain

This is the exact expression of VMD proposed by Sakurai
[3]. In the same way the isoscalar VMD is obtained:

F" (8 &u ———(9„cu ) + A"j (38)

1
iy 8+ —y v(v) + y. v(v)yv —mv(v) j sy(v, y)

g
= b4(x —y), (39)

where a„ is defined by Eqs. (22), (23). In the momentum
picture we have

The reason leading to the explicit expression of VMD
in this theory can be manifested in another way. In
the Lagrangian [Eq. (1)] the vector mesons are coupled
to the quark vector currents. As mentioned above, the
meson vertex obtained from l'.R can be obtained from
the bosonization of the quark vector currents. It is well
known that in @CD the electric current takes the form
of

1- 1—
WQ&p@ = 4»wpW + 4'—w~0—

2 6

which is in the Lagrangian [Eq. (1)]. The electric current
@Qp„@can be bosonized in this theory. In Ref. [24] we
have developed a method to find the effective currents in
the case that only pseudoscalar fields are taken as back-
ground fields. In this paper this method is generalized
to include vector and axial-vector mesons. From the La-
grangian [Eq. (1)] the equation satisfied by the quark
propagator is obtained:

where
1

s~(z, y) =
(2~)4

d4ye '~(* ).~(x, p)- (40)
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Equation (39) becomes

~

~

1
ip . ii + p .p + —p v(z) + p . a(z)ps —mv(z) )g

xsp(z, p) = 1. (41)

The leading terms of Eq. (44) are obtained at n = 3 and
the efFective currents take the forms

(0~ ~ 0) = e~'p„'+ui„', (A 4) = g~'~ +ai„.
(45)

Equation (41) is solved

sz(z, p) = sz ) (
—)" (kY. B+ —7 v(z)

n=O g

+p. a(z)ps s~ (42)

In obtaining the first term of Eqs. (45), Eq. (15) has
been used. In Eq. (45) j and j have been defined as
the rest parts of the currents and j„will be evaluated
explicitly below. From Eq. (1) it can be seen that jo
couples to p„and j„couples to cu. Therefore, these two
currents are the currents mentioned in Eqs. (37), (38).
After getting rid of total derivative terms we have

where

p ~ p —mu
p2 —m2 (43)

In terms of Eqs. (40), (42) the bosonization of quark
electric current is done in the following way:

eA" gQp„Q) = —— I"""(O—„p„—(9„p„)+ A"j„
P

+— F""—(0—~„—O„u) ) + A"j

(46)

This is the same as Eqs. (37), (38).

g (z)7-s f„Q(z)) = i Tr7.3+ps j'(z—, z),

g(-)~,~(*)) = -'~~. (*,*) (44)

THE DECAYS OF p ~ m~, co -+ mm, AND KSFR
SUM RULE

In this theory the pion is associated with p5 [see Eq.
(1)j and only even numbers of ps involved in parer vertex

mp

mn

g

ma
mfa

vr form factor
Radius of m

gc~
g+7

r(p ~ ~~)
r(

TABLE I. Summary of the results.

Experimental
186 MeV

769.9+0.8 MeV
138 MeV

547.45+Oz19 MeV

781.94+Oz12 MeV
1230+40 MeV
1282 + 5 MeV

Consistent with p pole
0.663+0.023 fm

0.116(1+ 0.05) GeV
0.0359(1 + 0.03) GeV

151.2 + 1.2 MeV
0.186(1 + 0.15) MeV

Theoretical
Input
Input
input
Input

0.35 Input
770 MeV
1389 MeV
1389 MeV

p pole
0.63 fm

0.104 GeV
0.0357 GeV

135 MeV
0.136 MeV

I'(a, m per)
I'(ai m p)r)
-"(ai m per)
I'(~ -+ ai v)
I'(~ -+ pv)

I'(m' -+ pp)
a (form factor of 7r ~ pp)

r(~ ~ ~&)
r(p~ v)

r(~ ~ ~~~)
I'(fi m pvr7r)

B(fi —+ rim. vr)

I'(f, -+ pvr7r)

B(p ~ Vn)
B(u) m P)7)

400 MeV
(640+246) keV
—0.11 + 0.02

(2.42 + 0.76) x 10 GeV
(0.495 + 0.023) x 10 GeV

7.74(1 + 0.072)eV
0.032+0.004

717(1+0.07) keV
68.2(1+0.12) keV

7.43(1+ 0.02) MeV
6.96(1+0.33) MeV

(10+')%%u

(3.8 + 0.7) x 10
(8.3 + 2.1) x 10

325 MeV
252 keV
—0.097

1.56 x 10 GeV
4.84 x 10 GeV

7.64 eV
0.03

?24 keV
76.2 keV
5 MeV

6.01 MeV
1.15x 10
18.5 keV

3.04x 10
6.96 x 10
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occur. Therefore, the vertex of purer can be found kom
Eq. (13), which is

2 2, , (' 2c)'
e;,—i,p,

"7rj0. „7rI, + 4' c —
~

1 ——
Ig)

where m = 2(m + m ). The decay width is

J m
I'((u m msgr) = sin 81'(p m arm) = 0.136 MeV,

p3 m2

x c~~yp. t9~71~0~~7i y.P (47) (56)

In deriving Eq. (47), Eq. (26) has been used. For the
decay of p ~ am the mesons are on mass shell and in the
chiral limit Eq. (47) becomes

Ijt
8p»» —fp»»eij ypi 7lj Bgs rrg,

where p* is the momentum of the pion when the mass
of p is m and p is the momentum of the pion when
the mass of p is really mp. The experimental value is
0.186(1 + 0.15) MeV.

m,'f = — 1+ 1 —— —4vr c
g 27r'f2 ( g )

