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Dual superconductivity in the SU(2) pure gauge vacuum: A lattice study
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We investigate the dual superconductivity hypothesis in pure SU(2) lattice gauge theory. We
focus on the dual Meissner effect by analyzing the distribution of the color fields due to a static
quark-antiquark pair. We find evidence of the dual Meissner effect both in the maximally Abelian
gauge and without gauge fixing. We measure the London penetration length. Our results suggest
that the London penetration length is a physical gauge-invariant quantity. We put out a simple
relation between the penetration length and the square root of the string tension. We find that
our estimation is quite close to the extrapolated continuum limit available in the literature. A
remarkable consequence of our study is that an effective Abelian theory can account for the long
range properties of the SU(2) confining vacuum.

PACS number(s): 11.15.Ha

I. INTRODUCTION

Understanding the mechanism of quark confinement is
a central problem in high-energy physics. This requires
us, among other things, to identify the dynamical vari-
ables, which are relevant to confinement.

A satisfying solution would be to set up an approxi-
mate vacuum state, which confines color charges. This
way one could derive an effective action, which describes
the long-distance properties of @CD [1]. Even this in-
complete program, however, mandates a nonperturba-
tive approach. Fortunately we have at our disposal a
&amework in which we can do nonperturbative calcula-
tions, namely, the lattice discretization of gauge theories.
Since a typical Monte Carlo simulation generates vacuum
configurations, one expects to gain information on the
nonperturbative vacuum structure.

However, a guideless search into the numerical configu-
rations generated during Monte Carlo runs is hopeless. In
other words, we need some theoretical input that selects
the dynamical variables relevant to the confinement. The
situation looks similar to the theory of superconductivity.
Indeed, it was Cooper's observation that the Fermi sur-
face is unstable with regard to the formation of bounded
electron pairs that led Bardeen, Cooper, and Schrieffer
to formulate the successful BCS superconductivity the-
ory [2].

An interesting possibility was conjectured a long time
ago by 't Hooft [3] and Mandelstam [4]. These authors
proposed that the confining vacuum behaves as a coher-
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ent state of color magnetic monopoles. This is equivalent
to saying that the vacuum is a inagnetic (dual) super-
conductor. This fascinating proposal offers a picture of
confinement whose physics can be clearly extracted. As a
matter of fact, the dual Meissner effect causes the forma-
tion of chromoelectric Qux tubes between chromoelectric
charges leading to a linear rising potential. It is worth-
while to discuss briefly 't Hooft's proposal [5].

Let us consider the non-Abelian gauge theory spon-
taneously broken via the Higgs mechanism. The Higgs
fields are in the adjoint representation. For concreteness
we focus on the Georgi-Glashow model [6]. lt is well
known that the Georgi-Glashow model allows field con-
figurations that correspond to magnetic monopoles [7].
Moreover, one readily finds that the monopole mass is
given by

M~
Mmon = & )

where M~ is the mass of the charged vector boson,
C a constant, and 0, the fine-structure constant. The
dual superconductor scenario is realized if these magnetic
monopoles condense by means of the magnetic Higgs
mechanism. This means that the monopoles become
tachyonic:

(1 2)

Prom Eq. (1.1) we see that M~ —+ 0 (if we kept n fixed).
The fact that M~ must go through zero suggests that
the original Higgs field could be removed. Thus we are
led to consider the pure gauge theory without elemen-
tary Higgs fields. The role of the scalar Higgs field is
played by any operator that transforms in the adjoint
representation of the gauge group. More precisely, after
choosing an operator X(2:), which transforms according
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to the adjoint representation, one fixes the gauge by di-
agonalizing X(x) at each point. This choice does not
fix the gauge completely; it leaves as residual invariance
group the maximally Abelian (Cartan) subgroup of the
gauge group. Such a procedure is known as Abelian pro-
jection [8]. For instance, if the gauge group is SU(N),
then after gauge fixing the residual invariance group is
U(1)~ i. The world line of the monopoles can be iden-
tified as the lines where two eigenvalues of the operator
A (x) are equal. The dual superconductor idea is realized
if these Abelian monopoles condense.

It is evident that the monopoles are dynamical; they
will take part in the dynamics of the system. As a con-
sequence the problem of monopole condensation cannot
be dealt with the perturbation theory. On the other
hand, the Abelian projection can be implemented on the
lattice [9]. Thus, one can analyze the dynamics of the
Abelian projected gauge fields by means of Monte Carlo
simulations. In the following we shall consider the pure
SU(2) gauge theory.

To perform the Abelian projection we make a choice for
X (x). The simpler possibility is to consider a local quan-
tity. For instance, we can use a plaquette with a definite
orientation (field-strength gauge) or the Polyakov loop
(Polyakov gauge). In these unitary gauges we implement
the gauge fixing by means of the matrices V(x), which
diagonalize X'(x) at each lattice site:

V(x)X(x)V (x) = diag e' ( ), e

It is straightforward to check that the residual gauge-
invariance group is the U(1) group with transformations
exp [io.s 0 (x)].

