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We present a systematic algebraic and numerical investigation of the instantaneous Bethe-Salpeter
equation. Emphasis is placed on confining interaction kernels of the Lorentz scalar, time component
vector, and full vector-types. We explore the stability of the solutions and Regge behavior for each
of these interactions, and conclude that only time component vector confinement leads to normal
Regge structure and stable solutions for all quark masses.
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I. INTRODUCTION

The Bethe-Salpeter equation [1] follows &om the gen-
eral principles of quantum field theory [2]. The instanta-
neous form of the Bethe-Salpeter equation, known as the
Salpeter equation [3], avoids difficulties related to the
relative time degree of &eedom and is believed to pro-
vide a firm kamework for the discussion of bound state
problems. Almost all knowledge of the solutions to the
Salpeter equation is restricted to that sector where at
least one of the constituent masses is large, in which
case use of the so-called reduced Salpeter equation is
justified. Relatively little work has been done on the
algebraic properties [4—6] of the full Salpeter equation
and even less on its numerical solution. A few years
ago Lagae [7] proposed a formalism that shows consider-
able promise for the systematic investigation of the full
Salpeter equation. He also examined several confinement
models [8] and concluded that the confining potential is
not a scalar on the basis of nonlinear Regge behavior of
the equal mass solutions. More recently, Miinz et. al.
[9] investigated a linear Lorentz scalar or alternatively
a time component vector confining kernel combined with
an efFective interaction proposed by 't Hooft &om instan-
ton efFects in QCD [10]. They found that there was no
convincing parametrization for the confining kernel that
leads to linear Regge trajectories and also yields spin-
orbit terms of the correct sign. They also concluded
that a scalar confining kernel does not lead to station-
ary solutions for higher angular momenta or small con-
stituent masses. This conclusion inspired Parramore and
Piekarewicz to perform a stability analysis of the vari-
ational solutions to the Salpeter equation in the pseu-
doscalar channel [ll]. They concluded that time com-
ponent vector confinement is stable with respect to the
increase in the number of basis states, but they found the
existence of imaginary eigenvalues for scalar confinement.
One may argue though [12] that these authors have not
considered the norm of the solutions in their analysis.

In this paper we extend Lagae's method, correcting

a small but important algebraic error and exploring the
full vector interaction kernel. We consider the nature
of the solutions to the full Salpeter equation for interac-
tion kernels of the time component Lorentz vector, scalar,
and full vector types. The variational (Galerkin) method
is used to investigate the reality of eigenvalues and the
stability of the solutions with the above Lorentz inter-
actions. We have taken the norm of the solutions into
account in our analysis, since only states with a positive
norm have direct physical significance. We have also in-
vestigated the Regge behavior for the above-mentioned
kernels, and extended the analysis done in [8] to heavy-
light systems. We also find that only the time component
vector interaction leads to stable variational solutions
and has normal Regge behavior. We should also em-
phasize at the outset that a time vector potential cannot
be considered a realistic model of confinement, since it
yields a spin-orbit interaction in conflict both with QCD
and experiment.

This paper is organized as follows. In Sec. EI we review
some general properties of the Salpeter equation and the
reduction to a system of coupled radial equations. The
numerical results are discussed for each of the Lorentz
kernels in Sec. III, and our conclusions are summarized
in Sec. IV. Appendix A contains the complete coupled
radial equations for the kernels considered in this paper,
as well as a discussion of important limiting cases. The
techniques of our numerical solution are covered in more
detail in Appendix B.

II. REDUCTION TO RADIAL EQUATIONS

In this section we briefIy review Lagae s elegant formal-
ism [7] for the reduction of the full Salpeter equation to a
system of equations involving only radial wave functions.
Our purpose here is to establish notation and to correct
a small inconsistency in Lagae s derivation, which, for
example, leads to a couple of sign errors in the radial
equations (5.7) of [7]. The correction does not afFect the
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equal mass case, which was the subject of Lagae's nu-
merical examples [8].

We start &om the Salpeter equation for a fermion-
antifermion system in the c.m. &arne of the bound state:

My = Hqy —yH2 +
(2vr) s V(k —k')

x(k) = (01@i(k)@2(k)IB) (2)

I'q and I'2 are 4 x 4 matrices corresponding to an inter-
action kernel with Lorentz structure p I'j (3 p I'2, while
the H s and A+'s are generalized Dirac Hamiltonians
and energy projection operators, given by

H;(k) = A;(k)n k+ B,(k)P, (3)

x (w', r,x'r, x' —w' r,x'r, x',),
with the notation f = f (k), f' = f (k'). In the above
equation V(k —k ) is a scalar function with Fourier trans-
form V(r) in the case of a Lorentz vector kernel, and

V(—r) in the case of a Lorentz scalar kernel. The Salpeter
amplitude x describing a mesonic bound state ~B) is de-
fined by

This equation will be used for obtaining radial equations
from the variational principle as outlined in [7].