(48)
PION FORM FACTOR

The choice of g = 0.35 makes

7l 7C

g

Using Eq. (48) we obtain

(49)
According to VMD [Eq. (37)], the vertex of vrvrp con-

sists of two parts: direct coupling and indirect coupling
through a p meson. The Lagrangian of direct coupling
can be found either from Eq. (13) or by substituting
p -+ j A in Eq. (48):

f,'.. ( 4m.'I'(p -+ ~sr) = mp 1 — = 135 MeV. (50)
48vr ( m2 ) 7lW p,63jk A '7t j t9p 71 Q ~ (57)

The experimental value is 151 MeV and the deviation is
about 10%%uo. The KSFR sum rule [6]

=1 2
gpss = fp»»f» (51)

is the result of current algebra and PCAC (partial con-
servation of axial vector current). From Eq. (35) we
have

Because of the coupling —
2 &

F„„(0"p"—rj"p") the indi-
P

rect coupling of ararat is proportional to q (q is the photon
momentum); therefore the charge normalization of sr+ is

satisfied by ' = 1. The Lagrangian is
fp

l: = (F""(~—~p—-——~-p~))+ l--~+ l'-~-. (58)
2 f P v v P

=1 2
gp~ = —gm .p (52)

The pion form factor is found to be

Substituting Eqs. (49), (52) into the KSFR sum rule we
obtain F-(q') = (59)

g =2, g =0342.
m p

(53)

Comparing the value of g with Eq. (30) it can be seen
that the KSFR sum rule is satisfied reasonably well.

In the chiral limit, the mixing between ~ and p is
caused by the electromagnetic interaction. The La-
grangian of this mixing is

VMD results in the p pole in the pion form factor [25].
The radius of the pion is

Q(r') = 0.63 fm.

The experimental value is 0.663 + 0.023 fm [26].

l:; = egF""(rj„p„——o—r„p„) — egF""(B„ur„—8—(u„).
4 " 12

(54)

The mixing angle is found from Eq. (54):

DECAYS OF A) m pm AND mp

3 0.'g m
sin20 =

m2 —m2 '
p

0 = 1.74, (55)

The decay aq —+ per is a process with normal parity. In
the chiral limit, this vertex is derived &om Eq. (13):

l-a, -+p» = &ijk(Ao; pjgs7rie + +&; pjrj~v7rie)~
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A= —1
2 (
f. ~

1

21I g ) g
1

27l g ) g

2vr g2)

2c 3 ~ 2cl—+, , ~

1 ——
~ (m.' —m,')

g 4vrg ( g)
2

+ m
2K g

, ( 2cl( 3
(m.' —m', )

g 47r2g2) '

m 2c 3 ~ 2cl+. . .——(s- u. +u- s-)-, » ~

——u. u. )27r g g 27r g ( g )

2cl
f ( 2vr2g2) 2vr2g2 ( g )

(61)

The three expressions of A in Eq. (61) have different
uses in this paper and in obtaining the last two expres-
sions of A, Eq. (27) has been used. The width of the
decay is calculated to be 326 MeV which is comparable
with data [27]. From Eq. (61) it can be seen that there
are s wave and d wave in this decay. The ratio [28] of
these two waves obtained in this theory is

of c [Eq. (25)], it can be found that the left hand of the
equation [Eq. (65)] is just 2m2B. Therefore, current
conservation in the process of aq ~ vrp is satisfied. The
decay width of a~ —+ vrp is computed to be 252 keV. The
experimental value is 640 + 246 keV [31].

Using ZRe the decay width of az ~ avr can be calcu-
lated. It is found that the branching ratio is 5 x 10
which is consistent with data 0.003 + 0.003 [32].

pm'8 1 mp(mp+Ep) mp
p~d 3 A(1 + 1 P»

)
B TA»

3m (m+z) 3m
= —0.097.

(62)

REEXAMINATION OF WEINBERG'S SUM
RULES

The quark model [29] predicts that —" = —0.15, while the
experimental value is —0.116 0.02 [30].

The vertex of ajL ~ vrp is obtained by substituting Eq.
(32) in Eq. (61):

C,~ ~ = —esji, (Aa A„erg + Ba A 0„~7ry),

gp g 1 f2
2 2

(66)

Prom chiral symmetry, current algebra, and VMD
Weinberg has found the first sum rule [5]:

3—+ 22 1 ——
g 4vr2g2

~ g )
(m' —q*)),

1

A= —1— +
f~ ( 2K g ) g 27I g

where

( —i j A
'Yp4' Pg = gp~p~ij )

~i j0 %jan 'yp fs I'P ap ga'epbij ~ (67)

A(q = 0) = mB. — (64)

The left-hand side of this equation can be written as

2 ( 1 ) ' f 2c) ( 1—
/

1 — 1 ——
/

1 — m —mf ( 2+2g ) ( g ) ( 2vr2g2)

where q is the photon momentum and A is obtained &om
Eq. (61). Before presenting the numerical result, we will
prove current conservation in the case of the real pho-
ton. In order to have current conservation the following
equation should be satisfied:

Assuming an additional condition [5], Weinberg's second
sum rule has been derived:

9~ = 9p- (68)

Equations (66), (68) and the KSFR sum rule together
lead to m = 2m which is not in good agreement with
the present value of m . The theory presented in this pa-
per can be considered as a realization of chiral symmetry,
current algebra, and VMD. In this theory, the isovector
vector and isovector axial-vector currents in Eq. (1) are
the same as the ones in Eqs. (67). Therefore, gp and g
can be evaluated explicitly. Using Eqs. (40), (42) the
following expressions are found:

2cl
, , ~1 ——~m.' . (65)

4vr g ( g)

By using the mass formula [Eq. (27)] and the expression

1
vP —'p~p5Q = ——gm

I

1—
2 " 2

a +» ~ ~

27' g

(
—T2 1= ——gm p' +.. . (69)p
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We obtain

1 2
gp = ——gm

!g= ——gm!1—
2 ~

g 2~2g'p (70)

I'(~ m pv) = cos Og 1 — 1+ 2

= 4.84 x 10 GeV,

g2, m' ( 1—m 1 — 11—
4 p (71)

The relation (68) is not satisfied and m2 = 2m2 is not
confirmed by this theory. This is the reason why the mass
relation [Eq. (27)] obtained in this paper is not the same
as the one of Ref. [5]. However, Weinberg's first sum
rule [Eq. (66)] only depends on chiral symmetry, VMD,
and current algebra. Therefore, it should be achieved in
this theory. Substituting g~ and g [Eq. (70)] into the
left-hand side of Eq. (66), we obtain

I (7. ~ a, v) =

= 1.56 x 10 GeV. (74)

The experimental values are (0.495 6 0.023)10 i GeV
and (2.42 + 0.76)10 GeV for r ~ pv and w ~ aiv,
respectively.