The Abelian projection of the gauge-transformed links

U„(x) = V(x) U„(x)V (x + p) (1.4)

amounts to writing

with

U„(x) = W„(x)U„(x)

UA ( ) d 's„ (x) —8„ (x)

0„(x) = arg U„(x) (1.7)

D„A„+(x) = 0, (1 8)

where A+ = A +iA, and D„ is the 4 -covariant deriva-
tive. On the lattice the constraints (1.8) can be imple-
mented like the Landau gauge [ll). Indeed Eq. (1.8)
corresponds on the lattice to diagonalizing [10,12]

U (x) is the Abelian projection of U~(x).
A different class of gauge fixing has been proposed in

the literature: namely, the Abelian covariant gauge or
maximally Abelian gauge [9]. In the continuum the max-
imally Abelian gauge corresponds to imposing the con-
straints [10)

(*) = ) .(U~(x)osU,'(x) + U,'(x —I )osU~(x —V)) .

(1.9)

To do this it is enough to maximize iteratively the quan-
tity

B = ) os U„(x)o.sUt (x)
»P

(1.10)

where the U&(x)'s are the gauge-transformed links (1.4).
We thereby obtain the matrices V(x) and perform the
Abelian projection of the links by Eqs. (1.4)—(1.7).

From the above discussion it is evident that the
monopole dynamic does depend on the choice of the oper-
ator needed to fix the gauge. On the other hand, the con-
finement of color charges via monopole condensation can
not depend on the gauge fixing. However, it is conceiv-
able that the dual superconductor scenario could mani-
fest with a judicious choice of X (x). This outcome could
arise &om a gauge fixing, which freezes the degrees of
freedom that are irrelevant to the confinement. We feel
that the situation is similar to the time-honored BCS the-
ory of superconductivity. Indeed in the BCS theory one
deals with a reduced Hamiltonian, which breaks the elec-
tromagnetic gauge invariance. Nevertheless, the reduced
BCS Hamiltonian offered the correct explanation of the
Meissner effect. As a matter of fact, it was showed [13]
that the collective states, which are essential to restor-
ing the gauge invariance, do not contribute to the BCS
calculation of the Meissner effect. In other words, the
reduced BCS Hamiltonian, by retaining the degrees of
&eedom relevant to the superconductivity, gives a sen-
sible answer even though it breaks the electromagnetic
gauge invariance.

Interestingly enough, it turns out that, if one fixes the
maximally Abelian gauge, the Abelian projected links
seem to retain the information relevant to the confine-
ment [14]. Thus, it is important to deepen the study
of the dynamics of the Abelian projected fields in that
particular gauge fixing.

The aim of the present paper is to analyze the finger-
print of the dual superconductor hypothesis: namely, the
Meissner effect. To this end, we analyze the distribu-
tion of the color field due to static quark-antiquark pair
in SU(2) lattice gauge theory in the maximally Abelian
gauge. Moreover, we will study the gauge dependence of
the London penetration length. A partial account of this
paper has been published in Ref. [15].

The plan of the paper is as follows. In Sec. II we
explore the field configurations produced by the quark-
antiquark static pairs both in the case of Abelian pro-
jected links after the maximally Abelian gauge has been
fixed and in the case of full SU(2) links. In Sec. III we an-
alyze the transverse distribution of the longitudinal chro-
moelectric field. In Sec. IV we investigate the relation be-
tween the penetration length and the string tension. Our
conclusions are relegated in Sec. V. The Appendix com-
prises several technical details on the maximally Abelian
gauge fixing.



5154 PAOLO CEA AND LEONARDO COSMAI 52

II. COLOR FIELDS

In this section we analyze the distribution of the color
fields d.ue to static quark-antiquark pairs. Following the
authors of Ref. [16], we can measure the color fields by
means of the correlation of a plaquette U„with a Wil-
son loop TV. The plaquette is connected to the Wilson
loop by a Schwinger line I (see Fig. 1). Moving the pla-
quette U„with respect to the Wilson loop one can scan
the structure of the color fields. In a previous study [17]
we found evidence of the dual Meissner effect in the max-
imally Abelian gauge. In particular, we measured the
penetration depth of the flux tube chromoelectric field.
However, in Ref. [17] we employed rather small lattices
(L = 12). In this work we exteiid our previous study in
two directions. First, we perform numerical simulations
on a lattice whose size ranges from L = 16 up to 24.
In addition, we investigate the gauge invariance of the
penetration length. To do this we perform the numeri-
cal simulations both in the maximally Abelian gauge and
without gauge fixing.

A. SU(2)

According to Ref. [16],one can explore the field config-
urations produced by the quark-antiquark pair by mea-
suring the connected correlation function (Fig. 1)

(tr (WLUpLt)) 1 (tr(Up)tr(W))
(tr(W)) 2 (tr(W))

(2.1)

where Up = U„„(x) is the plaquette in the (p, v) plane.
Note that the correlation function (2.1) is sensitive to
the field strength rather than to the square of the field
strength [18]:

According to Eq. (2.2) we define the color field strength
tensor as

F~-(x) =
2

~~(x). (2.3)

1
S(x) = 1 —-tr (U„(x)k(x)F(x))2

(2.4)

is minimized. F(x) = k(x)F(x) is the sum over the "U

staples" involving the link t and k(x) = det F(x)
so that F(x) C SU(2). In a "controlled" or "smooth"
cooling step we have

By varying the distance and the orientation of the pla-
quette U~ with respect to the Wilson loop TV, one can
scan the color field distribution of the flux tube.

