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Angular distribution in the decays of the triplet D2 state of charmonium directly produced
in unpolarized pp collisions
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We calculate the combined angular distribution of the final electron and of the two y photons in the
cascade process pp~ D2~yz+y, (J=0, 1,2)~(t/iy2)+y, ~(e+e )+y2+y„where p and p are unpo-
larized. Our final result is valid in the pp c.m. frame and it is expressed in terms of the Wigner D func-
tions and the spherical harmonics whose arguments are the angles representing the various directions in-
volved. The coefficients of the terms involving the spherical harmonics and the Wigner D functions are
functions of the angular momentum helicity amplitudes or equivalently of the multipole amplitudes of
the individual processes. Once the combined angular distribution is measured, our expressions will en-
able one to calculate the relative magnitudes as well as the relative phases of all the helicity amplitudes
in the processes 1 'Dz ~ 1 'PJ+ y, and 1 P~ ~/+ y, for the J =2 case. For the J= 1 case, we can deter-
mine the relative magnitudes of all the helicity amplitudes as well as the cosines of all their relative
phases. The sines are not completely determined. If the sine of the relative phase between any two am-

plitudes is known, then the sines of the relative phases among other amplitudes can be determined. For
the J=0 case, there is only one helicity amplitude in each decay and that is fixed by our normalization.
We also present the partially integrated angular distributions in six different cases, which can all be ex-
pressed in terms of the spherical harmonics. We also calculate the angular distribution of the y photon
in the process pp ~ D2~ So+p where again p and p are unpolarized. In this case, the angular distribu-
tion has a very simple form: namely W(8) =(1/&4m )[Yoo+(v'5/14) Yzo(8)+ z, Y4O(8)], where 8 is the

angle y makes with the p direction. So the observation of a y photon with an energy of about 840 MeV
and with the above angular distribution can be used as a signal for the formation of the D2 state in pp
collisions.

PACS number{s): 13.40.Hq, 12.39.Pn, 14.40.6x

I. INTRODUCTION

Recently we calculated [1,2] the angular distributions
of the decay products in the various decay schemes of the
singlet D state of charmonium directly produced in pp
collisions. The main interest in these calculations is that
the singlet D state of charmonium, even though it is
above the charm threshold, is expected to have a narrow
width since its decay into D+D is forbidden by parity
conservation and its decay into D+D ' or D'+D is for-
bidden by conservation of energy. But the singlet D state
has one drawback. By C and P invariances, p and p
should have the same helicities for the resonance forma-
tion of the D2 state in pp collisions. Now if we assume
that the constituent u and d quarks of the proton are
massless and they have the same helicities as the proton
then the formation of the Dz state in pp collisions is for-
bidden in perturbative QCD since Uz y&V& vanishes for

1 2

massless spinors when the helicity indices I,
&

and A,2 are
equal. It is quite possible this helicity selection rule is
strongly violated in nature as is seen from the processes
pp ~g„'P&, etc. It is interesting to note that the forma-
tion of the D2 state in pp collisions is not suppressed due
to this helicity selection rule since C and P invariances

now dictate that p and p should have opposite helicities
for the formation of the triplet D states of quarkonium.
Furthermore the triplet D state is also expected to have a
narrow width since its decay into D+D is also forbidden
by parity conservation and the predicted mass of 1 D2 in
the potential models is such that its decay into D+D or
D*+D is also forbidden by the conservation of energy.
In fact, the predicted mass of D2 in most potential mod-
els lies very close to the singlet D state mass. In this pa-
per we study the angular distribution of the decay prod-
ucts of the Dz state formed in unpolarized pp collisions
in the following decay schemes:

(1) pp —+1 Dq~l PJ(J=0, 1,2)+y) —+(I S)+yp)

+yt~(e+e )+yq+yt

and

(2) pp~1 D2 +1 So+y . —

Ogr 6nal expression for the angular distribution in each
case is valid in the pp c.m. frame or the D2 rest frame
and it is given in terms of the angles measured in that
frame. In process (1) the expression for the combined an-
gular distribution of the electron and of the two photons
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is given in terms of the angular-momentum helicity am-
plitudes in the individual processes D2 —+yJ+ y &

and

yz —+g+yz. Once the angular distribution is experimen-
tally measured our expressions will enable one to calcu-
late the relative magnitudes as well as the relative phases
of all the angular-momentum helicity amplitudes or
equivalently of the radiative multipole amplitudes in the
transitions Dz~yz+y, and yz —+g+yz. For the J= 1

case, we can only determine the relative magnitudes of all
the helicity amplitudes as well as the cosines of their rela-
tive phases. The sines of the relative phases are not corn-
pletely determined. If the sine of one of the relative
phases is known, the sines of the others can be deter-
mined. For the J=O case, there is only one helicity or
multipole amplitude and that is fixed by our normaliza-
tion. In the second cascade process
pp —+1 D2~1 Sp+y, the normalized angular distribu-
tion of the photon has a very simple form without any
unknown amplitudes: namely,

W(8) = 1

4n
&Do+

1
~zo(&)+ &4O(&), (1)+&5 8

40

where 8 is the angle y makes with the p direction.
The format of the rest of the paper is as follows. In

Sec. II, we derive the combined angular distribution of
y „y2, and e in the cascade process,

pp~l Dz ~yj(J=0, 1,2)+) i

0+rz+r i (e +e+)+rz+ri .

We express our result in terms of the orthonormal
Wigner D functions and show how the measurement of
this angular distribution enables us to obtain complete in-
formation about the helicity amplitudes for the J=2 case
and almost complete information for the J=1 case. In
Sec. III, we present the results for the partially integrated

angular distributions in six difFerent cases. They can all
be expressed in terms of the orthonormal spherical har-
monic functions. We also show how the measurement of
these partially integrated angular distributions alone will
give a wealth of information on the helicity amplitudes.
In Sec. IV, we give the relations between the angular
momentum helicity amplitudes and the radiative mul-
tipole amplitudes in the decays 1 D2 —+yJ+y, and
yJ~P+yz (J=0,1,2). Finally, in Sec. V we derive the
strikingly simple angular distribution of the y photon in
the cascade process pp~1 D2~1 Sp+p.