Now, if we expand the Salpeter amplitude as

X = &o+&;p;+~o ~+~, p;~, (12)

8o ——Se(k N2),
Cg ——SpI.g,
l.2

——i CgL2,
Zs ———Cp(k Ni),

JVo ——SsL2k+ i'(k x N2),
JVi ——Syk(k Ni) —Cek x (k x Ni),
JV2 ——i[Cek(k N2) —S~k x (k x N2)],
JVs —— CpL—ik —i'(k x Ni) .

(13)

using 16 Hermitian matrices whose squares are unity
(1,p, , cr, p;cr) as defined in [6], it is then easily seen that
the constraint (8) can be satisfied by expressing the 16
components of x (l s and Af's) in terms of eight func-
tions (I i, L2, Ni, N2) in the following way:

A;(k) = k,
B,(k) = m, ,

E;(k) = /m~ + k~ (7)

E;(k) 6 H;(k)
2E;(k)

with E;(k) = QA, (k)2 + B;(k)2. In this paper we re-
strict ourselves to constituent quarks of masses m;, so
that

A;
cos P. = —'

j
B,

Slil f~ =

Here we have used the notation

S~ = sin P, C~ = cos P,
Sg = sin 0 ) Cg = cos 0 q

with angles P and 8 defined as

pi+ g4
g

42 —4i
2

'
2

)

while the P s are defined through

(14)

(16)

(17)

Hg H2
E x+x@ =0.

Taking this into account, the norm of the Salpeter am-
plitude [4, 6] can be written as

Using properties of projection operators, it can be eas-
ily shown that the Salpeter amplitude satisfies the con-
straint condition

At this point we have departed &om Lagae in one small
detail. Namely, we have redefined the function Lq &om
Eq. (4.10) in [7], so that L i"' ———I i s '. The reason for
doing so is that now, using (12) and (13) in the expression
for the norm (9), one can obtain

llxll' = 4 .[L2(k)Li(k) + Li(k)L2(k)
d3k

( )sT (9)

Using (1) inside of (9) one obtains

d3k
, [Ei+ E2] T [x'x]

d3k d k'
IVk k

x T [xtr, x'r, ] .

and is related to the normalization of bound states as

+N2(k) Ni(k) + Ni(k) N2(k)], (18)
which is Eq. (4.13) from [7]. Using Lagae s definition of
L i would lead to minus signs in front of terms L2(k)Li(k)
and Li (k)I,2(k) in (18). This small inconsistency of Eqs.
(4.10) and (4.13) from [7] leads to some incorrect signs
in the final form of the radial equations for states with
parity P = (—1) + . In the equal mass case the terms
with incorrect signs vanish, so that the numerical results
obtained in [8] are not afFected.

Now we proceed to obtain the radial equations. We
first express I,. and N; in terms of spherical harmonics
and vector spherical harmonics (for an extensive discus-
sion of generic wave functions and the identification of
the quantum numbers of the bound states the reader is
again referred to [7]), so that
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I;(k) =L;(k)YJM(k),
N;(k) =N; (A:)Y (k)

+N p(k)YG(k) + N +(k')Yi(k) (20)

with

ni+
ni— —v p

N;+
Ni

J
2J+ 1

J+1
2J+1 (23)

Using these de6nitions, together with properties of spher-
ical and vector spherical harmonics, we find, &om (13),

where Y, Yp, and Y+, stand for YJJ gM, YJJM and
YJJ+iM, respectively. We also introduce the functions
ni+ and ni, defined as

~p = Sen2 —+JM )

~1 —S$L'1+JM )

&2 = &CeL2&zM,
l'.3 ———

Cynic

YgM,
pJ p

——Cpn2+ Yp + (vCyN20 + p SgL2)Y'
+(pC~N2p —v SgL2)Y+,

All ——CgNMYG + (pSpnl + vCgn, +)Y
+( vs—ni + pCgnl+)Y+,

A/2 ——i[SyN20 Yp + (vSyn2+ + pCgn2 )Y

+(p Spn2+ —v Cgn2 )Y+],
~3 Sgnl+YG + ( pCQLl vS8N10)Y—

i(vCpL1 —pSgN1 p)Y+ .

In the above formulas everything is expressed in terms
of radial functions [e.g. , L; = L;(k), and so on]. Let us
brie8y review the quantum numbers of the states that
these radial functions represent (parity P, charge conju-
gation C, and + Lj):

Lg, L2, P = (-1)'+' C = (—1)'
P —

( 1)j+1 C —( 1)j+1
n, +, n2+, nl, n2, P = (—1) C = (—1), (J + 1)j.