These calculations can also be done in terms of the
efFective Lagrangian [Eq. (13)] of mesons, in which the
couplings between the mesons and W bosons are deter-
mined. In the chiral limit, the vr —W coupling is found
from the first term of the Lagrangian [Eq. (13)]:

Substituting the mass formula [Eq. (27)] and Eq. (26)
into Eq. (71), indeed Weinberg s first sum rule is satis-
fied. The factor (1 —z») 2 plays an important role in
this theory.

In Ref. [33] two new formulas for the amplitude of ai —+

per in the limit of p ~ 0 have been obtained &om the
Ward identity found by Weinberg [5]:

g f A(m ) = 2gp(m —m ),

2c) „ f1 ——!g c}~W"=——g BvrW." (75)

From vri2 decay, f is determined to be 186 MeV.
Like the photon, from the Lagrangian [Eq. (1)] it can

be seen that W bosons always appear in the combina-
tions either p„+ 4 g(viW„+r2W„) or a„—4 g' (wiW„+
v2W„). The W boson fields of Eq. (1) need to be nor-
malized:

graf A(m ) = 2g (m —m ),

where A is the amplitude of aq —+ per in the limit of
p m 0. It needs to be checked if these two relations
are satisfied in this theory. In the limit of p = 0 the
amplitude A [Eq. (61)] of ai -+ pm can be written as

Wm! 1+2g ! W,
4&

,g') '
g ~ ~1+2g' -! g, g W„~g W„.4r

A(k') = —
( +, , ) ~

i— (73)

Like VMD, the coupling of p —W is obtained:

—g (B„p'„—O„p'„)(8"W*" —c}"W'") . (76)

Using Eq. (73) and the mass formula [Eq. (27)], the two
relations [Eq. (72)] are indeed satisfied. When the p is on mass shell the coupling becomes g~. Of

course, like VMD, there is direct coupling between the
W boson and other mesons:

THE DECAYS OF w —+ pv AND aqv g~ 1
2g gj (77)

The decay widths of v -+ pv and a~v can be calculated
in terms of the two matrix elements (67), (70)

The axial-vector part of the interactions of the W boson
with mesons is derived to be

g 1 f 1
(78)

where j ~ is defined as isovector axial-vector current, and aq fields couple to this current. Using the mass formula
[Eq. (27)], it can be seen &om Eq. (78) that the coupling ai —W is just g [Eq. (70)].
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mm SCATTEKINC AND DETERMINATION
OF PARAMETERS OF CPT

The pion is nearly the Goldstone boson associated with
the dynamically broken SU(2) I, x SU(2) ~ chiral symme-
try which is a symmetry of QCD in the limit m„a ~ 0.
crier scattering has been studied. by steinberg, using a non-
linear chiral Lagrangian [34]. The modern study of m7r

scattering utilizes chiral perturbation theory [2,35]. In
the present theory the msgr scattering is related to an even
number of factors of p5., hence, the Lagrangian of this
process can be found from Eq. (13). As discussed in Ref.
[36] the pion mass term can be introduced to the theory
by adding the quark mass term —@M@ (M is the quark
mass matrix) to the Lagrangian [Eq. (1)]. According to
Ref. [36] the pion mass term obtained from the quark
Inass term is

-'f„'m„'T (U —1).

1 1

d cos0Pi(cos0)T (s, t, u),I
64m

T = 3A(s, t, u) + A(t, s, u) + A(u, t, s),
T = A(t, s, u) —A(u, t, s),
T = A(t, s, u) + A(u, t, s).

T,'(s) =

(81)

At low energies, the partial wave amplitudes can be ex-
panded in terms of the scattering length a& and slope
gI.

(s2)

where s = (kq + k2), t = (kq —pq), and u = (kq-
p2) . In the center-of-mass frame s = 4m2 + 4k2, t =
—2k2(1 —cos0), u = —2k2(1+ cos0), where k is the pion
momentum and 0 is the scattering angle. The partial
wave amplitudes are defined as

The m z, (kq) + mz, (k2) ~ m;, (pq) + vr;, (p2) scattering am-
plitudes are written as

The Lagrangian of arm scattering derived from Eq. (13)
contains two parts: direct coupling and p meson ex.—

change. To the leading order of chiral perturbation, the
amplitudes obtained from direct coupling (with an index
D) are

16 1, & 6.&

A(t, s, u) D = — f 1 ——— (—2m —3k + 3k cos0)f q g)

+-
g 7l

~ g)

+ 1 ——
l

—(—2k —2k cos 0+ 4k cos0) + (—k + k cos0)
8 t 2ci 2c 4 4 2 4 2 2 2

(4vr)2
~ g ) g

4

—4c [
—3k + k cos 0 —6k cos0] — 1 ——

~ [
—2k + 2k cos 0 —8k cos0]2 4 4 2 4 4 2c 4 4 2 4

(4~)' ( g )'

2122 Pli2 ( & & ) lll2 2122

+ A(t, s, u) 8;„,h;„, + A(u, t, s)b;„,b;,~, , (80)
I

16 1, & 6c), , c' 3 & 2c~
A(s, t, u)D = — f 1 ——— (2m + 3k ) + ——1 —— —4c (6k —2k cos 0)f 3 g) g 7r