II. THE COMBINED ANGULAR DISTRIBUTION
OF y„y2 AND e IN pp ~'D2 ~y~+y& {J=0, 1,2)

~4+yz+yi e +e++rz+ri

In this section we will consider the cascade process

p(&&)p(&z) ~'Dz(v) ~yj(o )+y, (p) (J=0, 1,2)

~[/(p)+yz(~)]+y&(p)

~(e (a&)+e+(o.z))+yz(lr)+y&(p)

in the pp c.m. frame, where the Greek symbols after the
particle symbols represent their helicities except for the
stationary D2 resonance in which case the symbol v
represents the Z component of the angular momentum.
We choose the Z axis along the direction of motion of yJ.
The X and F axes of the right-handed coordinate system
are otherwise arbitrary. The probability amplitude for
the above cascade process can be written (within con-
stant) as a product of the matrix elements for the indivi-
dual processes. Only the helicities of the initial and the
final particles are observed. So we write the probability
amplitude as

—2~+2 —J~+J —1 —++1
zz ('Dz(v) IB Ip(&) )p(&z) )Dlz (y~(o )y )(p) I

~ I'Dz(v) &D
V CT P

x D(y(p)yz(~) IEly, (~) &»(e-(~, )e+(~z) ICI1t(p) &, . (2)

We sum over the helicities of the unobserved particles in
Eq. (2). The symbols B, A, E, and C represent the ap-
propriate transition operators. The subscript D attached
to the bra or the ket vector indicates that each individual
matrix element is evaluated in the D2 rest frame. In the
first two matrix elements the D2 rest frame is the same
as the c.m. frame of the two particles. In the last two ma-
trix elements (fyzlElyj) and (e e+ICIQ) this is not
the case. To avoid confusion, we should clarify what we
mean by the two-particle helicity states when they are not
in their c.m. frame. For example, the two-particle state
IP(p)yz(a))zi defined in the Dz rest frame, which is not
the c.m. frame of g and yz, has the following meaning.

If(p)yz(&) )D —Up('Dz, yg ) lf(p)yz(~) )r, , (3)

where UA( A, B) is the unitary operator corresponding to
the Lorentz transformation A( A, B ) which takes the sys-
tem from the Lorentz frame where B is at rest to the
Lorentz frame where A is at rest. It is important to c ~ri-

First construct the two-particle helicity state
Ig(p)yz(a. ) )r in the gz rest frame (which is the same asXJ
the c.m. frame of g and yz) according to the usual con-
ventions [3) with

hatt
and yz having exactly equal and op-

posite momenta and helicities p and a, respectively.
Then,
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fy this point since in general g and yz do not have
definite helicities p and ~ in the D2 rest frame. A similar
meaning also holds for the two-particle state
le (a, )e (a2) &D.

Let us now consider the matrix elements in Eq. (2), one
by one. First,

n& D2(v)IB IP(Ai)p(A2) &D
= &2vIB lp(8, $);A, ,A2&, (4)

where p(8, $) is the inagnitude of the c.m. momentum of
p which is taken to be in the direction (8,$) in the coordi-
nate system we have chosen. Using the usual expansion
[3,4] of the two-particle helicity state in the c.m. frame in
terms of the angular-momentum states we find

~ & D2(v) I& lp(~i)p(4) &D
— 5/4~&i. ,i.,D'.i.(4, 8 —0»

where

Because of C and P invariances [3], the angular-
momentum helicity amplitudes B& & are not all indepen-

1 2

dent. We have

C P
(7)

Because of Eq. (7)

tion leads to

A J
( 1)J+1AJ

with the restriction —2~ v=o. —p~ +2. This would
mean that for J=2, o. cannot take the value —2.

The matrix element for the process XJ~f+y2, in the
D2 and the yJ rest frames are equal. That is,

D & g(p)y2(~) IE IxJ(a ) &D

=,,&p(p)y2(~) I UJ ('D2 XJ)EUA( D2 XJ)IXJ(a) &,

=,& p(p)y (~)IE lx (a) &„.
In Eq. (13) we used the fact that the transition operator E
is invariant under Lorentz transformations: namely,

UAEU~ =E .

Using Eq. (13) we can now write

D & @(p)y2(~) IE IxJ(a) &D =„&p'(8',p'); p~lE I
Ja &,,

(14)

(15)

We label the (2J+1) linearly independent A amplitudes
as

A =A i=( —1) +'A i, o= —J, —J+1, . . . , +J
(12)

and

B++= —B++=0

B = —B =0.

where p' is the magnitude of the g three-momentum in
the XJ rest frame or the fy2 c.m. frame. Again using the
expansion [4] of the two-particle helicity state in the c.m.
frame in terms of the angular-momentum states we ob-
tain

Also we call

Bi =~28+ = —v'28

Next we consider the matrix element

D &xJ(o )y, (p)l A I'D, (v) &ii = &p, (0,0,0);apl A I2v&

5/4n A „D„„(0,0,0)

D & g(p)y&(~) IE lxJ(a ) & D

=v 2J+1/4mE +~ p, (p', 8', —p') .

The P invariance of the transition operator E leads to

EJ —
( 1)JEJ

We label the three independent E amplitudes as

(16)

(17)

=v'5/4n A ~„5, (10) E =E, , =( —1) E +i i, p=o, l, . . . , J .

The C invariance is trivially satisfied in the process
D2 ~gJ+y &. The P invariance of the transition opera-

For the matrix- element of the Anal process
g(p)~e (ai)+e (a2) the situation is more involved.
We have

(ai)e+(a2)ICly(p) &D=q&e (ai)e+(a2)IUA('D2, @)CUA('D2, XJ)Up(XJ, y)lit(p) &q

=&&e (a, )e+(a2)I U~( D2, $)CU~( D2, $)UA( D2, $)Up( Dp, X )UJ+(X g)JIg(p) &q

(ai )e (a2) I CUg ('D2 f)UA( D2 XJ»~(XJ,t) I 0(p) & ~ (19)

In the first equality of Eqs. (19) we made use of the fact
that the single-particle state Ig(p) &D was also part of the
two-particle state of Eq. (16). It was obtained by succes-
sively performing two unitary operations corresponding

to the two Lorentz transformations, the first taking the f
state from its rest to the y& rest frame and the second
taking it from thegJ rest frame to the D2 rest frame. In
the last equality of Eqs. (19) we now make use of the fact
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that

UA( D2, yz)U&(yx, g)=Us( Dz, f)U (20)

M~
P, = (l,e~), (26)

where Uz is the unitary operator corresponding to a

pure rotation, usually called "Wigner rotation. " Using
Eq. (20} and the unitarity of Uz Eq. (19}now leads to

D(e ( a, )e+( a, )l Clf(p))~

=,(.-(a, ).+(a, )ICU, ly(p)),

R 'P, =A '(y~, f)A '( Dz, yj)A( D2, $)P,

=A '(yq, Q)A '( D2, yq)A( D~, g)

XA '( D2, $)P,

=A '(Xi 4)A '('D»Xz}Pe (27)