Substituting (24) in the expression for the norm (18), and using the angular integrals summarized in [7], we find

k2dk
I Ixl I

=4,[L1L2 + L2Ll + N10N20 + N2pN10 + nl+n2+ + n2+nl+ + nl n2 —+ n2 —nl —] .
27r 3 (26)

Similarly, for the kinetic energy part of (11) we get

d3k
3 [El+E2] Tr[& (k)&(k)] =4

2
3[E1+E2]

x [L1Ii + L2L2 + NioN1 o + N20N20 + nl+nl+ + n2+n2+ + nl — 1—+ n2 —n2 —] . (27)

Each type of kernel xnust be treated separately. Here, for example, we give kernel part of (11) for the interaction of
the form po (3 po (I'1 ——I'2 ——1):

f d k 8 k
V(k —k') Tr[ytl' y'I' ] = 4(2')

) ( )

x Li SpVJS~Li+ Cp p VJ g+ v VJ+~ CyIi+ @vs VJ g
—VJ+y Seep

+L2[C8VJCgL2 + Sg(p VJ—1 + v VJ+l)SgL2 + pvS8( J—1 Vj+1) QN20]

+Nip[CgVJCgNip + Sg(v Vj 1 + p, Vj+1)SgNlp + pvS8(VJ —1 Vj+1)CyL1]

+N20[SyVJSyN20 + Cp(v VJ—1 + p Vj+1)CyN20 + pvCQ(VJ —1 VJ+1)S8L2]

+nl+[S8VJSgnl+ + C8(v VJ—1 + p VJ+1)Cgnl+ + pvC8(VJ —1 VJ+1)Sunni ]-
+n2+ [CQVJCyn2+ + SQ(v Vj—1 + ((i VJ+1 )S~n2+ + pvS&(VJ j VJ+1 )Cgn, ]

+ni [CyVJCyni +Sy(—p Vj 1+v V—j+1)Sunni —+pvSy(VJ 1VJ—+1)Cgni+]—
+fll VZ(SlfSl+llCg(/i VJ—1 + l Vjl 1)C +Sl/Cg(@Vlccll—l VZl. l)S4Dll I

(28)
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with VL, defined as

Vr, (k, k') = 8vr r drV(r)jl, (kr)jl, (k'r) .
0

(29)

following we consid. er the above issues for three difFerent
kernels, p p, p" p„, and 1 1.

A. po p kernel (time component Lorentz vector)
At this point we can obtain the radial equations by

taking variations of (26), (27), and (28), with respect to
I i (k), I z (k), . . . , nz (k). The resulting equations for the
p p kernel, as well as for the 11 and p" p~ kernels,
are summarized in Appendix A.

Of course, one can also obtain these equations by
straightforward substitution of (12) and (24) into the
Salpeter equation (1) and then taking the trace after mul-
tiplication of the resulting equation with the appropriate
matrices. The angular integrals that one needs can be
worked out easily using the definition of vector spherical
harmonics, the expression for Yi '(O)Yi '(0), and the
general properties of the Clebsch-Gordan coeKcients, as
given in Appendix C of [13]. However, Lagae s method
reviewed in this section is much more simple and elegant.

III. NUMERICAL RESULTS

As outlined in Appendix 8, one solves the radial equa-
tions by expand. ing the wave functions in terms of a com-
plete set of basis states, which depend on a variational
parameter P. This expansion is then truncated to a finite
number of basis states. In this way, a set of coupled ra-
dial equations can be transformed into a matrix equation,
'R@ = MvP. The eigenvalues M of the matrix R will de-
pend on P, and by looking for the extrema of M(P) one
can find the bound states. If the calculation is stable,
increasing the number of basis states used will decrease
the dependence of the eigenvalues on P. The regions of
P with the same eigenvalues should thus enlarge.

A stability analysis of the variational solutions for
the pseudoscalar states has been recently performed in
[ll]. Using the fact that the Salpeter equation can be
cast in a form identical in structure to a random-phase-
approximation equation, the authors of [ll] have em-
ployed the same formalism developed by Thouless in
his study of nuclear collective excitations [14], to per-
form a stability analysis of the Salpeter equation with
I orentz time component vector and scalar confining ker-
nels. They find the presence of instability, manifested by
the appearance of imaginary eigenvalues, in the case of
scalar confinement. On the other hand, they find no such
evidence in the case of time component vector confine-
ment.

Since matrix Q is not symmetric, its eigenvalues are
not guaranteed to be real. However, as noted in [7, 15],
the reality of eigenvalues follows &om the reality of the
norm and of the right-hand side of (ll) when 1 i and
I'2 are Hermitian, unless the norm is zero. Physically
acceptable solutions must have a positive (and nonzero)
norm. One may argue [12] that the authors of [ll] have
not taken this into account. Therefore, we find it worth-
while to examine the stability of the variational solutions
to the Salpeter equation by taking the norm into account,
i.e. , by rejecting states with negative or zero norm. In the

V
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N = 25
N = 15
N= 5

P [Gevj

FIG. 1. The 1owest three states with positive norm for
time coinponent vector confinement [V(r) = ar, a
0.2 GeV ] in the pseudoscalar case, with mi = rn2 = 0. Cal-
culations were done using 5, 15, 25, and 50 basis states.