We performed numerical simulations with Wilson ac-
tion and periodic boundary conditions using an overre-
laxed Metropolis algorithm. Our data refer to 16, 20,
and 24 lattices. To evaluate the correlator, Eq. (2.1), we
used square Wilson loops L~ x L~, with Lgr = L/2 —2
(L being the lattice size), and rectangular Wilson loops
L/2 x L/4

In order to reduce the quantum fluctuations we
adopted the controlled cooling algorithm [19]. It is
known [20] that by cooling equilibrium configurations in
a smooth way, quantum fluctuations are reduced by a
few orders of magnitude, while the string tension sur-
vives and shows a plateau. We shall show below that the
penetration length behaves in a similar way.

For the reader's convenience let us, briefly, illustrate
our cooling procedure. The lattice gauge configurations
are cooled by replacing the matrix U„(x) associated with
each link l = (x, p) with a new matrix U„(x) in such a
way that the local contribution to the lattice action

S~ —,a'g (F~-)„—(F~-)o- (2.2) U„(x) m U„'(x) = V(x)U„(x),

where V(x) is the SU(2) matrix that maximizes

t (V( )U ( )F(*))

(2.5)

(2.6)

Up

subject to the following constraint on the SU(2) distance
between U~(x) and U'(x):

—tr ( Ut(x) —U„'t(x) U„(x) —U„'(x) ) & b . (2.7)

FIG. 1. The connected correlator (2.1) between the pla-
quette U„and the Wilson loop. The subtraction appearing in
the de6nition of correlator is not explicitly drawn.

We adopt b = 0.0354. A complete cooling sweep consists
in the replacement Eq. (2.5) at each lattice site. We do
the above replacement vectorlike according to the stan-
dard checkerboard order.

The cooling technique allows us to disentangle the sig-
nal from the noise with a relatively small set of statistics.
After discarding about 3000 sweeps to ensure thermal-
ization, we collect measurements on configurations sep-
arated by 100 upgrades for nine difFerent values of P in
the range 2.45 & P & 2.7. After cooling we obtained a
good signal for piv on very small statistical samples (20
—100 configurations) .

In Fig. 2 we report our results for the field strength
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results show that p~ is sizable when U„and TV are in
parallel planes. This corresponds to measuring the com-
ponent R~ of the chromoelectric field directed along the
line joining the qq pair (E in Fig. 2). Moreover, we see
that Ei(xi, x&) decreases rapidly in the transverse direc-
tion xz. In Fig. 3 we display the transverse distribution of
the longitudinal chromoelectric field along the Aux tube.
The static color sources are at xi = +5 and xi = —4 (in
lattice units). Figure 3 shows that the effects of the color
sources on the chromoelectric fields extends over about
three lattice spacings. Remarkably, far from the sources
the longitudinal chromoelectric field is almost constant
along the q-q line. Thus, the color field structure of the
q-q tube, which emerges from our results, is quite simple:
the Aux tube is almost completely formed by the longi-
tudinal chromoelectric field, which is constant along the
flux tube (if xi is not too close to the static color sources)
and decreases rapidly in the transverse direction.

-1 0 1 2 3 4 5 6 7 S 9 10 il
Xt

FIG. 2. The field strength tensor F„„(x~,xi) evaluated at
xi = 0 on a 24 lattice at P = 2.7, using Wilson loops of size
10 x 10 in Eq. (2.1).

tensor F„(xi,xi), where the coordinates xi, xi measure,
respectively, the distance from the middle point between
quark and antiquark [which corresponds to the center
of the spatial side of the Wilson loop W in Eq. (2.1)]
and the distance out of the plane defined by the Wilson
loop. The entries in Fig. 2 refer to measurements of the
Geld strength tensor taken in the middle of the Aux tube
(xi = 0) with eight cooling steps at P = 2.7 on the 244
lattice, using a square Wilson loop R' of size 10 x 10. Our

B. Maximally Abelian projection

(tr (W"U")) 1 (tr (U") tr (W"))
(tr (WA)) 2 (tr (W~))

(2.8)

The correlator p+~ is obtained from Eq. (2.1) with the
substitution U&(x) -+ U (x). For instance the Abelian
projected plaquette in the (p, v) plane is

In the 't Hooft formulation [8] the dual superconductor
model is elaborated through the Abelian projection. The
idea is that the Abelian projected gauge Gelds retain the
long-distance physics -'~f the gauge system. In particular,
the physical quantities related to the confinement should
be independent of the gauge fixing and agree with those
obtained in the full gauge system. This suggested that
we [17] investigate the Abelian projected correlator

0.05

SU(2) 24 (=2.7

V„".(x) = U„"(x)U„"(x+P) V„"t(x+~)U„"t(x)
= diag1exp i8„„(x),exp i0„(x) ) . (2.9)—
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FIG. 3. The x~ dependence of the transverse profile of the
longitudinal chromoelectric field E~(xi, xi) = R~(xi, xi).