=@(e (a, )e+(a~)
l U„Ug CUg I Q(p) )y

=~( e (a, )e+(a, ) l U„C I P(p) )g (21)
where P, is the four-momentum of e in the D2 rest
frame. From Eq. (26) we also have

since

U~~ CU~ =C . (22)

=&3/4~c. .D,'.(y",e", y"), — (23)

where

CX
= tX1 A'2 (24)

and e& is a unit vector in the direction of e three-
momentum in the g rest frame and R s, is the ( 3 X 3 ) rota-
tion matrix and C are the angular-momentum helicity

1 2

amplitudes.
The Wigner-rotated unit vector R ~ e& can be obtained

in the following way. Let R represent the (4X4}matrix
whose spatial part gives the (3 X 3) matrix R ~ mentioned
above. Then from the definition of Uz in Eq. (20),

R =A '( D2, $}A( Dz, y~)A(yj, f), (25)

where the A's are the (4 X 4) Lorentz transformation ma-
trices. Now we note that the electron is highly relativis-
tic in the g rest frame and its four-momentum vector P,

I

can be represented to a very good approximation as

Using the expansion [4] of the two-particle helicity state
in terms of the angular-momentum states, we can write
the right-hand side of Eq. (21) as

~(e (a&)e+(a2)l U~ C
I P(p) )q

=V3/4m D '~ (R s, 'e~ )C

Combining Eqs. (27) and (28) we get

M (,Rs 'e~)=A '(yi, f)A '( D2, yq)E, (l, e~) .

(29)

C P
Ca a Ca a C—a —a

1 2 2 1 1 2
(30)

We call the independent C amplitudes Co and C„where

CO=C++ =C--
C1=C+ =C (31)

If e+e is created through a virtual photon, Co can be
neglected compared to C1 if the energy of the electron is
much larger than its restmass energy, which is true in the
present case.

Using Eqs. (2), (5), (10), (16), and (23) we can write the
amplitude for the cascade process as

The spatial part of Eq. (29) gives, within a normalization
factor, the Wigner-rotated unit vector e=(R~ e&) in
terms of the angles (8",p") which give the direction of
e in the D2 rest frame.

The helicity amplitudes C of Eq. (23) are not all in-
1 2

dependent. The C and P invariances give

T

T~'~' = v'2J+ 1/4m&3/4~C Bg gl2 4~ 1 2 1 2

—2~+2
E,'~,'.*(y-,e-, y-} y ~ '.„D—'.. .(y, e, y ) y ~,. „D—'„(y,e, y)—

—1,0, +1
2J+1/4m 3/4nC Bg g g Ep~p (P",8",—P")

P
—J~+J

x g A „D (p'8', p')D „q($8,—p) . — (32)
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The angles (8', p') giving the direction of 1t and the angles (8",p" ) giving the direction of R ii, e& are measured in the yJ
and the g rest frames, respectively. Later we will relate them to the corresponding angles (8,$') and (8",P") measured
in the D2 rest frame.

When p and p are unpolarized, the normalized function describing the angular distribution of y1, y2, and e is given
by

+ 1/2, —1/2 + I /2, —1/2 + 1,—1

X
k]A&2 ala2 p, x

(33)

where X is a normalization constant so chosen that 8'integrated over all the angles will give the value one. After we
substitute Eq. (32) into Eq (3.3) we have to perform the various sums. Before we do the sums we make use of the
Clebsch-Gordan series relation for the D functions, namely,

J&+~2

1 2 m(m2 J=
I j&

—j2l

and the relation

(j,j2m, m',
~ J,m, +m', ) (j,j2m2m 2 ~ J,m2+m 2 )D (34)

(35)

Then we see that the various sums in Eq. (33) factor out, or in other words, the angular distribution function 8'be-
comes a product of four sums, one involving A, i and A, 2, a second involving a, and a2, a third involving p, p, and ~, and
a fourth involving o, 0', and p. The sums over A, 1, A,2 and a1, u2 are trivial. The sums over p, p', ~ and o., 0', p are per-
formed after we make the following change of variables:

8 —p p
s =p+p',

CT 0 s

s —0'+ 0

We also notice that the terms for negative d, d' are the complex conjugates of those with positive d, d'. So in the sums
we can restrict ourselves to positive d, d . The ~ and p sums lead to an expression for the right-hand side of Eq. (33)
which is given in terms of the linearly independent angular-momentum helicity amplitudes defined through Eqs. (9),
(12), (18), and (31). After a rather long algebra we finally obtain the following expression for the normalized angular
distribution:

0, 2, 4 0,2 0, 1, ~2JO~Min~L L J
L L

0 M ~ L ~

L L L L LW(8/8', P', 8",P")= g P g g g „' ' g „' 'P„' ' '(8$;O', P', 8",P"),
d' d

where

131 = —+S(22;1—1~Li0) (8i (

0, 1

y, ,
= —&3y( —1) (11;~—~~L,0) ~C. ~',

(37)

(38)

(39)

'(J)=( —1) &3(2J+1) 1—
J J JQ J40 Ez +& Ez & L2 Ez +& Es' (g' s'+d'—+(—1) ' JJ;

, s'{d')

s'+d' —2 s' —d' —2
X 11, , L3d (40)

s'(d') =d', d'+ 2, . . . , 2J—d',

a„' '(J)=( —1) +'&5(2J+ 1) 1—5dO

. s(d)

J J JQ J~s+d ~s-d L, ~s+d ~s-d
2 2

+( 1)
2 2

JJ L2d 22' & 1d (41)

s(d)= —(2J—d), —(2J—d)+2, . . . , +(2J—d) .
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In the above equations the angular-momentum helicity
ainplitudes Bi, C, E, and A are given by Eqs. (9),
(31), (18), and (12},respectively. We also use the normali-
zations

L1L2L3 L1 L2 L 3 L 1' L2 L3
+dd' ( d0 Ddd' Dd'0 +Dd0 Ddd'Dd'0 }

L2 L1 L2 L3+(—1) (DdQDd d D d 0

L 1* L2 L3
d0 d, —d'D —d'0 } (43)

0~J —1~J
IBil'=IC0I'+IC I'= & IE'I'= g I&'I'=1. (42)

The explicit expressions for the nonzero coefficients pl,
1

yL, sd' '(J), and ad' '(J) for J=0, 1,2 will be given3'
L1L2L3later. Finally the angular function Pdd is defined as