The case of the po II po confining kernel (V(r) = ar)
was found [ll] to be stable with respect to an increase in
the number of the basis states, even with very small quark
masses. In order to verify this, we have performed a sim-
ilar calculation for the pseudoscalar case J = 0 +,
using a = 0.2 GeV and zero mass quarks, with as many
as 50 basis states. Results for the lowest three physical
states (with positive norm) are shown in Fig. l. One
can see that, as the number of basis states increases,
plateaus with the same. eigenvalues enlarge, and there
is no sign of instability. The same calculation was per-
formed with states of higher angular momentum (even
as high as J = 20), and again the results are the same.
Therefore, we confirm the conclusion reached by the au-
thors of [ll] that the time component vector confinement
is well behaved and suitable for a variational solution. As
an additional check of our programs, we have reobtained
all the numerical values for the time component vector
confinement with several diferent quark masses, which
are given in Table 1 of [11].

In Figs. 2 and 3 we show the leading and the first
few daughter Regge trajectories in the case of P = —C
mesons in the light-light and. heavy-light systems. As
expected, we obtained slopes of 8 for the light-light,
and 4 for the heavy-light systems.

In Fig. 4 we plot radial wave functions for the lowest-
lying S and P waves in coordinate space. We have used
V(r) = ar (a = 0.2 GeV ) and zero mass quarks. The
wave functions were normalized so that

~ [y[[
Finally, it is a well-known fact that the Salpeter equa-
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FIG. 2. Regge trajectories for a time component vector
confinement [V(r) = ar, a = 0.2 GeV ] in the light-light case
with equal mass quarks P = (—1) + and C = (—1) . We
have taken mq ——m2 ——0, and used 25 basis states.

tion does not reduce to the Dirac equation in the limit
where one quark mass becomes infinite [16]. What is
needed is an interaction that allows the existence of
single-pair terms. These terms arise &om kernels in-
volving crossed ladder diagrams. Therefore, it is inter-
esting to compare the exact solution of the Dirac equa-
tion with the time component vector Coulomb potential
[V(r) = ——"] with the solution of the Salpeter equation

FIG. 4. Radial wave functions in coordinate space for the
J = 0 +

( So state; Li is the lower and L2 the upper full
line), and J = 0++ ( Ps state; ni is the upper and n2
the lower dashed line), with a time component vector kernel
and V(r) = ar (a = 0.2 GeV ). We have chosen quark masses
mq ——m2 ——0. The calculation was done with 15 basis states.

in the heavy-light limit. In Fig. 5 we plot the Coulomb
energy for these two equations as a function of the light
quark mass and for three different values of x. For ex-
ample, for the light quark mass of mq ——0.3 GeV and
for K = 0.75 the effect is of the order of magnitude of
10 MeV. We note that for small mq this system becomes
spatially large and weakly bound.

10

-0.05

-0.1

-0.15

-0.2

g -0.25I

-0.3

0
0 4 6

(M-m2)
4a

10

-0.35

-0.4
0.2

I I

0.4 0,6
m&[GeVl

0,8

FIG. 3. Regge trajectories for a time component vector
confinement [V(r) = ar, a = 0.2 GeV ] in the heavy-light
case with P = (—1) + . We have taken mi ——0, m2 ——5.0
GeV, and used 25 basis states in the equations corresponding
to the heavy-light limit.

FIG. 5. Comparison of the Coulombic ground-state en-

ergy as a function of light quark mass mz, obtained from the
Dirac (full lines) and heavy-light Salpeter equation (dashed
lines), with a time component vector Coulomb potential
[V(r) = --."l.
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B. 1 1 kernel (Lorents scalar) 2.602

2.601- N = 40
As far as stability of the scalar confinement is con-

cerned, things are completely di8'erent. The authors of
[ll] claim that imaginary eigenvalues occur as they in-
crease the number of basis states, even for large val-
ues of the quark mass. For the particular choice of
mq ——m2 ——0.9 GeV and a = 0.29 GeV they find that
increasing the number of basis states &om 20 to 25 l d
to the Pi

o eas
o he Brst occurrence of iinaginary eigenvalues (for the

pseudoscalar state). Using these parameters we find no
imaginary eigenvalues, even with as many as 50 basis
states. However, as shown in Fig. 6, scalar confinement
in the full Salpeter equation does have a stability prob-
lem. As soon as basis states having large enough mo-
mentum components are included into the calculation,
instabilities occur. As seen in Fig. 6, if one includes only
25 basis states, the three lowest states with positive norm
have all well-defined plateaus in variational parameter P.
But as soon as we go &om 25 to 35 basis states, the third
state with positive norm develops instability. Of course,
for the ground state this instability occurs later. In or-
der to see the magnitude of this eKect, we have enlarged
the scale for the behavior of the ground-state plateau in
Fig. 7. As one can see, increasing the number of basis

earlier with smaller quark masses. To gain some insight
into the nature of this instability, we show in Fig. 8 the
behavior of the wave functions as the instability occurs.
We have taken the same parameters as for the previous
two figures and chosen P = 1.538 GeV (in the middle of
the instability from Fig. 7). As one might expect, with
39 basis states the radial wave functions still preserve be-
havior characteristic of an 8 wave, which is lost for the

2.6 ----------- N = 39

2.599

2.598

2.597

2.596

2.595

2.594

2.593

2.592
1.2

I

1.4

P [GeVj
1.6 1.8

solutions with 40 basis states. It is also interesting to
note that P near the edge of the unstable region (Fig. 7)
yields wave functions that appear to be identical to the
ones in the middle of it.