F„.(*) =
2 ~w(x)A V~ A (2.10)

behaves like the gauge-invariant one defined by Eq. (2.3).
In Fig. 4 we report our results for the field strength ten-

Obviously the Abelian projected quantities are commu-
tating, so we do not need the Schwinger lines in Eq. (2.8).
It is worthwhile to stress that p~ is a gauge-dependent
correlator. We performed measurements for six different
values of P in the range 2.45 ( P ( 2.70 using the 16 and
20 lattices. In this case we find a good signal without
cooling. Measurements are taken on a sample of 500—700
configurations, each separated by 50 upgrades, after dis-
carding 3000 sweeps to allow thermalization. The maxi-
mally Abelian gauge is fixed iteratively via the overrelax-
ation algorithm of Ref. [11] with the overrelaxation pa-
rameter u = 1.7 (for further details see the Appendix).
Remarkably enough, it turns out that the Abelian field
strength tensor
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6 x 6 Wilson loop in Eq. (2.1) at P = 2.5 on the 16
lattice. Note that in the present case the static sources
are at x~ ——+3 and x~ ———2. The longitudinal Abelian
chromoelectric field, and likewise the non-Abelian one,
does not depend on the longitudinal coordinate x~, far
from the static sources. It is worthwhile observing that
Fig. 5 suggests that the Abelian static sources are more
localized than the non-Abelian ones. This is in accor-
dance with our previous observation that the maximally
Abelian gauge fixing seems to reduce the Huctuations,
which are unimportant for the long-distance physics. In
the next section we shall analyze our numerical data
within the dual superconductor hypothesis.

-0.01 1 2 4 5 6 7
Xt

III. LONDON PENETRATION LENGTH

A. SU(2)

FIG. 4. The maximally Abelian projected 6eld strength
tensor F„„(x~,xq) evaluated at x~ = +1 on a 16 lattice at
P = 2.5, using Wilson loops of size 6 x 6 in Eq. (2.8).

If the dual superconductor scenario holds, the trans-
verse shape of the longitudinal chromoelectric field E~
should resemble the dual version of the Abrikosov vortex
field distribution. Hence we expect that Ei(zt, ) can be
fitted according to

0.07

0.06—
maximally Abelian projected

SU(2) 16 )=2.5

0.05—

0.04—

0.03—
x x-0

0.02—

0.01—

I

5

Xt

FIG. 5. The maximally Abelian projected longitudinal
chromoelectric field E (x~, xq) = E& (x~, xq) vs the transverse
distance from the Hux tube x~ for three difFerent values of the
longitudinal coordinate.

sor F„„(zi,zi) evaluated on maximally Abelian projected
gauge configurations. The entries in Fig. 4 refer to mea-
surements done at zi = +1 on a 16 lattice at P = 2.5
using a square Wilson loop of size 6 x 6 in Eq. (2.8). Again
we see that only the longitudinal chromoelectric field is
sizable. In Fig. 5 we study the x~ dependence of the
longitudinal Abelian chromoelectric field extracted using

4
E, (z, ) = —p, Ko(p z~), zi) O,2' (3.1)

where Ko is the modified Bessel function of order zero, C

is the external flux, and A = 1/y, is the London penetra-
tion length. Equation (3.1) is valid if A )) (, ( being the
coherence length (type-II superconductor). The length (
measures the coherence of the magnetic monopole con-
densate (the dual version of the Cooper condensate). To
determine the coherence length one should measure the
correlation between the chromomagnetic monopoles. To
do this one should construct a monopole creation op-
erator. Unfortunately, thus far there is no convincing
proposal for the monopole operator. However, recently a
promising proposal has been advanced in Ref. [21]. We
shall return to this matter in Sec. V. For the time be-
ing, because we are not able to determine the coherence
length, we analyze our data far from the coherence re-
gion. To this end we try a fit with the transverse distri-
bution (3.1) by discarding the points nearest to the flux
tube (zi ——0).

Let us discuss, firstly, the gauge-invariant correlator
Eq. (2.1). We fit Eq. (3.1) to our data for zq ) 2 (in lat-
tice units) obtaining z /f & 1 (we used the MINUIT code
from the CERNLIB). In Fig. 6 we show Et (zq) measured
in the middle of the Aux tube together with the result
of our fit. The fit results in the two parameters 4 and
p. We have checked the stability of these parameters by
fitting Eq. (3.1) to the data with the cuts zq & zt '",
xz

'" ——2, 3, 4, 5. In Table I we report the results of our
stability analysis. We can see that within the statistical
uncertainties the fit parameters are quite stable. So we
are confident that our determination of the London pene-
tration length is trustworthy. We ascertained, moreover,
that the data obtained &om the gauge-invariant correla-
tor with cooled gauge configurations leads to a parameter
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FIG. 6. The London fit (3.1) to the data for the longitudi-
nal chromoelectric field.

FIG. 7. The inverse of the penetration length p, vs the num-
ber of the cooling steps obtained by 6tting the transverse pro-
file of the longitudinal chromoelectric field at xi = 0 (8 x 8
Wilson loop).

p, which shows a plateau versus the number of cooling
steps (see Fig. 7). This corroborates our expectation that
the long range physics is unafFected by the cooling proce-
dure. On the other hand, Fig. 8 indicates that the overall
normalization of the transverse distribution of the longi-
tudinal chromoelectric Geld is affected by the cooling. In
fact the parameter C does not stay constant with the
cooling. We feel that this is an indication that the Aux
4 is strongly affected by lattice artefact. This point will
be thoroughly discussed below.