~ g)
4 & 2cl . . . S & 2cl 16c , , 4c' ,1 ——

~

(10k —2k cos 0) + 1 —— — k + 4k + k (1+cos 0)(4')2 i g ) (4vr)2
I g ) g g2

2c+ (5k + 2k cos0 + k cos 0)
g2

(83)

Equation (26) has been used in deriving Eqs. (83). The
amplitude A(u, t, s) can be obtained by using the sub-
stitution of cos0 —+ —cos0 in A{t,s, u). The amplitudes
from p exchange are obtained by using Eqs. (48), (49),

—16 k cos0
A u, t, s

g2 m2 —s + impel'(k)

8 2m +3k + k coso
g2 m2 + 2k2 —2k2cosg (84)

8 2m ~ 3k + k cos0
g2 m2 + 2k2 —2k'cos0P

8 2m2 + 3k2 —k2cos0+-
g2 m2 + 2k2 + 2k2cose '

16 k cos0
g2 m2 —s+ impel'(k)

8 2m + 3k —k cosg
g2 m2 + 2k2+ 2k2cos0'

where I'(k) is the decay width of the p meson:

2 k3()=3
P

(s5)

For kinematic reasons the decay width of the p meson
appears only when the virtual momentum squared of p
is equal to 8.

The scattering lengths and slopes are found &om direct
coupling [Eqs. (83)],
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5m 2m
247r f2 37r f2

m2
bP n'

~f2

2

a
12~f'

2
mm

3vr f2

m2
b2 7I

2vrf2

2
1

a& ——
6~f2

6c&
1 ——

~)
6c~

1 ——
&)
6c~

1 )~)
6c&

1 ——

6cl
1 ——') (86)

and &om p exchange [Eq. (84)] we obtain

2
p 2m~ bp

erg m P

2—bp=—

7rg2m2 ~g2m2
P P

2~g2m2 ' 27rg2m2
P P

(87)

Numerical calculation shows that in these quantities the
contribution of p exchange is dominant; for instance, the
contribution of p exchange to ap is ten times more than
the one from direct coupling. Adding Eqs. (86), (87)
together and using Eq. (25) we obtain

TABLE II. The pion scattering lengths and slopes.

a'
bo

ao
b2

1

b1

a,'
a2

Experimental
0.26 + 0.05
0.25 + 0.03

—0.028 + 0.012
—0.082 + 0.008
0.038 + 0.002

(17+ 3) x 10
(1.3 + 3) x 10

Theoretical
0.16
0.18

—0.045
—0.089
0.030

5.56 x 10
784 x 10

—3.53 x 10

Z4 —— Tr (B„—UB"Ut )

+—Tr (c}„Uc}„Ut)Tr (c}"Uc}"Ut ) . (90)

The amplitudes T2 and T22 are determined by C4 [35]:

numerical results are listed in Table II.
It is well known that chiral perturbation theory [2,35]

describes vr7r scattering reasonably well. In particular,
the parameters of chiral perturbation theory can be cal-
culated by the present theory. In addition to f and m
there are two other parameters appearing in ~sr scatter-
ing [35]:

p
ap =

27m~ bp
8mf2'

2

a 6' f2

2 2 2m- a2= m- b2 = m

vrfg
' 4vrf2' 2' f2'

(88)

(91)

From the amplitudes [Eqs. (83),(84)] [to O(k4)], we ob-
tain

p
a2

4 2 4" (—0.036&+

4m
10msf4

0.0337) +
15vrg2m4

0.020710~sf4 15vrg2m4

In these quantities [Eq. (89)], the contributions of p ex-
change are ten times more than the ones kom direct cou-
pling. Therefore, p meson exchange is dominant, ar. 3.

These are just the scattering lengths and slopes obtained
by Weinberg [34]. In Eqs. (86), there are terms with
the factor of —' obtained kom the shift a„+a„—cB„m.9
Because of Eq. (25) these terms are canceled by the cor-
responding terms obtained &om p exchange. These can-
cellations lead to Weinberg's results in this theory. As
a matter of fact, the cancellation is the result of chiral
symmetry. In the Lagrangian [Eq. (1)], there is a term
2mo2(a„a" + v„v~) introduced by chiral symmetry and
due to this term, c [see Eq. (25)] has m2 in the denom-
inator of the expression [Eq. (25)] which leads to the
cancellation. All these quantities are only related to the
zeroth and the second orders of derivatives. The scatter-
ing lengths and slope a2, ap2, and b~ are obtained &om
the terms with the derivatives at fourth order:

T2 —— (s —4m ) (0.00698),
157r

T2 = — (s —4m ) (0.00656).
307r 4 (92)

The two parameters in Eq. (91) are determined to be

ng ———0.0068, n2 ——0.0070.

They are compatible with the values of CPT [35],

ng ———0.0092, n2 ——0.0080.

(93)

(94)

T2= A;, T = — k.
15mg m 15vrg mP P

Then &om p exchange only we have

f4—ng ——n2 ———— ——0.007.
4g2 m4

P

The same values of nq and n2 can also be found by com-
paring Too, TO2, and T~~ of Ref. [35] with the corresponding
combinations of Eqs. (83), (84). The numerical calcula-
tion shows that the contribution of p exchange to nq and
n2 is higher than the one &om direct coupling by two
orders of magnitude. The contribution of p exchange to
T2O and T22 can be obtained Rom Eqs. (84):
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= —0!2 = —3'
m (1