As far as imaginary eigenvalues obtained &om the
Salpeter equation with scalar confinement are concerned,
we have indeed found these with very small quark masses.
However, states with such eigenvalues always have a zero

FIG. 7. The &lowest pseudoscalar state with positive norm
for scalar confinement [V(r) = ar, a = 0.29 GeV j with mi ——

m2 ——0.9 GeV. Calculations with 39 (dashed line) and 40
(full line) basis states are shown. This illustrates the onset of
instability for this example of scalar confinement.

0.6 I I I

3.8
0.4

3.6 0.2

3.4

3I2

3

ol,

-0,2

2.6

2.4

2.2

N=35
N = 25
N= 5

-0.4

I I

2 3
r [GeV ~]

N = 40
N=39

[l [GeVJ

FIG. 6. ThThe lowest three states with positive norm for
scalar confinement (V(r) = ar, a = 0.29 GeV j in the pseu-
doscalar case, with mi ——m, 2

——0.9 GeV. Calculations were
done using 5, 25, and 35 basis states.

FIG. 8. Pseudoscalar ground-state radial wave functions
I and L~ an 2 in coordinate space with a scalar con6ning kernel
and V(r) = ar (a = 0.29 GeV ) Quark m.asses were rni ——

mq = 0.9 GeV. Calculations with 39 (dashed line) and 40 (full
hne) basis states are shown, and the variational parameter
was P = 1.538 GeV.
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norm and have to be rejected. Therefore, in this case we
do not agree with [11]and support conclusions reached by
[7, 15] that physical states will have a positive norm and
positive energies. However, we do agree with [11] that
the Salpeter equation with scalar confinement does have
a stability problem. Let us also briefIy mention that if one
squares the ground-state energy &om Fig. 7, one obtains
6.750 GeV, a number to which the calculation of [11]
converges before instability occurs (Table 2 in [11]).We
do not want to speculate on the reasons why calculations
done in [11] are much less stable than ours (for exam-
ple, with parameters used for Figs. 6 and 7 we have not
found imaginary eigenvalues even with 50 basis states,
while there they already occur with 25 basis states). We
might point out though that the pseudo-Coulombic basis
functions we used here are much more suitable for the
description of hadronic systems than harmonic oscillator
basis functions used in [11].

We also confirm that there are problems with Regge
trajectories with scalar confinement in the Salpeter equa-
tion as already found in [8, 17]. With large quark masses
and a small number of basis states, we show in Fig. 9
that Regge trajectories are not linear. The situation is
not improved even in the heavy-light limit, as can be
seen in Fig. 10. We would like to point out that this can
be easily understood &om the so-called "no-pair" equa-
tion. The Salpeter equation and its reduced version in
the heavy-light limit are the same as the no-pair equa-
tion [18], and for the no-pair equation with scalar con-
finement, it was shown analytically [19] that linear Regge
behavior is lost. If the linear Regge behavior is lost in
the heavy-light limit, one cannot expect that it will be
restored when both quarks have finite mass.

Finally, let us just mention that we have also investi-
gated the stability of a mixture of time component vector

10

0.5 1.5 2 2.5 3

(M-m, )'
2a

3.5

FIG. 10. Regge trajectories for scalar confinement
[V(r) = ar, a = 0.2 GeV ] in the heavy-light case with
P = (—1) + . We have taken mi = 0.1 GeV, mq = 5.0
GeV, and used 25 basis states in the equations corresponding
to the heavy-light limit.

and scalar confinement, i.e., for the kernels of the type

xp I3 p + (1 —x)1 ts 1 .

This type of confining kernel (with x = 0.5), together
with a one-gluon exchange kernel, was recently used in
[20] for the investigation of the weak decays of B and D
mesons. In order to illustrate this type of confinement, we
show in Fig. 11 what happens as x goes &om 0.49 to 0.51

10

8

6

1.8

1.6 "

1.4

1.2

1

0.8

x = 0.51

L = 0.49

4

2

0.6

04
I

0.2

I I

2 3
[i (Gev]

10 12 2 14
M
4a

16 18

FIG. 9. Regge trajectories for scalar confinement [V(r) =
ar] with equal mass quarks and P = (—1) + and C = (—1)
We have taken m~ ——m2 ——1 GeV, a = 0.2 GeV, and used
25 basis states.

FIG. 11. The lowest state with positive norm for the mix-
ture of time component vector and scalar confinement as given
in (30) [V(r) = ar, a = 0.2 GeV, mi ——m2 ——0]. Calcu-
lations with 2: = 0.51 (full line), x = 0.50 (dashed line), and
x = 0.49 (dotted line), correspond to 51%, 50%, and 49%
of the time component vector kernel. We have used 15 basis
states.
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FIG. 12. The lowest state with posiositive norm for full
Lorentz vector confinement

L
~zr~

mass case, with the choice of mq ——

m2 ——5.0 GeV. Calculations with 5 (dashed line) and 15 u
line) basis states are shown.