In Figs. 9 and 10 we display the inverse of the pen-
etration length p (in units of AMs, where MS denotes
the modified minimal subtraction scheme) and the ex-
ternal flux 4 versus P. These data are obtained by flt-
ting Eq. (3.1) to the data extracted from square Wilson
loops (open points) and rectangular Wilson loops (full
points). A few comments are in order. A look at Fig. 9
shows that the inverse of the penetration length p agrees
within statistical Buctuations for both kinds of Wilson
loops. However, we see that for P + 2.65 the parame-
ter p arising from the rectangular Wilson loops seem to
display sizable Gnite volume effects. On the other hand,

4.5— SU(2) 20 )=2.6

3.5—

2.5—

we Gnd that the parameter p extracted &om the square
Wilson loops displays finite volume effects for P ) 2.7,
in the case of the 24 lattice. So in order to simulate in
the range P & 2.7 we need lattices with I ) 24.

Figure 9 suggests that the ratio p/AMs displays an
approximate plateau in P. Indeed we fitted the ratio
with a constant and obtained

1.5—

TABLE I. Fit parameters in Eq. (3.1) vs the number of
discarded points in the xt direction.

0.5—
min+t 4

1.413 45 (7599)
1.29705 (6052)
1.316 56 (5568)

1.35780 (11210)
1.299 26 (26 320)

Fit parameters stability
P

0.271 23 (1246)
0.349 47 (2175)
0.390 57 (3695)
0.411 92 (6162)

0.393 28 (10050)

x'/f
10.041 40
1.17981
0.452 13
0.442 79
0.522 73

0 !

8
I I I

10 ll 12 13
cooling step

FIG. 8. The parameter 4 in Eq. (3.1) obtained by fitting
the transverse pronle of the longitudinal chromoelectric field
at x~ ——0 vs the number of cooling steps. Open points refer
to 8 x 8 Wilson loop and full points to 10 x 5 Wilson loop.
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FIG. 9. p/AMs vs P. Full points correspond to rectangular
Wilson loops and open points to square Wilson loops. Circles
L = 16, squares L = 20, and triangles L = 24.

FIG. 10. 4 vs P. Symbols as in Fig. 9.

2D ~
p

(3.6)

= 8.96(31),
AMS

X'/f =2» (3.2)

using square Wilson loops in Eq. (2.1), and

= 9.36(29),
MS

y /f = 0.53

for rectangular Wilson loops (discarding in the Bt the
points at P ) 2.65).

Equations (3.2) and (3.3) corroborate our previous ob-
servation on the consistency of the penetration length.
By fitting all the data we obtain

= 9.17{21),
~MS

y'/f = 1.48. (3.4)

= 4.04(18), g /f =138. (3 5)

So we see that our data on the penetration length are
in agreement with the general expectation that scaling
goes better than asymptotic scaling. On the other hand,
the approximate evidence of asymptotic scaling is a nat-
ural consequence of the fact that the penetration length
is a physical quantity related to the size D of the Qux
tube [17]:

It is worthwhile to stress that our evidence for asymptotic
scaling of the penetration length is only indicative. In
general, it should be much easier to check scaling rather
than asymptotic scaling. We looked at the scaling of p
extracted &om square Wilson loops with the square root
of the string tension (we have used the string tension
extracted from large Wilson loops). We found that there
is approximate scaling of p, with v o for P ) 2.5:

As concerns the parameter 4, Fig. 10 shows that 4 is
rather insensitive to the shape of the Wilson loops used in
Eq. (2.1) (again the data from rectangular Wilson loops
are affected by finite volume effects for P & 2.65). More-
over, 4 decreases rapidly by increasing P and seems to
saturate to a value quite close to 1. We postpone the
discussion of this behavior until the comparison with the
results obtained using Abelian projected configurations
in the maximally Abelian gauge.

B. Maximally Abelian projection

Let us consider, now, the Abelian projected Beld-
strength tensor Eq. (2.10). As we saw, only the longi-
tudinal Abelian chromoelectric Beld is sizable. As in the
previous case, we try to Bt the data with the law

A @A 2
&& (*~) = pA~o(p»i),

27r
(3.7)

= 8.26(67),
MS

~'/f = 0.41 (3.8)

Again we find (see Fig. 11) that Eq. (3.7) reproduces our
data quite well for xi ) 2 (y /f2& 1). In Table II we
check the stability of the fit parameters. In Fig. 12 we
display the ratio p~/AMs obtained by fitting Eq. (3.7) to
the data in the case of square Wilson loops (open points)
and rectangular Wilson loops (full points). Within the
(rather large) statistical uncertainties, the parameter p~
agrees for the two difFerent Wilson loops. Moreover, the
data suggest that the ratio p~/AMs does not depend on
P. Indeed we fit the ratio with a constant and find
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0.03
ected

TABLE II. Fit parameters in Eq. (3.7) vs the number of
discarded points in the x~ direction.