L1 L2
The arguments of the Wigner functions D ', D ', and

L3D ' are ($,8, —P) the direction of p with respect to yz in
the Dz rest frame, (P', O', —P') the direction of g in the

rest frame, and (P",8",—P" ) the direction of the
Wigner-rotated e momentum in the g rest frame, name-

ly, R ~'e&, respectively.
If (8,P') and (8",P" ) represent the directions of g and

of the electron in the Dz rest frame, they are related to
the angles (O', P') and (8",P" ) by the relations

(44}

cosO'= (cos 8' —1) +cos8'+1 —Pz+1 —(Pz/P, ) +cos 8'[(P2/P, ) —P2]
1 —2cos 8' i

(45)

Since 0~8'~m, sin8' has to be positive and so it will be
given by the positive square root

sinO'=+1 —cos 8'

where cosO' is given by Eq. (45}. In Eq. (45), Pi is the pa-
rameter v /c of g in the gz rest frame and pz is the v /c of
yJ in the Dz rest frame:

sinO" = ++1—cos 8"=
7l

where

ri' = [(y 2Pzsin8'+ cosO'cosP'sin8" cosP"

+cosO'sing'sin8" sing" —sinO'cos8" yz)

+ (cosgsin8" sing" —sing'sin8" cosP" ) ]
'~

(52)

(53)
M~ —M~

M +M
xg

(47) 7l= [yiy2(1+pip2cosO')
—y iP i( sinO'cosg'sin8 "cosf"+sinO'sing'sin 8"sing" )

MD —M~

M +MD X

(48}

where MD is the mass of the D2 state. The angles
(8",P" ) are related to the angles (8",P" ) measured in the
D2 frame by the relations

yiy2(Pp+PicosO )cosO ] (54)

p2
(55)

The constants y; (i =1,2) are related to P; (i = 1,2) by
the relations,

cosg"=, [y2PzsinO'+ cosO'cosg'sin8" cosP"

+cos 8'sin/sin 8"sing"

—sinO'cosO" y 2],

sing" =
, [cosP'sin8" sing" —sing'sin8" cosP"],7l'

1cosO" =—[ —y, y2(P, +P2cosO')

(49)

(50)

From Eqs. (47) and (48),

M~ +M~
2M Mxg

r2=
MD+M 2

XJ

2MDM~

It is also useful to notice that, in Eq. (43),

(56)

+y, (sinO'cosP'sin8" cosP"

+sinO'sing'sin8" sing" )

+y iy2(P, Pz+ cosO') cosO" ], (51)

D~~o=V 4m/2L+1YLM . (57)

Finally the explicit expressions for the non zero
coefficients in Eq. (37) are
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Po=l& I'=1,
5
i4 ~

8
7

(58)

J=2:
00
0

eo'= —v'10/7 IEp I'+ —IE) I' —IEz I'1

y, = ' (Ic, l' —2lc, l')= '

J=O:
~00

20 = 1
Ep

a~=1,

40 8

(59)

(60)

Eo'= [IEo I' —2IE) I'+ IEz I'],
2

c, '= —3i[Im(E, Eo )
—V2/3Im(EzE; )],

ep = —v'5/7[IEpl' —IE) I' —IEzl'],
c)z= —V 15/7[Re(E, Eo )

—V6Re(EzE f )],
cz =2v'30/7Re(EzEo ),
s) =iv 6[Im(E)Eo )+v'3/21m(EzE) )],
ez =iv'301m(EzEp ),

(63)

00

eooz= —v'2 fE, I' ——IE, f'
2

e)'= 3i Im(E—,Eo ),
= —122—

Ezz 3 Re(E Ee )

a~=1,0

—[IA I' —2IA I'+IA I'],
2

a", =v'10/7
I A, I' ——

I
Aol' —

I A) I'

az)) = —i V 15/7v 6 Im( A o A ', )+ —Im( A ) A o )
6

az'=v'5/7[1 A ) I'+
I
Aol' —

I A) I'1

7

c) =v'15/7[V6Re(E)Eo )+Re(EzE) )],
cz =V90/7Re(EzEo ),
eo = —[6IEo I' —41E) I'+ IEz I'],

v 14

a~=1,0

(61) a = —v'5/14[IA
I +2IA I

+
I
A

I

—21A I ],
ao = —2v'2/7 IA )I' ——IAol'+IA)l' ——IAzl'

az))= 3iv'10—/7 Im(AoA ) )+ —Im(A) Ao )
1

6

——Im(AzA, )

azoz= ——[I A ) I' —
I
Aof' —

I A) I'+
I Azf'],5

5 1=—V6 Re(A A, ) — —Re(A) Ao )
az)z =V 15/7V 6 Re( A o A ', )— —Re( A ) A o ), (62)

6

az =2v'30/7Re( A, A '
) ),

[IA ) I' —41 Aoi'+6I A) I'],
14

a4' = —iV 15/7 [1m( A p A *
) )—v'61m( A ) A o )],

a4o'= [I A ) I'+8I Ao I'+6I A) I'],
2 7

a", =v'15/7[Re(A, A', )+v 6Re(A) A,*)],
az =V90/7Re( A ) A ) ) .

+Re(AzA) )

azz= v 6[Re(A) A, )+Re(AzAo )],7

1a, =2iv 15/7 Im(ApA ) )+ Im(A) Ao )
6

+—Im(AzA) )
1
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az =Si&6/71m(AzAO ),

a]4= — Re(ADA' ) }— —Re(A) Ao )

——Re(A2A ) )

(64)

a& =i+10/7[Im(ADA
&

)
—V6Irn(A, Ao )

—3Im(A2A f )],
az = —10i+2/71m(AzAO ),
a3 = —5iIm( A z A '

& ),
a(~) = ——[ I

A ) I'+ 61 A 0 I'+ 6
I
A

g
I'+

I A g I'],

a, = — [Re( ADA ', )+~6Re( A, A 0 )
sv'6

a2 = — Re(Ai A' i )
——Re(AqAc )

ao = [ I
A —

&
I' —41 Ao I'+ 6I A

g
I' —4I A2 I'1

14

a&'= —iV'15/7[1m( ADA
&

) —v'61m(A
&

A o )

+21m(AqA ) )],
a42

0 [IA gl' —&IAOI'+6IAgl'+8IA I'],

a2 = Re(A, A', )——Re(A~AD )

a& =—[Re(AOA &)++6Re(A&AO }—6Re(A@A& )],
7

+Re(A2A ( )],
az = — [Re(A, A', )+Re(AzAO )],10&6

a3 = —5Re(A2A* )) .