( 'th ass quarks and pure confi
'

g pfinin otential) .
bl onl if x ) 0.5.Ob '

usl in this case solutions are stauIe on y i x
Coulomb otential,With the addition of a short-range Cou om p

t also for x = 0.5. A similarvariational solutions exis a so o
conclusion was also reached in [11].

C "g kernel (full Lorentz vector)Vp

Full vector con6nemen e6 t behaves even worse than scalar
confinement, as ar as ef th variational method is eon-

' ~

in Fi . 12, the calculation is
not stable even with quark masses as high as 5.0 e

b of the basis states only makesIncreasing the num er o
Ithings worse, as well as decreasing qthe uark mass. t

t te that this kernel exhibits simi-
lar problems even with a pure Coulomb potential, w ic
was, on the ot er an, oh th h d found to be stable with scalar
an ime cornd t mponent vector kernels. Imaginary eigenva-
ues with this type of kernel are quite common, u ag
we emphasize that all such solutions have a zero norm
and must be rejected.

IV. CONCLUSIONS

In this paper we aveh' have corrected a small inconsistency
fullin Lagae's deriva ion od ' t' f the radial equations for the fu

~7~ and extended his analysis to theSalpeter equation
~ ~, an ex

case of a full Lorentz vector kernel. We have concen-
d h th ature of variational solutions to the

full Salpeter equation with a linear confining po en ia
and three different types of kernels: time component

1 . In each case wevector, full vector, and Lorentz sca.ar. n
have examine e s a id th t b'lity of variational solutions, and,
when possible, the Regge structure in the equal mass
and the cavy- g ch h -li ht ases. Our results support previous
conclusions that scalar confinement yields unstable varia;

tional so u ionsl t [11] and nonlinear Regge trajectories [8,
17, even in t e cavy- igh h -1' ht limit. On the other hand,
the variationa so u ions or1 t' f the time component vector
confinement are stable and give linear Regge trajectories
with the expected slopes for both the equal mass an
heavy-lig t cases. n a i

'I ddition we have found that varia-
tional so utions or u vf f ll vector confinement are even more
unstable than the ones for scalar confinement. We em-

t the norm ofh that our analysis took into accounp asize a our
tel su ortthe so utions.i t Our numerical results comp e e y pp

the theoretical conclusions of [8, 15 'gthat ei envalues for
wa s real. Imagi-the states with physical norms are a ways

nary eigenva ues o ap1 d pear and are quite common for
full vector confinement, but these solutions always ave

e e tra ectories inThe occurrence of nonlinear egge rajec
e results of Garasca ar con n1 finement is an extension o t

'
n andLa aeet al. [17] (for the reduced Salpeter equation) an ag-

[8] (for the full Salpeter equation) in the equal mass case.
We have found that the same problem persists even in
the heavy-light case. The origin of this effect can be ex-
plained analytica y omll & the so-called no-pair equation
in coordinate space [19].

Even though the time component vector interaction
behaves per ect y in e uf 1

' th full Salpeter equation and lea s
cannot bethe ex ected linear Regge trajectories, it cannot e

directly applied in any realistic meson mode
conflicts wit

'
h ~CD. The most evident example of this

conflict is its wrong sign of the spin-orbit sp itting.
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APPENDIX A: RADIAL EQUATIONS

In this appendix we give the compm lete set of radial
equations for the kernels considered in this paper. These

t the eneral case of a quark wit mass
mi and an antiquark with mass m2. One has to eep in
mind t at orh f J = 0 four wave functions vanish, i.e. , we
have Ãio = N2o ——0 and ni+ ——n2+ ——0.

I th 1 mass case these equations ssomewhat sim-n e equa
2) and 0 = 0,plify, since one has Ei ——E2, P = Pi ——P2, an

so at Sg ——0 and Cg ——l. Also, since charge conjuga-

P = i—1JJ+1 state equations split into two sys-
tems of two equations, one correspon ing o

L d L j and the other corresponding to(involving I i an 2, an
C = (—1) + (involving Nio and N2o).

T e cavy- igh h v -li ht limit (rn2 ~ oo) is obtained by setting
so that Sg ~ C~ and g ~+ m2
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interesting to note that in the heavy-light limit (and for
kernels po po and 1 1, but not for the p" p„kernel)
physical solutions satisfy Ll ——L2 and Nlp ——N20 [for
the P = (—1) + states], or nl+ ——n2~ and nl ——n2
[for the P = (—1) states]. Therefore, in these cases the
system of four equations can be reduced to a system of
only two radial equations.