0.025

0.015

min+t
1
2
3
4

Fit parameters stability
@'A pw

1.560 16 (21 253) 0.208 52 (2244)
1.287 96 (15337) 0.283 66 (3880)
1.24878 (10988) 0.35428 (6828)
1.34201 (19876) 0.41971 (12542)

x'/f
4.351 99
1.335 79
0.418 57
0.17380

0.01

0.005

0 1 2 3 4 5 6 7 8 9 10
xt

FIG. 11. London fit (3.7) to the data for the Abelian longi-
tudinal chromoelectric field at x& ——0 for square Wilson loop.

using square Wilson loops in Eq. (2.8), and

= 8.27(52),
~MS

(3.9)

for rectangular Wilson loops. An overall fit of all the
data gives = 8.84(28), y /f = 1 44 . (3.11)

Note that Eq. (3.2) and Eqs. (3.8)—(3.10) give consis-
tent value for the ratio p/AMs. On the other hand,
the ratio p/AMs, Eq. (3.3), extracted from the gauge-
invariant correlator p~ with rectangular Wilson loops is
slightly higher than Eqs. (3.8)—(3.10). Indeed, Eq. (3.3)
and Eqs. (3.8)—(3.10) are consistent within two standard
deviations. We feel that this small discrepancy is due
to the fact that the rectangular Wilson loops seem to be
more sensitive to 6nite volume eÃects. For this reason we
shall, henceforth, refer to the data extracted from square
Wilson loops.

In Fig. 13 we report the ratio p/AMs and p~/AMs
versus P obtained by the data corresponding to square
Wilson loops. We can see that the London penetra-
tion length extracted &om the gauge-invariant correlator
Eq. (2.1) agrees with the one extracted from the Abelian
projected correlator Eq. (2.8). In Fig. 13 we show also the
result obtained by fitting together the data (for square
Wilson loops):

X'/f = 1.05 . (3.10)

15
15

12.5—
12.5—

10

7.5—

10—

7.5—
~ ~ ~ ~ ~ ~ ~

CP
~ ~ ~ ~ ~ ~ ~

qp
~ ~ ~ ~ ~ &r & ~ ~ ~ ~ ~ ~ ~

2.5—

0 I I I I I I I

2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.S5 2.9

FIG. 12. y, ~/AMs vs P. Full points correspond to rectan-
gular Wilson loops and open points to square Wilson loops.
Circles L = 16 and squares L = 20.

I I I I I I

2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9

FIG. 13. p, and y& (in units of AMs) vs P for square Wil-
son loops. Circles, squares, and the triangle refer to L = 16
20, and 24, respectively. Crosses and the diamond refer to
the Abelian projected correlator p~ with L = 16 and 20,
respectively.
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3.5—

we expect that 4~ 1. Indeed we find (square Wilson
loops)

y /f = 0.79. (3.14)

2.5—

1.5—

0.5—

From the previous discussion it follows that Eq. (3.14)
seems to indicate that A/( 1.

We would like to contrast Eq. (3.14) with the behav-
ior of 4. In Fig. 1S we report 4'~ and 4 versus P. The
behavior of 4 under the cooling (see Fig. 8) suggested
that the external flux is strongly affected by lattice arte-
facts. Moreover, Fig. 15 indicates that the lattice arte-
facts seem to disappear by increasing P. Thus, we are led
to suspect that the external lux gets renormalized by ir-
relevant operators, whose effects are strongly suppressed
in the maximally Abelian gauge.

2.4
I I I I I I I I I

2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9
IV. STB.INC TENSION

FIG. 14. 4'~ vs P. Crosses and the diamond correspond to
square Wilson loops with L = 16 and 20, respectively; stars
and the asterisk correspond to a rectangular Wilson loop with
L = 16 and 20, respectively.

As a consequence, we can safely afBrm that the London
penetration length is gauge invariant. We feel that this
result strongly supports the dual superconductor mech-
anism of conGnement.

As concerns the parameter 4~, we Gnd that, unlike
the previous case, 4'~ does not depend strongly on P
(see Fig. 14). Moreover, we see that 4'~ is quite close to
1. It is worthwhile discussing the physical interpretation
of 4. The total flux 4z- of the flux tube chromoelectric
Geld is given by

In the preceding section we have shown that the color
fields of a static quark-antiquark pair are almost com-
pletely described by the longitudinal chromoelectric Geld.
Moreover, we showed that the longitudinal chromoelec-
tric field is almost constant along the flux tube. This
means that the long-distance potential, which feels the
color charges, is linear. Obviously the string tension is
given by the energy stored into the flux tube per unit
length. As a consequence we can write

(4.1)

(3.12)

where the integral extends over a plane transverse to the
line joining the static color charges. As we have already
discussed, the transverse distribution of the longitudinal
chromoelectric field can be described by the law Eq. (3.1)
when xz ) 0. Obviously we cannot extend the validity of
Eq. (3.1) up to xq —+ 0. Indeed for xq ~ 0 we encounter a
logarithmic divergence in Ko. On the other hand, E~(xq)
is finite in the coherence region zq (. However, if
A/( & 1, we estimate that the extrapolation up to the
origin introduces an overestimation of the integral (3.12)
by less than 10%%uo. So, inserting (3.1) into (3.12), we get

2.5—

1.5—

0.5—

C~
~oo

eT — d'x, E) x, - C . (3.13) 2.4
I

2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9

Equations (3.12) and (3.13) tell us that the parameter 4
measures the total Bux if A/( » 1. In U(1) it turns out
that 4 = 1, since that happens to be one unit of quan-
tized electric flux [22]. If the dynamics of the Abelian
projected fields resembles the gauge fields of U(l), then