Equation (37) together with the expressions for the
nonvanishing coeKcients [Eqs. (59)—(64)] give the angu-
lar distribution of the two y phonons y& and y2 and of
the electron as a function of the angles (8,$), (O', P'), and
(8",P" ). Equation (37) looks complicated only because it
gives the combined angular distribution of three parti-
cles. Nevertheless, it is useful. Since the result is ex-
pressed as a sum of products of the orthonormal Wigner
D functions, we can obtain the coefficient of the

L)L2L3
angular function as

PL YL ed' ad [1+( ) ~do][1+( 1 } 5d'0]

=(2L)+1)(2L2+1)(2L3+1)f W(8, $;O', P', 8",P")Pdd' ' 'dQdQ'dQ", (65)

where Pdd. ' ' is defined by Eq. (43). If the angular dis-
tribution 8'is determined at sufficiently large number of
points, the integral on the right-hand side can be per-
formed numerically for all possible allowed values of L&,
L2, L3, d, and d'. A close examination of the expressions

for PL, , yL, , ed.' ', and ad' ' given by Eqs. (58)—(64)
1 3

shows that this will enable us to determine not only all
the relative magnitudes of the helicity amplitudes but
also the cosines of their relative phases. For the J=2
case we can also determine the sines of all the relative
phases which will then un'. quely determine all the relative
phases. For the J= 1 case, the sines of the relative phases
are not completely determined. If the sine of the relative
phase between any two amplitudes is known, it will then
Gx the relative phases of all the other helicity amplitudes.
We can also determine the absolute magnitudes of the
helicity amplitudes, once the branching ratios for the
difFerent decays are known.

The angles in the expression of Eq. (37}are not all mea-
sured in the D2 rest frame or equivalently the lab frame.
But they are related to the angles measured in the lab
frame through Eqs. (44)—(56). Even though these equa-
tions may look formidable, once the angular distribution

is known in terms of the laboratory angles, they can be
easily expressed in terms of the angles (8,$}, (O', P'), and
(8",P") through a computer program generated with the
help of Eqs. (44) —(56). This kind of transformation is
routinely done by experimentalists.

III. PARTIALI. V INTEGRATED ANGULAR
DISTRIBUTIONS

In order to get further physical insight into the angular
distributions, we consider below, the partially integrated
angular distributions. They will look a lot simpler and
they can all be expressed in terms of the spherical har-
monics. From the partially integrated angular distribu-
tions alone we can get, for the J=1 case, all the informa-
tion we obtained for the angular momentum helicity am-
plitudes by considering the combined angular distribu-
tion of y„y2, and e . For the J=2 case, we can only
get the relative magnitudes of all the helicity amplitudes
and the cosines of their relative phases from the partially
integrated angular distributions. To get all the relative
phases uniquely we have to consider the combined angu-
lar distribution of y&, yz, and e . We consider six
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different cases of partially integrated results. In deriving
these results, we make use of the identities

f da f dy f Dj .(a P y)DJ'„(a P y)sinPdP
0 0 0

5 „5 „5,J, (66)/P1P Ill P JJ

f da f "dy f D~ .(a,P, y)sinPdP

5 5 5mO m'0 jO &

J

f dP f D~~~. ($,8, P)s—in8d8

=f dP f DM~. (8)sin8d8
+i

=2n5M .
M, o— de (8)sin8d8 . (68)—1

Case 1: We will integrate over (O', P') and (8",P").
Only the angular distribution of the y photon y &

is mea-
sured. %'e obtain

W(8, $)=f 8'(8, $;O', P';8",P")dQ'dQ"

1 20

4m
I'oo(8) —ao F2o(8)&14

pressions for the J=1 and J=2 cases:J=1.

[I &
g
I' —41 ~ol'+61 ~

&
I'] .

14

Normalization gives

, I'+ I w, l'+
I w I'=1.

J=2:

a2o=&10/7
I
&

ao = [I ~
g
I' —41 ~o I'+61~

g
I' —41&p I']

14

(71)

Normalization,
I 3, I

+
I Ao I +

I 2, I
+

I 321 =1. For
the J= 1 case, we can determine the magnitudes of all the
helicity amplitudes from Eqs. (70) since there are three
equations and three unknowns. For the J =2 case, this is
not possible since there are four unknowns and only three
equations.

Case 2: We will integrate over (8,$) and (8",P").
Only the angular distribution of yz is measured:——&8/7ao F4o(8) (69)

@'(8',y')= f W(8, y;8', y';8", y")dQdQ" . (72)

where 0 is the angle between p and y, in the D2 rest
frame. The coeKcients az and u0 have the following ex-

We will write the results separately for the J=1 and theJ=2 cases.

W(8') = 1
&oo(8') — — IEol' ——[Eg I' (I &

g
I' —21&ol'+ I &) I')&2o(8')

5
' 2 (73)

Since we already know I A
& I, I dof, and

I
3

& I, we can now determine ( IEoI —
—,
'

IE&1 ). Since IEol + IE, I
=1, this

determines
I Eo I

and
I E, I.

J=2:
I

&~(8')+
7

IEol'+ 2IEif' —IEzl' (I& I'+21&of'+I& I' —21&2f')&2 (8')

(6IEol' —41Egi'+ IE21') I
~

g
I' ——

I
&ol'+I &g I' —41~21' I'4o(8') (74)

Also, IEo I
+ IE& I

+ IE21 = 1. Here, (n 8') is the angle b—etween yj and yz in the gJ rest frame. It is related to 8', the
angle measured in the D2 rest frame or the lab frame, by a Lorentz transformation given by Eqs. (45) and (46).

Case 3: We will integrate over (8,$) and (8', P'). Only the angular distribution of e is measured:

8'( 8",P" ) =f W( 8,P; O', P', 8"P" )d Qd Q'

I'oo(8")+ —( IEo I' —2IE( I') &2o(8")
1 „1
4m. 20

&oo(8")+ —( IEo I' —2IE& I'+ IE~ I') &2o(8")4~ 20
(75)

By measuring the partially integrated angular distributions of cases (1)—(3) we can determine the magnitudes of all the
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helicity amplitudes for the J= 1 and for the J=2 cases.
We should mention that 8" is the "Wigner-rotated" angle of e with the gz momentum, in the g rest frame. It can

be related to 8", the angle between e and yz in the Dz rest frame, by Eqs. (49)—(56).
Case 4: We wiH integrate over (8",P"), the direction of the final electron. The combined angular distribution of the

two photons y& and yz are measured:

W( 8,f; O', P' )= J W( 8,P; O', P'; 8",P")d 0"
024 p~ pg 0 Min(L& L2 3)

2
X 'o X ~d «I YI'.

, d(8 4'»I. ,d(8' 0') IL. ' I., d Q(21 i+1)(2L2+1)

Using Eqs. (58)—(64), we now express the right-hand side of Eq. (76) in terms of the helicity amplitudes. We consider
the J= 1 and the J=2 cases separately.