I p
4m~
mp

Using the decay width of the p meson [Eq. (85)), we
obtain

1,0—
0,8-

&o
0.6-

Q)
0.4-
0.2-
0,0

0 200 400

1.0—
0.8—
06-
04-

4
0.2-

bL 00
600 800 1000 0 200 400 600 800 1000

This is just the expression presented in Ref. [9]. In the
present theory the reason for p dominance is the con-
sequence of cancellation between the original pion and
the pion obtained from the shift of a„—+ a„—cg„vr. On
the other hand, the energy dependence of the amplitudes
[Eqs. (83),(84)] can be predicted by the present theory.
The amplitudes A(t, s, u)~ and A(u, t, s)~ [Eq. (84)] pre-
dict the resonance structure of p(770) in the channel of
I = 1 and I = 1. The experimental data [37] clearly
shows the p(770) resonance in the amplitude Tii. The
comparison between theoretical predictions and experi-
mental data are given in Fig. 1, which shows that ]Ti]
is in good agreement with data and T2, ReT2, and ReT&
agree with data well. However, this theory does not pro-
vide an imaginary part for Tp and the experimental data
shows that there is an imaginary part in T0. On the
other hand, the data shows (Table II) that the theoret-
ical predictions of a& and 6& are lower than the exper-
imental data. Therefore, in the channel of I = 0 and
I = 0 something is missing in this theory. In Ref. [38] the
0++ fo(1300) meson has been introduced to the effective
meson theory to improve the theoretical value of a&. The
fo(1300) meson can be introduced to the Lagrangian [Eq.
(1)];however, this is beyond the scope of this paper.

~ —+ pm AND OTHER RELATED PROCESSES

In the 1960s, Gell-Mann, Sharp, and Wagner [39] used
the coupling of u —+ pm to compute the decay rates of
u ~ vrp and m ~ pp in terms of VMD. The Syracuse
group [14] has used the generalized Wess-Zumino action
to study these processes.

In the process ~ ~ pn, only the pion is associated
with p5 in this theory. Therefore, the vertex of the decay
u M per should be found &om Cy . On the other hand,
in the Lagrangian [Eq. (1)] the interactions between the
~ meson and others are given by the term —u"gp„g.
The quark vector current can be bosonized by the quark
propagator [Eq. (42)] and the vertices related to the ~
field can be derived. In above sections we have used this
method to derive the formula of the VMD [Eq. (46)] and
the expressions of gp and g . The results are the same as

I
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FIG. 1. Energy dependence of msgr scattering amplitudes.

the ones obtained &om ZR . Now we use this method to
find the interaction vertices between u and other mesons.
In Ref. [24] we have used the quark propagator without
vector and axial-vector mesons to calculate the effective
baryon current s (gp„g) and it has been found that the
current found in Ref. [24] is just the topological current
induced from the Wess-Zumino term. As in Ref. [24], the
current (Qp„@) can be bosonized by equation

(A,0) =
2 r d J Traps+(~ J).

The leading terms come &om n = 3. After a lengthy
and very careful derivation it is found that except for
the term g02u„ in Eq. (45) all other terms with even
numbers of ps in Eq. (95) cancel each other. This is
consistent with the fact that in the two flavor case, the
~ Geld is a fl.avor singlet. Except for the kinetic term, u
field does not appear in ZR, [Eq. (13)] which describes
the processes with normal parity. Using Eq. (42) and
taking n = 3, we have

pgv@)=
(2 lr) D (p2 m2) 4 Try„(p p —mu)g D(p p —mu)p D(p p —mu)p . D(p p —mu),

where 7 D = ip. B+ —p v+p ass [a~ is defined by Eqs. (22), (23)]. In the calculation of Eq. (96) we use dimensional
regularization. However, there is one term in Eq. (96),

)D~WpY .PY D'7 .PY D'Y. PY 'YD. iP (97)

which has divergence and contains p5. Therefore this part of the integral needs special treatxnent in dimensional
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regularization. We use the t Hooft —Veltman prescription [40] used to treat the triangle anomaly to calculate this
integral. We define

where p has only four components in the four-dimensional space and q is defined in D —4 dimensional space. According
to Ref. [40] J) and q observe equations

'V P'75 = —'75'Y P~ 'Y 9'75 = '75'Y ' V.

Following these treatments t;he integral is computed. The final expression for (vga„@) is

1 — N, „ t 4~"(Qp„@) = (d"B (u„+ ' s"" P(u„Tr
g

" " (4~)'g " 3g'
—v„aap + B„(aavp) —iavaaap — aa[pp~ p—v]2

2 1
3 3

——(Vvaap —avavp) ——(Vvaap + avavp)

ji ai
+. ' s" per Tr 2(D U)Ut (D U)Ut (DpU)Ut ——V„ap — a„pp—

+ & (U—(&-pU') —U'(DpU)) — ' (U(Dp—U'-) + U'(DpU))~
g g

1
where v„a = B„pa —Bap„——'[p» pa], V„a = B„pa —Bapv ——'[p» pa] ——'[a» aa], and av -+ (1 —2, , ) av —cBvvr.

This expression can be simplified as

1 — 2 N 2
ur" (@p„—vP) = (d"B ~„+ ' s" P~„T—rB„UUtB UUtBpUUt

g
" " (4 )2g3

s"" PB„~„—Tr [BpUUt(p —+ a ) —BpUtU(p —a )]

2 2——a(p + a )U(pp —ap)U ——ap ap).
g

(gg)

This formula is exactly the same as the one obtained by
Kaymakcalan, Rajeev, and Schechter [14] and by Witten
[13]. In Eq. (99) all the couplings are fixed by g and c.
This is the universality of coupling in this theory.

The interaction Lagrangian of up+ is derived &om Eq.
(gg). s"" Pn B„A„B Ap, (1o1)

anomaly [41]. This process is a crucial test of the present
theory. According to VMD, the m pp vertex should be
obtained by using the substitutions [Eq. (32)] in Eq.
(1oo):

Z(gppp = — s Bp(dvpaBp7I
7l' g

(1oo)

which can be used to study related processes. Using the
vertex of u -+ mp obtained by the substitution p

&
A„ in Eq. (100) the decay width is calculated to be

P

I'((u -+ per) = 724 keV.

I'(p m vr p) = 76.2 keV.