FIG. 15. 4 and 4~ vs P for square Wilson loops. Points
and crosses refer to L = 16, squares and the diamond to
L = 20, and triangles to L = 24. Crosses and the diamond
correspond to the maximally Abelian gauge.
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We stress that the string tension 0 defined by Eq. (4.1)
does not depend on xi as long as the longitudinal chro-
moelectric Geld is constant along the flux tube. As we
have already discussed, working on a Gnite lattice results
in the limitations xi = 0, +1 (in lattice units) in the in-
tegrand in Eq. (4.1). Keeping these limitations in mind,
from Eq. (4.1) we can obtain an explicit relation between
the string tension and the parameters 4 and p, . Indeed,
if we extrapolate Eq. (3.1) up to x& ——0, by using

4 I I I
i

I

OO

2 1
dxxKo(x) = —,

0
2' (4.2)

we get

(4.3)

The main uncertainty in Eq. {4.3) comes out from the pa-
rameter 4. As explained in Secs. II and III, we computed
the parameters 4 and p, on SU(2) gauge configurations
and on the maximally Abelian projected gauge configu-
rations. In the latter case, 4~ = 1 and is independent
of P. On the other hand, for SU(2), C ) 1, and it ap-
proaches values very close to 4'~ by increasing P. As we
have already discussed, we feel that the external flux 4 is
strongly a6'ected by lattice artefacts. We can try to get
rid of these effects by assuming that, in the limit P —+ oo,

0 0.02 0.04 0.06 0.08 0.1

FIG. 16. String tension (in units of AMs) evaluated through
Eq. (4.1). The star refers to the value given in Ref. [23].
Symbols are as in. Fig. l5. For figure readability, Dot all the
available data are displayed.

4 4~ 1.

In this way Eq. (4.3) becomes

(4 4) The value quoted in Eq. (4.8) was obtained in Ref. [23) by
the linear asymptotic extrapolation of the string tension
data extracted from Wilson loops on lattices larger than
oul s.

(4 5) V. G(3NCLXJSIONS

A striking consequence of Eq. (4.5) is that, due to p
PA. )

(4.6)

within statistical uncertainties.
In Fig. 16 we report Eq. (4.5) in units of AMs versus

aAMS. Fitting the data all together to a constant, we get
(square Wilson loops)

= 1.76(6),
AMs

X'/f = 1.44. (4 7)

= 1.79(12) .
AMS

(4.8)

The quoted error in Eq. {4.7) is purely statistical. How-
ever, one should keep in mind that our theoretical un-
certainties in the estimation of the string tension (4.7)
introduce a systematic error that can be of the order of
10%. Nevertheless, it is gratifying to see that our esti-
mation of the string tension Eq. (4.7) is consistent with
(star in Fig. 16)

Let us conclude by stressing the main results of this pa-
per. We investigated the color Geld strength tensor of the
q-q flux tube by means of the connected correlators (2.1)
[full SU(2)] and (2.8) (maximally Abelian gauge).

The main advantage of using the connected correla-
tor (2.1) and (2.8) resides in the fact that the connected
correlators are sensitive to the field strength rather than
to the square of the field strength. As a consequence, we
are able to detect a sizable signal even with relatively low
statistics. It turns out that the flux tube color fields are
composed by the chromoelectric component parallel to
the line joining the static charges. Moreover the longitu-
dinal chromoelectric Beld is almost constant far &oxn the
color sources, and it decreases rapidly in the directions
transverse to the line connecting the charges. As a matter
of fact, we found that the transverse distribution of the
longitudinal chromoelectric Geld behaves in accord with
the dual Meissner efFect. This allows us to determine the
London penetration length. We checked that the pene-
tration length is a physical gauge-invariant quantity. A
remarkable consequence of our findings is that the long
range properties of the SU(2) confining vacuum can be
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described by an effective Abelian theory. In addition, af-
ter fixing the gauge with the constraints (1.8)—(1.10), it
seems that the degrees of &eedom that are not relevant
to the confinement get suppressed.

Finally, we put out a very simple relation between the
string tension and the penetration length, which gives an
estimate of ~cr quite close to the extrapolated continuum
limit available in the literature.

In conclusion, we would like to stress that the most
urgent problem to be addressed in future studies is the
reliable estimation of the coherence length (. The results
in Sec. III give an indirect and, admittedly, very weak in-
dication that A/( 1. As we have already discussed, the
coherence length is determined by the monopole conden-
sate, the order parameter for the confinement. Recently
two different groups [24,25] gave an estimation of the co-
herence length. These authors calculated the electric flux.
and magnetic monopole current distribution in the pres-
ence of a static quark-antiquark pair for the SU(2) lat-
tice gauge theory in the maximally Abelian gauge. The
magnetic monopoles are identified. using the DeGrand-
Toussaint [26] construction. By using a dual form of
the Ginzburg-Landau theory [27], which allows the mag-
nitude of the monopole condensate density to vary in
space, they fitted the data and obtain A/a and (/a. They
found that the coherence length is comparable to the pen-
etration length. Even though we feel that the approach
of Refs. [24,25] is interesting, we would like to observe
that it relies heavily on the definition of the magnetic
monopole current. As a matter of fact, in Ref. [28] it
was pointed out that the DeGrand-Toussaint definition
of the monopole density is plagued by lattice artefacts,
which are, however, less severe in the maximally Abelian
gauge. So the DeGrand-Toussaint monopole density is
not an order parameter for confinement. Thus, the ap-
proach of Refs. [24,25] is plagued by the ambiguities re-
lated to the definition of the monopole current. On the
other hand, in our approach we work outside the co-
herence region, so we feel that our results do not mani-
fest the above-mentioned problem. To clarify this point,
the study of the distribution of color fields in the pres-
ence of a static quark-antiquark pair in the framework
of the dual Ginzburg-Landau model with the magnetic
monopole current constructed by means of the monopole
creation operator proposed in Ref. [21] should be of great
help.