(a) J=1:

1 —&4~&5 IEol' —
2

IEil' (IA il' —2IAOI'+I Ail')Ygo(8')

4
7

+ (IA il'+IAOI' —IAil')Ypo{8)Y~O(8')

+ Re(ADA', ) — Re(A, AO ) Re(Y2, (8,$)Y2, (8', P'))

+ «{AiA* )Re{Yfg(8,&)Y (8', p')) — (IA il' —4IAOI'+6IA I')Y~(8)
7

+ IEOI' ——IEil' {IA il'+8IAOI'+6IAil')Y~{8)Y20(8')
7 45 2

+ IEol ——IE, I
{Re(ADA', )+v'6Re(A, Ao ))Re( Y~, (8,$)Y2i(8', P'))7v'3 2

+ IE, I' ——l~, l' «{A,A*, )Re(YL(8,e»»(8', O')) .
7 ' 2 (77)

(b) J=2:

@'(8,y;8', @')= 1+—&4~&5(IEOI'+ —I&i I' —IE2I'&{ I A i I'+2I AOI'+
I
A i I' —2I A2I') Ypo{8')

16

, &~{6IEOI'—4IEil'+I&~I') IA il' ——IAOI'+IAil' ——IA~I' Y~{8')

I' ——
I
A I' —

I Ail' ——
I
Apl' Y20{8)— I&OI'+ —IEil' —IEgl'

x(l A, I' —
I A, l' —

I A, I'+
I A, I') Y„(8)Y„(8')

+ ~ IEOI'+ —IEil' —IEpl' Re(ADA*i) — —Re(AiAO)+Re(A2A*, )49 2 6

X Re{Y2i(8, $)Y2i(8', p'))

+ IEOI'+ —IE I' —IE I')«e{A A' )+«(A Ao'))Re(Y*2(8, y)Y~ (8', y'))49 2

+ {6IE I' —4IE I'+IE I'& IA il'+ —IAoI' —IAil'+ —IA I' Y,o(8)Y~{8')
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+ ~(6lzol' —41E) I'+ IE21') Re(&0~* ) ) — Re(~) ~0 )——Re(~2~ f )

XRe( Yf((8,$)Yg, (8', P'))

+ —(6lzol' —41E)l'+IE21') Re(~)~'-g) ——Re(~z~o) Re(Y22(84)Y42(8' 4'))

X( I A, I

—81201 +612, I +81221 ) Y40(8) Y20(8')+ IEOI +—IE I

—IE21

X ( Re( 2 0 A '
) ) +v'6Re( A ) A o )

—6 Re( 2 2 A ( ) )Re( Y4) ( 8, p ) Y2( (8', p') )
r

+ lzo1 + —lz(1 —lz~1 Re(A, 2 ', )——Re(22AO ) Re( Y42(8, $)Y22(8', p'))1 —1

+ (6IEOI' —41zg I'+ IE21')(I ~
g
I'+61 ~01'+61~

g
I'+1~21')Y40(8) Y40(8')

+ (6IEOI' —41E) I'+ IE21')(«(&0& '
g
)+&6Re(&

g &o )+Re(~p~ f ))

XRe( Y4, (8,$)Yq)(8';P'))

+ (6IEOI' —4lz) I'+ IE21')(Re(~) ~ '
) )+«(~2~0 ))Re( Y42(8 p) Y42(8', p'))9X49

+ (6IE, I' —41E)I'+IE21')Re(~2~'))Re(Yf3(8, 0»43(8', 0')) (7&)

In Eqs. (76)—(78), the angles (8,$) represent the direction ofp with Z axis chosen along the yz momentum. We can also
take this as the direction of y, in the D2 rest frame with the proton moving along the Z axis. The Iand Faxes are ar-
bitrary. The angles (O', P') represent the direction of f in the yz rest frame. They are related to the direction of g in
the lab frame, namely (O', P'), through Eqs. (44) —(46). The angles (O', P') in the lab frame can be determined by measur-
ing the direction of y2 or by measuring the total momentum of e and e+ in the lab frame. By measuring the partially
integrated angular distributions in cases (1)—(4) we can determine the magnitudes of all of the E and the A helicity am-
plitudes as well as the cosines of the relative phases among the A amplitudes. For the J= 1 case, we can determine the
magnitudes of all the A and the E helicity amplitudes by just measuring the partially integrated angular distributions in
cases (1) and (2). For the J=2 case, however, we need the partially integrated angular distributions in cases (1)—(4).

Case 5: Here we will integrate over (8,$) or the direction of y, . We will only measure the combined angular distri-
bution of y2 and e . %'e obtain

W(8', P';8",P")=IW(e, g;O', P', 8",P")sinededg

O 2 Q 2 ~2JO~Min(L3, L~,J)

8 2 2 2 ed' ~0 Re I Yl. d'(8 0' ) YL d (8" 0")l
8 (2L2+ 1)(2L3+1)

Using Eqs. (58)—(64) we now express the right-hand side of Eq. (79) in terms of the A and the E helicity amplitudes.
We consider the J=1 and the J =2 cases separately.

(a) J=1:

1 —&4 ~5 IEo I' ——
I
z I' ( I

~ I' —21 ~ o I'+
I
~ I') Y o(8')

+&~ps(IEOI' —2lz, I') Y,o(e")— (I a, I' —21 col'+ I a, I') Y,a(e') Y„(e")

—Re(zgzo )(I ~
g
I' —21&ol'+ I ~ g

I')Re( Y2g(8', y') Y2&(8",y"))
5 2
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(b) J=2:

W(0', p', 0",@")=, I+—&'5~ IEO I'+ —IE) I' —IE2 I' ( I
A

g
I'+2I A 0 I'+

I
A ) I' —2I A p I') Y20(0')

16m
r

, ~~(6IEol' —4IEil'+IEPI') IA il' —
2

IAOI'+IAif' —
4

fA2I' Y~(0')

+&2~/&(IEOI' —2IEg I'+ IE2l') Y20(0")+ (IEOI' —IE& I' —IE2I')

X(l A, I +2I Aol +
I A, I

—2I A2I )Re( Y,o(0') Y20(0"))

+ (Re(E)EO )—&6Re(E2E ) ) )( I
A ) I'+2I Ao I'+

I
A

g
I' —2I A 21')

XRe( Y»(0', @')Y2~(0",@"))— Re(E,EO )( I
A

g
I'+21 AOI'+

I
A

g
I' —2I A2I')