The experimental value is 717(16 0.07) keV. In the same
way, we obtain the vertex of p —+ vrp by the substitution
~„—+ f' A„ in Eq. (100). The decay width calculated is

which is the expression given by the Adler-Bell-Jackiw
anomaly [41]. The decay width obtained from Eq. (101)
1s

A 7A
I'(m -+ pp) = (1o2)

which is the result of the triangle anomaly. The numeri-
cal result is 7.64 eV and the data is 7.74(l 6 0.072) eV.
If one of the two photons mo -+ pp is virtual, accord-
ing to VMD, there are vector meson poles in the decay
amplitude. The amplitude is written as

The experimental data are 68.2(1 + 0.12) keV.
vr ~ pp is an evidence of the Adler-Bell-Jackiw

2Q! 1 g 1 g1+ — +— (1o3)
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1 q2 1 q2
F(q ) = 1+ — +—

2 m2 —q2 2 m2 —q2
q

2
= 1+a

m p

m.'. & 1
a = + = 0.03.

km.' m2)

(104)
The data are a = 0.032 + 0.004.

In w ~ 7tvrm, aside from the process upper and p ~ urer

there is direct coupling uvrvrvr which is derived from Eq.
(99):

where q is the momentum of the virtual photon. Since
q is much less than the mass of the vector meson, the
form factor takes approximate form

6c' 6cl1+
gal' f ( g g )
X E' 8'q~jr. (d~t9~7i z, B~K~ t9p7t A. ~ (105)

In both the 2 and 8 ~& there is a factor of —,.
Therefore, qualitatively speaking, this theory predicts a
narrower width for ur decay. Vsing the formula of c [Eq.
(25)] and the value of g it is found that

1 + ——= —0.083.
6c2 6c

g

The last two terms come from the shift a„+ a~-
et9„vr and there is very strong cancellation. Using Eqs.
(49),(100),(105) the decay width is obtained:

"(~ -+ ~~~) =
24 2 .f &ql~vA~IP~~I'~Ir'. ~l*

—(P~ I2)

( 13f 3 + f~p7pfp~~ 2 2 + 2 2 + 2 2 )

(q~ —m q2
—m qs —m

(106)

where

(
~ .s '+

gal f ( g

6ci N,f p
7t g y~

(107)

I'((u -+ 3vr) = 5 MeV.

and q, = (p —p, ), p is ~ momentum and p, is pion
momentum. We obtain

fq ~ aqua -+ p7rvr. The fq meson is associated with ps [see
Eq. (1)]; hence odd numbers of ps are involved in these
two processes. Therefore, the vertex of the decay fq —+
purer cannot be found in Eq. (13) and should be found
in the Wess-Zumino Lagrangian with vector and axial-
vector mesons. In this paper the method used to find
the effective Lagrangian of these processes is the same as
the one used to study the decays of the ~ meson. From
the Lagrangian. [Eq. (1)] and normalization of the fq
meson the vertices of the fq decays can be found from
the formula

If only u —+ per and p —+ mm are taken into account the
width of ~ + 3' is 5.4 MeV. The experimental value is
7.43(1+0.02) MeV. From this study we can see that the
process of u —+ pm is dominant in the decay of u —+ 3', as
proposed by the authors [39]. The direct coupling of u ~
3m is responsible for about 20%%uo of the decay rate. The
agreement between theoretical and experimental decay
rates of a —+ pp, ~ m vrp, and p ~ vrp shows that
~ —+ per obtained in this theory is more reliable. However,
at the tree level due to the cancellation, f s is too small
and has the wrong sign. Therefore, corrections from loop
diagrams and terms with higher order derivatives to f s
are needed.

DECADES OF THE fg(1 52)8MESON

In this theory the f (12j85) meson is the chiral partner
of the w meson [see Eq. (1)]. The decay of fq ~ 47r
consists of two processes: direct coupling fq -+ pmm and

f, (4~,~ 0)
1(

(108)

The bosonization of (Qp„pseud) can be carried out by using
the equation

(@&~& ~) =
2

" pTrw WssF(&, p) (109)

Substituting Eq. (42) into Eq. (109) the flavor singlet
axial-vector current of mesons can be achieved. Because
of the fact that only odd numbers of p5 are involved in
fq ~ pmm, we are only interested in the terms with the
antisymmetric tensor. The leading terms with antisym-
metric tensor appear at n = 3. As in the case of the
u meson the divergent terms can be treated by the pre-
scription provided in Ref. [40]. Finally, the terms with
s)'" ) in the effective Lagrangian [Eq. (108)] take the
form
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e"" Pf„Tr( 0—(0„UUtdp + 0„UtUdp )

1 Pf„Tr(3V„vp —a„ap)
1

'iv.+ 1—
3g2(4vr)' ( 2vr'g2)

2(0 —UUt0 'UUtdp++ 0 UtU0 UtUdp)

(d„+—0 dp + d„0 dp + 2Utd+U0 dp + 2Ud Ut0 dp+ —20„UU+d+dp+ —20„UtUd dp)

1
(2Ud Utd—+dp + 2Utd+Ud dp + d d dp + d+d+dp+)). (110)

For the definitions of d„, see Eq. (117). From this Lagrangian, the same conclusion as Ref. [16] is reached, that the
decays of fq -+ pp and uu are forbidden. Therefore, the fq meson cannot decay to two real photons. This is Yang's
theorem [42].

The Lagrangians of the decay of f ~ aqvr and f + per~ are derived from Eq. (110):

4N, 1/ I
Cfa ~ —— „—1 — s' f~0v Ir Rap,3 4' 2f g2

~
2vr~g2)

k A:

Lyp~~ = 1 —— 1 —
2

s E;~kfp(0~(0. „'rl;7r~pp) —20„7I;0~7ljpp).
3 4vr 2g2f2 ( g ) ( 2vr2g2)

I'(fg m per~) = 6.01 MeV. (112)

In both l.y~ and Zy, there is a factor of —,. There-
fore, this theory predicts a narrower width for f ~ perm.