U„(x) m U„(x) = g(x) U„(x)gt (x), (A2)

where g(x) C SU(2). Under an arbitrary gauge trans-
formation the variation of the lattice functional Eq. (Al)
1S

1 1
AR~(x) = —tr gt(x)crsg(x)X(x) ——tr [crsX(x)]

(A3)

where

X(x) = ) U„(x)o3Ut(z) + Ut(x —p)cr3U„(x —p)

belongs to the SU(2) algebra. If we have locally maxi-
mized the lattice functional (Al) with respect to an ar-
bitrary gauge transformation, then we have

ARi(z) = 0. (A5)

From Eq. (A3) it follows that

X(z) = g(z)X(z)gt(z); (A6)

1
R& (z) = —tr o 3g (z)0 3g (x)X (x)cr3

1= k(x) —tr osgt(x)osg(x)V(x) (A7)

where

X (x)cr3

k(x)
k(x) = Qdet [X(z)cr3], (A8)

i.e. , X(x) must be diagonal. So that maximizing Rt(x) is
equivalent to diagonalizing the Hermitian matrix X(x).
Note that maximization of R~(x) at the given lattice site
x is accomplished by a gauge transformation g(z), which,
in turn, affects the value of the local operator X(x) at
the nearest neighbors. Therefore, the maximization of
the lattice functional (Al) can be achieved only by an it-
erative procedure over the whole lattice. In an equivalent
manner one can find g(z) as the matrix that diagonalizes
X(x) or as the matrix that maximizes Ri(x).

To obtain explicitly the gauge element g(x), which
maximizes Ri(z), let us write R~(x) as

APPENDIX

In this appendix we give more details on the algorithm
used. to fix the maximally Abelian gauge. On the lattice,
the maximally Abelian gauge is obtained by maximizing
the lattice functional

V(x) = vp(x) + i[vi(x)oi + v2(x)cr2] . (A9)

ensuring that V(x) is an element of SU(2). As one can
easily recognize from Eq. (A4),

Ri = ) —tr [o3U„(x)o.sUt(x)]

over all SU(2) gauge transformations

(Al)
Note that the term proportional to 0.3 is absent. Now,
we observe that, if we consider g(x) = u(x)g(x) [with
u(x) = up(x) + iu3(x)os] instead of g(x), then Eq. (A7)
is invariant. So we can assume without loss of generality
that in Eq. (A7) g(x) = gp(x) + i[gi(x)oi + g2(x)o2]. As
a consequence, Eq. (A7) is maximized when
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vp(z) + 1
gp X

2
)

vi(x)
gi(~) =-

2gp(*)
'

v2(x)
2gp(x)

»(*) =— (A10)

Since inaximization of (Al) results in an iterative proce-
dure, we must have at our disposal a convergence crite-
rion. To have a measure of the goodness of gauge Axing,
we consider the average size of the nondiagonal matrix
elements of X over the whole lattice:

01
C

-1
10

-3
10

10

V
10

-9
10

-11
10

1

\

i

\

\

i

0)=

.0

( x" ') = ', ) (x,('+ (x.(' (All) -13
10

CO=1.92
'i CO=1.7 Gi)=1.5

where X = X1o1+X1o~ + X1o3. We stop the iterations
when

(X" )(D, (A12)

where D is some (small) positive number. In our simu-
lation we used D = 10

In order to accelerate the convergence of the algorithm,
we adopted the overrelaxation method [29] suggested in
Ref. [11]. Once we have found the matrix g(x), which
maximizes (A3), we make the substitution

-15
10

0 200 400 600 SOO 1000

GAUGE FIXING SWEEPS

FIG. 17. Efficacy of gauge fixing defined by Eq. (All) as
a function of the overrelaxation parameter ~ for the L = 16
lattice. The case u = ~ corresponds to alternate cu = 1.0
with cu = 2.0 in the gauge-6xing sweeps.

g(*) ~ g--(*) = g(*) (A13) parameter u exists. Moreover, for large lattice size L it
is believed that

where the overrelaxation parameter u varies in the in-
terval 1 ( ar & 2. The exponentiation in Eq. (A13) is
obtained through the following representation for an el-
ement u 6 SU(2):

u = cos — +i o. . r sin (A14)

where r = r/~r], r = ~r[.
In our Monte Carlo runs we used a = 1.7. However, we

would like to stress that [ll] an optimal overrelaxation

2

1+ (A15)

where the constant c is problem dependent. As a matter
of fact, it turns out that a better convergence can be ob-
tained using values of ur close to 1.9 (see Fig. 17). Indeed
we obtained cu 1.92 for L = 16. Inserting this value
into Eq. (A15), we find c 0.7. It is remarkable that our
value for the constant c agrees with the one relevant to
the Landau gauge fixing [11].
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