7

x«(Yp2(0', y') Ypp(0", y"))——&2&5~ IEOI'+ —IEg I'+ —IE2I'

I
A -i I' ——

I
AOI'+

I
A if' ——

I A~ I' «( Y~(0' 0') Yzo(0" p"))

(&6Re(E,E,')+Re(E,E f )) I A, I' ——
I Aol'+

I A, I' ——
I Apl'

XRe( Y4~(0', P') Y2~(0",P"))— Re(E~EO ) I
A

~ I

——
I
Aol'+

I A ~I' ——
I Azl'

7

XRe( Y~~(8', p') Y22(8",p"))

(82)

W(0, y;0",y")=, I ——&4~F5
I
A ) I' ——

I
Aol' —

I A) I' Y20(0)

In Eqs. (Qo) and (&1) the angles (8', p') give the direction of g in the gz rest frame, with yz momentum in the 'D2 rest
frame (lab frame) taken as the Z axis. They can be related to the angles (8', p'), the direction of g in the D2 rest frame
or the lab frame, through Eqs. (44)—(48). The direction of p in the lab frame can be measured by measuring the total
momentum of e anti e+ in the lab frame or by measuring the direction of yz in the lab frame. The angles (0",P") give
the direction of ~jgner rotated e in the g rest frame. They can be related to the angles (8",p" ) which give the direc-
tion of e in the D2 rest frame by Eqs. (49)—(56).

Case 6: Here we will integrate over the angles (O', P') to obtain the combined angular distribution of y, and e
alone. We have

W( 8,P;8",P" )=f W( 8,P; O', P', 8",P")d 0' .
We give the results for the J= 1 and for the J =2 cases separately.

(a) J= l:

——v'4~y9(IA, f' —4IA, I'+6fA, f') Y (0) l+ (IE, I'—2IE, I'—)&4~F5Y„(0")

+ Im(E& Eo~ ) Im( A 0 A *
&
)+ —Im( A

&
A 0 )

1 9~ 1

——Re(E, EO ) Re(AOA* &)
— —Re(A, AO )

XRe( Yf, (8,$)Y~, (8",P"))

+—&3m. ~ Im(E& Eo )(Im( A 0 A, )—&6im( A
&

A 0 ) ) ——Re(E,Eo )(Re( A 0 A *,)
7 1 0 0 —1 1 0

+&6Re( A, Ao )) 'Re(Y~, (8,$)Y2)(8",p")) (83)
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(b) J =2:

@(e,y;8",@")= ', 1 ——&4~/5 IA, I' ——IAOI' —IA, I'—
2

IA, I' Y,o(8)

——&4~/9(I A
g
I' —4I Aol'+6I A

g
I' —4I Apl') Y4o(8)

x 1+—'&4~/s(IE, I' —2IE) I'+ IE~I'}YM(8")
2

+ ~ 9v'10/7(Im(E& Eo ) —P2/31m(EzE
&

) )
(4n } .2 35

X Im(ADA ))+ —Im(A(AO ) ——Im(AqA f )
6

' 3/2

V2(Re(EiE(~) ) —~6Re(EqEi ))
I

X Re(AOA i )
— —Re(A i Ao )+Re(AqA i )

6

+&10/7(Im(E, Eo ) +&3/21m(E~E; ) )

X Im( A 0 A *,) + Im( A, A 0 )+—Im( A ~ A f )

——v'l5/7(W6Re(E, EO )+Re(E~E f ))
r

X Re(ADA ))— Re(A)AO) ——Re(AqA) }
6

XRe( Yq)(8, $)Yq)(8",P"))

4/57 R(eE~ Eo)(Re(A) A ( )+Re(AqAO ))
3 35

+ 1sv'5/71m(EzEg )Im( A z A 0 )
— &5/7Re(EzEO )2 0

X Re( A, A ', )
——Re( Az Ao ) Re( Yzz(8, $)Yzz(8",P")}

+ 3~15/7(Im(E, E0 )—&2/31m(E~E; ))
3 35

X(Im(AOA ', )—~61m(A, Ao )+2Im(AgA; ))

——V'5/21(Re(E)EO ) ~6Re(EgE) ))
5

X (Re( A A, )+~6Re( A, A '
)
—6 Re( A A *

) )

+—v'15/7(Im(E, E; )+&3/21m(E, E,' ) )
3

X (Im( A o A ', )—V6Im( A, A 0 )—3 Im( A ~ A ', ) )

+10/7(~6Re(E, EO' )+Re(EzE, ) )
3

X (Re( ADA
*

) )+~6Re( A ) Ao )+Re( Ap A ) )) '
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4m.

9&35
60
6

&15/7Re(E~EO ) Re( A I A *
I ) ——Re( A q A 0 )

3

—10&15/71m(EzEO )Im( A @ 2 o ) ——&15/7Re(EzE0 )

X(Re(AIR I)+Re(A~20)) 'Re( Ff~ (0,P ) F~z(8",P" ) ) (84)

In Eqs. (83) and (84), the angles (8,$) represent the
direction of p in the D2 rest frame with Z axis chosen
along the yJ momentum. We can also take 0 to be the
angle between p and the y1 photon in the D2 rest frame
which we assume to be the same as the lab frame. The
angles (8",P") represent the Wigner-rotated direction of
e in the g rest frame. They are related to the angles
(8",P" ) which represent the direction of e in the lab
frame through Eqs. (49)—(56).

A close examination of the partially integrated results
in cases (1)—(5) shows that we can determine the magni-
tudes of all the helicity amplitudes as well as the cosines
of their relative phases by just measuring these angular
distributions alone. We can determine the relative mag-
nitudes of all the A helicity amplitudes for the J=1 case
by just measuring the angular distribution of y, alone,
namely case (1). By measuring the angular distribution of
yz also [case (2)] we can determine the relative magni-
tudes of the E helicity amplitudes also for J=1. For
determining the relative magnitudes of all the 2 and the
E helicity amplitudes for the J=2 case we need to rnea-
sure the angular distributions in cases (1)—(3), namely
the angular distributions of y1, y2, and e, separately.
By measuring the combined angular distributions of y1
and yz (case 4) and of yz and e (case 5) we are able to
determine all the Re(E

&
E*

) and Re( A; A~ ) for both
J=1 and J=2 cases. They, in turn, enable us to deter-
mine the cosines of all the relative phases of the A and of
the E helicity amplitudes. By measuring the combined
angular distribution of y, and e we are also able to get
some information on the products, Im(E,.E*)Im( Ak A&'),
as is seen from Eqs. (83) and (84). But it is not enough to
determine all the sines uniquely. In fact, we can show
that if we know the sine of one of the relative phases, the
sines of the other relative phases can be determined for
both J=1 and J=2 cases. For the J=2 case, we can
determine the sines of all the relative phases uniquely, by
measuring the combined angular distributions of the
three particles~ f1~ g2~ and e . For' thc J= 1 case~ how-
ever, this is not possible. For the J =0 case, there is only
one helicity amplitude each for both D2~go+y1 and
yo —+/+yes. They are fixed by our normalization. So
there is nothing to be determined for the J=0 case.