On the other hand, the factor of 1 ——in Zy~ is very
small; hence the process f -+ aqvr -+ pan is dominant
over the decay of f -+ p7rm. Using Eqs. (61), (ill) the
decay width is calculated to be

be found from the Lagrangian ZR, [Eq. (13)]. Of course,
the vertex of frjvrm can also be derived &om Eq. (108)
and it should be the same as the one obtained &om Eq.
(13). The calculation shows that in the Lagrangian ZR
the term at the second order in derivatives,

F2
-TrD UD"Ut,

16

The experimental value of the decay width is 6.96(1 +
0.33) MeV. The prediction of I'(fq ~ parr) is in agree-
ment with data.

In another decay of the fq(1285) meson, f -+ gvnr

[excluding ao(980)vr], even numbers of p5 are involved.
Therefore, the effective Lagrangian of this decay should

l

does not contribute to this decay. The effective La-
grangian of this decay comes from the terms at the fourth
order in derivatives which have a factor of

&4 &, . There-
fore, this theory predicts a narrow width for the process
fq ~ gvr7r. In the chiral limit, the effective Lagrangian is
obtained &om Eq. (13):

Efg —— ' —
~

1 —
~

~

——
~

0.71D4fij(0"rI0„7r,0"7r; + 20„g0 'rr, 0"'rr;),4N. 1 ( 1 & f 2c)
34~2 'g E 2~'g'J

& g) (113)

I'(f m rjmvr) = 27.5 keV. (114)

where the factor 0.7104 is &om the mixing between g
and rj', 0 7104 =

~.
(coso —~2sin8), and 8 = —10 . The

numerical result of the decay width is

I'(f m p~vr) = 18.5 keV. (115)
In this theory the decay of fq -+ virtual photon +p in-
volves loop diagrams whose calculation is beyond the
scope of this paper.

Theoretical prediction of the branching ratio is 1.15 x
10 1 6 0.13 and the data of the branching ratio is
(10+s)%. In principle, the meson ao(980) [1 (0++)] can
be incorporated into the Lagrangian, and then the decay
of f ~ asm can be studied. However, this is beyond the
scope of the present paper.

Using VMD and l:yz, the decay width of f ~ p7rn
is computed:

THE DECAYS OF p m qg AND u m qp

According to VMD, the decays of p ~ gp and u —+ gp
are related to the vertices happ and gun in which odd
numbers of p5 are involved and these vertices cannot be
found &om ZR, [Eq. (13)]. From the Lagrangian [Eq.
(1)] it can be seen that the interaction between the rI

and other mesons can be found &om
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2i
Zq ————0.7104m'(@ps@),

(116)

Substituting the solution [Eq. (42)] into Eq. (116) Zz is
obtained. The leading terms come Rom n = 4. We are
only interested in the terms containing the vertices gvv,
which are found to be

N, i s"" ~Tr(F+„D D++F D+D )+ ' s"" PTr(D+D„F+ +D D+F )
N

(4m) 2 6mg (47r) 6mg p v aP p v aP

N i PTr(D+D D+D + D D+D D+),
(4~)2 3m p, v a P p v n P

D =gp ——I d ='Up+Gp,
(

+ ~ 2 2 ~ ++ cp
27r g j

g
(117)

The vertices of happ and g~~ are obtained &om Eqs.
(117):

s"" P0.7104rI(O„p'„8 p&g2 4m 2

+OplaP~B~LdP). (118)

Using VMD we obtain

Zq„~ ——— s"" ~0.7104rIB„p„O Ap,P9'Y 4

3g 4m 2

The decay widths of p —+ gp and cu -+ gp are calculated:

I'(p m gp) = 46.1 keV, B(p +re) = 3.04 -x 10
I'(~ m gp) = 5.87 keV, B((u m gp) = 6.96 x 10

(120)

The experimental d.ata are

B(p + rip) = (3.8 + 0.7) x 10

B(ur m gp) = (8.3 2 2.1) x 10 (121)

LARGE Ne EXPANSION

According to t Hooft [7], in the large N, limit QCD is
equivalent to a meson theory at low energies. Therefore,

Theoretical predictions are in good agreement with the
data. For g ~ pp, in addition to g ~ pp and g ~ uw, the
process g +PP also contrib-utes. We will study g ~ pp
in another paper in which the strange Qavor is included.

After the study of these physical processes, three prob-
lems of this theory should be discussed. They are loop
diagrams, dynamical chiral symmetry breaking, and mo-
mentum expansion.

large N, expansion plays a crucial role in the connection
between QCD and effective meson theory, even though
we do not know how to derive the Lagrangian of effec-
tive meson theory from QCD directly. In the present
theory the large N expansion plays an important role
too. The quark fields in the Lagrangian [Eq. (1)] carry
colors. In order to obtain the effective Lagrangian of
inesons &om the Lagrangian [Eq. (1)], the quark fields
have been integrated out by path integral methods. Af-
ter this integration the trace in the color space generates
the number of color N . The parameter m of the La-
grangian [Eq. (1)] is O(1) in the large N, expansion.
Equation (14) determines that F2 is of order N„hence
f is of order O(QN, ). The coupling constant g, defined
by Eq. (15), is 0(/N, ). After normalization, the physi-
cal meson fields, pion, g, p, u, ai, and fi are all of order
O(QN, ). It should be pointed out that the original form
of the factor (1 —2, , ) ~ in the normalization of the

axial-vector meson is (1 —s, , ) 2. Therefore, this fac-
tor is of order O(1). The masses of mesons are of order
O(1). Using all these results, it is not difficult to find
out that all the vertices of this paper are of order N, and
it is obvious that the meson propagator is order of O(l).
Therefore, the order of magnitude of a Feynman diagram
of mesons in large N expansion is given by