Of course, for any mixture of diferent kernels, only the
kernel parts of the radial equations should be added, and
the kinetic energy terms are always the same. In the 11
case, we have introduced an additional minus sign in the
kernel, so that V(z ) has the same form for all three cases
considered, e.g. for the Cornell potential V(r) = ar ——".

g kernel

States with parity P = (—1)j+1 are

k' dk'
MLl [El + E2]L2 + 2 [CeVJCgL2 + Sg(p VJ—1 + v VJ+1)SgL2 + pvSg(VJ —1 Vj+1)CyN20]

Q 27l

ML2 [El + E2]L1 + 2 [SQVJSyL1 + Cp(p Vj—1 + v Vj+1)CyL1 + pvC@(VJ—1 VJ+1)SgNlp]
Q 27l

(Al)

MN„= [E, + E,]N„+ [Syv S~N„+ Cy(v Vj, + P Vj 1)C4N„+ PvCy(VJ 1 —Vj+1)SgL,],I I 2 2 I I I

k'2dk'
MN2p = [El + E2]Nlp + 2 [CgVJCgNlp + Sg(v VJ—1 + p VJ+1)SgN10 + pvSg(VJ —1 Vj+1)CQ 1]

o (2~)'

States with parity P = (—1) are

k' dk'
/ I 2 2 I / I

Mill+ ——[El + E2]F2+ + [CyVJCpr12+ + Sy(v Vj-1+ p Vj+1)Syr12+ + p y(VJ 1 —Vj+1)-Ce 2 ]-
2lr) 2

k'2dk'
I I 2 2 I f I

M'A2+ = [El + E2]7l1+ + [SgVJSgrll+ + Cg(v VJ—1 + p Vj+1)Cereal+ + pvCe(VJ —1 VJ+1)Sf~1—]
(2lr) 2

(A2)

Mnl ——[El + E2]n2 + [SgVJSer12 + Cg(p Vj—1+ v Vj+1)Cgl12 + pvCe(VJ —1 Vj+1)Sqr12+],
k'2dk'

/ / 2 2 I f f I

(2m) 2

M%2 = [El + E2]A1 + [CQVJCyr11 + Sp(p VJ—1 + v VJ+1)Syr11 + pvSQ(VJ —1 Vj+1)Cg~l+]I I 2 2 I I I I

(2~) 2

2. 1 1 kernel

States with parity P = (—1) +1 are

k'2dk'
ML1 ——[El+ E2]L2+ [CgVJCgL2 —Sg(p Vj 1+v Vj+1)SgL2 —pvSg(VJ 1 —Vj+1)C@N20],

o (2~)'

k'2dk'
ML2 —[El + E2]L1 + [SQVJSyL1 CQ(p Vj—1 + v Vj+1)CyL1 pvC$(VJ —1 VJ+l)SgN10] )

(2vr) 2

MNlo ——[El + E2]N2o + [SyVJS+N20 —Cy(v Vj 1 + p Vj+1)C+N20 —pvC@(VJ 1 —Vj+1)SeL2],
k'2dk'

2 2 I I I

o (2~)'

cx) I /2 /

20 [El + E2]N10 + 2 [CgVJCgN, '0 —Sg(v Vj 1 + p, Vj+1)SgN10 —pvSg(VJ 1 —Vj+1)C~L1]
0 (2~)'

States with parity P = (—1)j are

k'2dk'
I I 2 2 I I I I

Mnl+ ——[El + E2]n2+ + 2 [ C~VJC&n2+ + S4(v Vj 1+—p Vj+1)S~ll2+ + pvSy(VJ 1 —Vj+1)Cgl—12 ]
(27r) 2
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Mn2+ —[E1 + E2]n1+ + ), [ —SgVJS,'n'„+ Cg(v'Vj, + p, 'V,„)C,'n', +»C, (V, , —V,„)S', ],
(A4)

Mn2 ——[E1 + E2]n1

k'2dk'
Mnl — [E1 + E2]n2 —+ [ SgVJSgn2 + Cg (p Vj 1 + v VJ+1)Cgn2 + pvCg(VJ 1 —Vj+, )S~n2+]27r 2

/ 2 2 / / /
2 [ 4 JCyn1 +$—4(P Vj—1+v Vj+1)Syn1 + IJvSy(VJ 1 —Vj+1)Cgn1+] .2vr 2

3. g" p„kernel

States with parity P = (—1) + are

/ / 2 2 / / / /MI 1 ——[E1 +. E2]L2 + [4Cg VJCgL2 + 2$g (p, Vj 1 + v Vj+1)SgL 2 + 2»Sg(VJ 1 —Vj+1)C~N20],
0 2'

k"dk'
ML2 —[E1 +E2]L1+,[ 2$yV—JUL, ),

0 27r

(A5)
k'2dk'

MN10 —[E1 + E2]N20 + [2'(v Vj—1 + p Vj+1)CpN20 + 2»Cp(VJ —1 VJ+1)SgL2]
0 (2~)'

MN2p ——[E1+E2]N]p + 2 [2CgVJCgN10] .
0 27l

States with parity P = (—1) are

Mn1+ ——[E1 + E2]n2+ + [2C@VJC~n'2~],
0 27r

Mn = [E1+E2]n1+ + [2Cg(v Vj 1+ p, Vj+1)Cgn1+ + 2pvCg{VJ 1 —Vj+1) &n1 ],2 2 / / g/ /

2+ 1 2 1+
(2 )2

(A6)

Mn1 ——[E1 + E2]n2 + [ 2SgVJSgn2 ],—
(2~ 2

k'2dk'
Mn2 ——[E1 + E2]n1 + [4CyVJC~n1 + 2'(p Vj 1+ v Vj+1)S~n1 + 2pv$4, (VJ 1 —Vj+1)Cgn1+) .