It is of great advantage that we expressed all the angu-
lar distributions in terms of orthonormal functions such
as Wigner D functions and the spherical harmonics. Be-
cause of this feature of our results, we can get the
cocS.cicnts of these functions, which are bilinear func-

tions of the angular-momentum helicity amplitudes, by
just doing a numerical integration of the measured angu-
lar distributions.

IV. THK RELATIONSHIP BETWEEN
THK ANGULAR-MQMENTUM HELICITY AMPLITUDES

AND THK RADIATIVK MULTIPQLK AMPLITUDES

' 1/2
2k+1

ak (kJ; —l, ~f2, ~ —»,
Max( k =

~
2 —J~; 1)

J+1 1/2
2k+1
2J+1

(85)

&kl;l, p —1 fJ) &, J=0, 1,2,

where ak and ek are the radiative multipole amplitudes in
D Q +gj+ ) ] and gJ~f+y z, respectively. Since the

transformations of Eqs. (85) are orthogonal:

( )

y fEJf2 y f

Jf2 —
1

p k

The decay process D2~y2+y1 is especially noteworthy.
There are four multipole amplitudes E1, M2, E3, and M4
in this case as there are four independent angular-
mornentum helicity amplitudes. In principle, we can cal-
culate all these rnultipole amplitudes from the experimen-
tally measured combined angular distribution of y, , y2,
and e . In any potential model of quarkonium if we
work out the radiative transition operator to relative or-
der u /c, there are no terms whose rank is above three.
So the M4 rnultipole amplitude is zero to order u /c in

The A helicity amplitudes describe the D2 —+gJ+y &

(J=0,1,2) transition and the E helicity amplitudes de-
scribe the transition yz~f+yz (J=0,1,2). For J=O,
there is only one independent helicity amplitude in each
transition. On the other hand, for J =1, there are three
helicity amplitudes in Dz~yz+y, and two in

yz —+/+yes. Finally for J=2, there are four independent
angular-momentum helicity amplitudes in D2 ~yJ +y1
and three in yz —+g+y~. The number of independent
helicity amplitudes is also equal to the number of radia-
tive multipole amplitudes present in these decays. The
relationship between the helicity amplitudes and the mul-
tipole amplitudes are given by [5,6] the orthogonal trans-
forrnations
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any potential model. So by measuring the M4 amplitude
one can test the approximate nonrelativistic nature of
quarkonium and the validity of the potential models.

As before, by C and P invariances of the transition opera-
tors and the transformation properties of the states under
C and P we obtain

V. THE ANGULAR DISTRIBUTION OF THK PHOTON
IN THK PROCESS pp —+ I D2 ~ I 'So+ y

Next we turn to the angular distribution of the photon
in the cascade process

PP~1 D2~1 So+@ We call

C

P (91)

The predicted mass [7] of 1 D2 state of charmonium in
the nonsiniular potential model of Gupta et al. [8] is
around 3826 MeV. So the above y photon wi11 have an
energy of about 840 MeV. The calculation of the angular
distribution of the photon in the above process is very
straightforward. The amp1itude for the process

P(~1)p(~2) D2( )v'~0+r(v }

can be written as
+2T~„= y &y(~), 'Sol&l'D (v)&

v 2

B )
=~2B+ = —&2B

BO=V2B++ = —+2B~+ = +2B—=0,

P
2„=2 @(p=k1) .

We will call

31=A 1=2 .

(92}

(93)

(94)

Both of the above matrix elements are calculated in the
D2 rest frame or the pp c.m. frame. We wi11 choose the

Z axis along the direction of the y momentum in the D2
rest frame. Then 'So(g, ) will be along the negative Z
axis. The X and F axes are otherwise arbitrary. The an-
tiproton p will have its momentum in the direction (8,P ).
Then

&'D2(v)IB Ip(~I)p(~2) ) = &»IB Ip(~, p);~)~2&

=v'514mB„D „(P,'8, —P),

Substituting Eqs. (88}and (90) into Eq. (87) we obtain

5
T'~, ~,

=
4 B~,~, ~„D„'~(0 ~ —4) ~ (95)

If X is the normalization constant the normalized angular
distribution function of the photon wi11 be given by

where

X1

& y(p), g, I
A I Dz(v) ) = &p'(0, 0,0);pol 2 I2v)

=&sy4~a„D'„„(0,0,0)

+1/2 +1
~(~ 4')=~ XXT~,~

—T~ ~
|M

+1/2 +1

44~»
1 2 P

=&sy4~&„s,„. (90) Using Eqs. (34) and (35), Eq. (96) reduces to

+1/2 +1 A(2, 2,L )

&»;p —plL» &»;~—~IL0»00 (p, ~—p}
P

5(2,2,L )

16m
Pi aL &4m. I2L + 1 Yl o( 8,$ ) . (97)
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In Eq. (97),
+1/2

P, = y B, , ~'( —1)'&22;X—~IL, O&

normalization constant N such that W(8, $) integrated
over 8 and P will give the value one, Eq. (97) will simpli-
fy to

= —[B++I'&22;I —Il«& —IB + I'&22; —»ILO& W(8, $)=
4m

r + I'„(8)+ I' (8), (IOO)
v'S 8

21

1= ——iBii (1+(—1) )&22;1—liLO&
2

= —iB, i'& 22;1—1 iL. O &, (98)

where in the last line L, is always an even integer. Also,
+1

a~ =g
~
A„~'( —l)t'&22;p —p~LO&

= —
I
& I'& 22;1—I I«& —

I
& I'& 22; —» Ir. O &

= —
I
~ I'(I+( —I)')&22;1—1ILO&

(99)

where in the last line, L, is again always even. Substitut-
ing for the Clebsch-Gordan coes.cients and choosing the

where 8 is the angle between y and p in the pp c.m.
frame. This strikingly simple angular distribution of the
photon with no unknown coefficients can be used as a sig-
nal for the formation of the triplet D state in unpolarized
pp collisions. In other words the confirmation of a y pho-
ton of energy around 840 MeV and with the above angu-
lar distribution will confirm the discovery of the D2 state
of charmonium in pp collisions.
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