(122)

where N„ is the number of vertices and Nz is the num-
ber of internal lines. Equation (122) tells that all tree
diagrams are of order O(N, ); hence, they are leading
contributions. A diagram with loops is at higher order in
large N expansion. For instance, a diagram of one loop
with two internal lines is of order O(1). Therefore, the
large N expansion is the loop expansion in this theory.
In this paper all calculations have been done at the tree
level. Most of the theoretical predictions are in agree-
ment with data. This success can be viewed as a support
of the large N expansion. In other words, the large N
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DYNAMICAL CHIRAL SYMMETRY BREAKING

The parameter m in Eq. (1) is associated with the
quark condensate which is defined as

(ol@(*)&(*)lo)= —
D d p T (ol»(*,p)lo). (»3)

At the tree level, using Eq. (42) we obtain the relation
between m and the quark condensate:

(ol@(*)@(*)lo)= 3m'g'
l
1+ 2~2g')

' (124)

This is u and d quark condensate. Nonzero quark conden-
sate means dynamical chiral symmetry breaking. There-
fore, there is dynamical chiral symmetry breaking in this
theory On .the other hand, the quark mass term —/MAL
can be introduced to the Lagrangian [Eq. (1)], where M
is the mass matrix of u and d quark. Using Eqs. (40),
(42) and removing a constant, the leading term in quark
mass expansion is obtained:

expansion provides a good argument for the success of
the theory at the tree level. However, it would be better
to raise all the calculations done in this paper to one loop
level to test the theory and the large N, expansion. In
this paper we only present the calculations done at the
tree level.

DERIVATIVE EXPANSION

This theory is an effective meson theory at low ener-
gies. Like the chiral perturbation theory [2], the deriva-
tive expansion (to be accurate, covariant derivative ex-
pansion) has been applied. It seems that the derivative
expansion works in the studies presented in this paper.
The calculations of decay widths are good examples. If
the terms at the second order in derivatives in the La-
grangian [Eq. (13)] contribute to the decay of a meson,
the decay width of this meson is broader. p decay and
aq decay are two examples. If only the terms at the
fourth order in derivatives contribute to the decay, the
decay width is narrower. The reason is that in the de-
cay amplitude there is a factor of —,. The predictions
of narrower widths for the decays, ~ —+ 3n, f -+ pvr7r,

and f ~ r}arm. , support this argument. From Table II it
can be seen that the scattering lengths and slopes (ao,
bo, az, ao, bo2), which are obtained &om the terms at the
zeroth order or the second order in derivatives, are much
greater than a&, a2, and b~ which are from the terms at
the fourth order in derivatives.

This theory is an effective theory and it is not renor-
malizable, as mentioned above. Therefore, a cutoff of
momentum has to be introduced into this theory. Equa-
tion (15) can be used to determine the cutoff'. Using a
cutoff instead of dimensional regularization, Eq. (15) is
rewritten as

(@M@)=—
D d p TrMsy (z, p)

1= ——,(m„+ m, ) (o[@q[o).

ln 1+ I+, —1 = — = —g.
(4vr)2 q m )' 1+ +', 16m2 8

(125)
Using the values of m and g, we obtain

The pion mass [Eq. (79)] obtained &om this equation is A = 1.6 GeV. (13o)

m.' = ——,(m„+ m, )(ol@@lo). (126)

m = —300 MeV, (127)

Detailed discussion of masses of pseudoscalar mesons can
be found in Ref. [36]. Equation (126) is a well known for-
mula obtained by the theory of chiral symmetry breaking
proposed by Gell-Mann, Oakes, and Renner [43], and by
Glashow and Weinberg [44]. Equation (126) shows that
the quark condensate is negative; hence the parameter
m is negative too. The parameter m is determined kom
Eqs. (15), (25), (26),

Derivative expansion is a momentum expansion and A
is the maximum momentum. The momentum expansion
requires that the momentum must be less than A. The
masses of p, tu, aq, and fq are less than A. However, there
is a physical case in which momentum expansion is not
suitable. In 7rm scattering there is a p resonance in the
scattering amplitudes [Eq. (84)]. At very low energy the
momentum expansion has been applied to ver scattering
amplitudes; however, in the region of p resonance the
momentum expansion is not working because it destroys
the resonance. Therefore, we do not apply the momen-
tum expansion to resonance amplitudes in this paper.

and &om Eq. (124), we obtain SUMMARY OF THE RESULTS

(0 lvPg [0) = —(241 Mev) .

The quark mass is determined to be

m„+ mg ——23.5 MeV,

whose current value is 15.5 + 2.2 MeV [27]. As pointed
out in Ref. [45], the determination of the absolute value
of quark mass is model dependent.

To summarize, the results achieved by this theory are
as follows. VMD is revealed &om this theory. Weinberg's
Grst sum rule and nem relations about aq meson decay
are satisfied. The KSFR sum rule is satisfied reasonably
mell. New mass relations betmeen vector and axial-vector
meson are found. Weinberg's m7r scattering lengths and
slopes are obtained. This theory provides a mechanism
of the p meson dominance in mvr scattering. The ampli-
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tude of vr ~ pp obtained by this theory is exactly the
same as the prediction of the triangle anomaly. This the-
ory unifies the description of the physical processes with
normal and abnormal parity and the universality of cou-
pling is realized. The effective Lagrangians used to treat
the processes of abnormal parity are exactly the same as
with the ones obtained kom the gauging Wess-Zumino
Lagrangian with vector and axial-vector mesons. The re-
sults of mvr scattering have been shown in Table II and
Fig. 1. Other results are listed in Table I.

As mentioned in the paper, many of the studies have
been done separately before. The theory studied in this
paper provides a unified description of meson physics at
low energies. In this unified description universal cou-
pling in all the physical processes has been found and

the inputs are the cutoff A, m (related to quark conden-
sate), and p meson mass in the chiral limit and the quark
mass in the phase space. Some of the results are new, for
instance, the mass relations [Eqs. (27),(28)], the expres-
sion of g [Eq. (7)] and g~ 7L g, etc. This theory has
dynamical chiral symmetry breaking which is an impor-
tant feature of nonperturbative @CD.
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