0 21r

APPENDS B: NUMERICAL SOI UTIDN DF
THE RADIAL EQUATIONS

As brieQy mentioned in Sec. III, the easiest way to
solve the radial equations given in Appendix A is to ex-
pand the radial wave functions f(k) in terms of some
complete set of basis functions (e;L, (k)), and to truncate
the expansion to the first N basis states, i.e.,

The matrix W and its eigenvalues depend on the vari-
ational parameter P characterizing the basis functions.
However, if the calculation is stable, dependence of the
solution on P should reduce as N increases. This is man-
ifested by the development of plateaus in P having the
same eigenvalues.

A basis set that was shown to be very successful in
calculations of this sort is given by [21]

f(k) ) c~e,L, (k) .
i=0

(B1)

In this way a set of n coupled radial equations becomes
the nN x nN matrix equation

(B2)

p ~
ii+2

e,i(P, k) = ( i)'N;I,p- !qP2+ k2y

(I+-'»+-', )

gk2+ p2)

where P; ' (x) are Jacobi polynomials and

(B4)

where vP is an nN-dimensional vector: 21'(-')
N, L, =

r(i+ L+ —,')
1i!(i+2L+ 2)!

The Fourier transform of (B4) is known analytically,

e;L, (P, r) = N;I, P&(2Pr) e P L, (2Pr), .(B6)
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with LI ) (x) being the generalized Laguerre polynomials
and

allow us to perform integrations over A: and k' analyti-
cally, so that (B9) becomes

8(")
(i + 21 + 2)!

(B7)
N' —1 1V' —1

~ ~

(F,L',L)* (L') (G,L', L)
I i il~ I ~ l~

e=o ~'=0
(B12)

The kinetic energy terms of the 'R matrix (dropping
the dependence of the basis states on P), where

k dke,'L, (k) gk2 + m2eil. (k), (B8)
OO

cI,, ' ' ) = k dke,*,l, (k)F(k)e;r, (k),
0

(B13)

can be efhciently calculated using the Gauss- Jacobi
quadrature formula after performing a change of integra-

tion variable to x = &,+&, . Keeping in mind de6nition

(29), the kernel part of '8 will in general include terms
such as

QQ OO

k'dk k"dk' r'«e;L, (k)
0 0 0

N' —1

F(k)e;1,(k) = ) cI,,' ' )e; I, (k),
i'=0

(Blo)

where JV' is the number of basis states of (e; I, ) used

[similarly we have to expand G(k')esL, (k')]. Now, the
radial Fourier transforms

e, (r1) =i, k dkjl, (kr)e;1.(k) (Bll)
(2z.) ~ o

F(k)J'I. (kr)V(r)J'z, (k'r)G(k')ejL(k ) I (B9)

where E and G are some functions of k and k', respec-
tively. It is quite dificult to approximate these inte-

grals by applying standard numerical quadrature meth-

ods, since the range of integration is inf1nite, and spheri-
cal Bessel functions j~(kr) are rapidly oscillating. In ad-

dition, we would have to perform the quadrature for each
value of r where V(r)jI, (kr)jl, ~(k'r) is needed. There-
fore, it is much better to expand F(k)e;g (k) in terms of
basis functions (e, I. ) [22], i.e.,

V(, ) = r2dre, ', I, (r)V(r)e, I, (r) .
0

(B14)

Again, the integrals involved in the calculation of
c...-' ' can be efBciently evaluated using the Gauss-(F,L„I.')

Jacobi quadrature formula, while matrix elements of
V(r) were calculated analytically [19] for the short-range
Coulomb and linear con6ning potential that were used in
this paper.

In practice, we choose L in such a way that I = J
for the states with parity P = (—1) +~, and I = J —1
for the states with parity P = (—1)~ (unless J = 0,
when we take I = 1). From the radial equations given
in Appendix A one can see that I' can take values J—1,
J, or J + 1, and we have found that generally taking
N' = 2N is more than enough to accurately describe all
functions of the form F(k)e,L, (k).

In order to make sure that numerical calculations were
done correctly, we have written two independent pro-
grams, each of them treating the general (unequal mass)
case, and also two limiting cases (equal mass and heavy-
light limit) separately, for all kernels considered in the
text. In addition to the consistency of the two programs
of ours, and consistency of the two special cases with the
general case, we have also checked our results against
those of [8], where only equal mass case was considered,
and of [11],where stability of pseudoscalar case was con-
sidered.
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