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Angular distribution in the decay of the singlet D state of charmonium directly
produced in unpolarized yp collisions
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We calculate the combined angular distribution of the final electron, of the p photon, and of the
7r meson produced in the cascade process pp m D2 ~ Pq + p ~ (Qvr ) + p —+ (e+e ) + vr + p,
where p and p are unpolarized. Our final result is valid in the pp c.m. frame and it is expressed
in terms of the Wigner D functions and the spherical harmonics whose arguments are the angles
representing the various directions involved. The coefFicients of the terms involving the spherical
harmonics and the Wigner D functions are functions of the angular momentum helicity amplitudes
or equivalently of the multipole amplitudes of the individual processes. Once the combined angular
distribution is measured, our expressions will enable one to calculate the relative magnitude as well
as the cosines of the relative phases of all the angular momentum helicity amplitudes or equivalently
of all the multipole amplitudes in the decay processes D2 ~ Pz + p and. Pq ~ vP + n . We
also derive six different partially integrated angular distribution functions which give the angular
distributions of one or two particles in the final state. They can all be expressed entirely in terms of
the spherical harmonics. By measuring these simpler angular distributions in the six different cases
we get as much information on the helicity amplitudes as we obtained by measuring the combined
angular distribution of the three particles, namely, the electron, the p photon, and the m meson.

PACS number(s): 13.40.Hq, 12.39.Pn, 14.40.Gx

The potential models [1] predict the mass of the singlet
D state of charmonium to be around 3820 MeV. Even
though this mass is above the charm threshold, the state
is expected to have a narrow width since D2 ~ D+ D is
forbidden by parity conservation and D2 —+ D + D* or
D* + D is forbidden by energy conservation. In fact, the
D2 state would have a narrow width so long as its mass

is less than 3875 MeV. In previous works [2], we have
calculated the angular distribution of the two p's and of
the p and the electron in the cascade processes, (1) pp ~
D2 ~ Pl+py ~ (1 So+f2)+pl and (2) pp ~ D2

1 Sq + p —+ (e+e ) + p when p and p are unpolarized.
The angular distributions of pq alone in process (1) and
of 7 alone in process (2), have strikingly simple forms [3]
in potential models. These distributions can be used as
a signal for the formation of the singlet D state or as a
check on the validity of the potential models. It should
be noted that the individual processes D2 —+ Pq+p and

Py M Sp + p2 should have significant branching ratios,
but the process So(ri ) ~ 2p has an insignificantly small
branching ratio.

As a result, the full decay chain of process (1) may
be hard to identify. It may be easier to observe the
full process (3) pp ~ D2 -+ Pq + p ~ (@or ) + p ~
(e+e )n + p, for the following reasons. Even though
the decay Pq ~ @ + no does not conserve isospin, it
may have a decay rate of a few keV [4]. Moreover, the
processes m ~ (p~p2) and @ -+ e+e have significant

branching ratios of about 99 and 6%, respectively, which
makes the above full cascade process more likely to be
seen than either process (1) or (2). In this work we de-
rive the combined angular distribution of the photon, the
electron, and the vr in the cascade process (3) in terms
of the angular-momentum helicity amplitudes or equiva-
lently of the multipole amplitudes of the individual pro-
cesses. We also derive the angular distribution in the pp
c.m. kame or the D2 rest kame and express it in terms
of the angles measured in that kame. Finally, our expres-
sion is a sum of products of Wigner D functions whose
coeKcients are functions of the angular-momentum he-
licity amplitudes of the individual processes. It will be
clear from our Gnal expression that one can determine the
relative magnitudes, as well as the cosines of the relative
phases of all the angular momentum helicity amplitudes
in the processes ~D2 ~ ~Pq + p and ~Pq —+ @+ vr, once
the angular distribution is measured. The angular distri-
bution of vr can be obtained by measuring the angular
distribution of the total momentum of the two p photons
into which it decays almost all the time with a lifetime
of only about 10 s. Since the multipole amplitudes
can be expressed as a linear combination of the helicity
amplitudes, we can also determine the relative magni-
tudes, as well as the cosines of the relative phases of all
the multipole amplitudes in these processes. The sines of
the relative phases are not determined uniquely. If the
sine of one of the phases is known, the sines of the other
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phases can be determined.
We briefly sketch the derivation of our results now. We

consider the process

p(&1)p(&2) ~ 'D2(~) ~ '&1(~) + ~(/ )

~ W(p)+~']+~(v)
m [e (r, ) + e+(r2)]+ vr +p(p),

where the Greek symbols after the particle symbols rep-
l

resent their helicities except for the stationary D2 reso-
nance in which case the symbol v represents the z com-
ponent of the angular momentum. We choose the Z axis
along the direction of P1. The X and Y axes of the
right-handed coordinate system may be chosen accord-
ing to the convenience of the experimentalist.

The probability amplitude for the above cascade pro-
cess can be written (within constants) as a product of
the matrix elements for the individual processes. So we
write the probability amplitude as

—2~+2 —1,0,+1

) ) ~D ( D2(1 )IBlp(~1)p(~ )2)~D
v ~1P

x'D ('&1(~)v(v) IAI'D2(1 )) D, D, (tt'(p)7r'IEI'&1(0)) D,
& D, &e (K1)e+(~2)ICI@(p)) D, .

Only the helicities of the initial and the anal particles .

are observed. We sum over the helicities of the unob-
served particles in Eq. (1). The subscript D2 attached
to the bra or the ket vector indicates that each individ-
ual matrix element is evaluated in the D2 rest &arne.
The symbol H, A, E, and C represent the appropriate
transition operators. Except for the last matrix element
(e (r1)e+(r2) ICI@(p)) they are all equal to the matrix el-
ements evaluated in the rest &arne of the decaying parti-
cles (or the created particle in the case of D2 formation)
in pp collisions.

We should also clarify what we mean by the two
particle helicity states which are not de6ned in their
c.m. &arne. For example, the two-particle state
Ie(rc1)e+(r2))iD, defined in the D2 rest frame, which is
not the c.m. &arne of the e+e system, has the following
meaning. First, construct the two-particle helicity state
le (r1)e+(K2))y in the c.m. frame of e+e system or the
g rest frame according to the usual conventions [5] with
e and e+ having exactly equal and opposite momenta
and helicities v1 and e2, respectively. Then,

le (~1)"(K.)) D, = U~('D2 &)le (~1)e+(~2))~ (2)

where U~(A, B) is the unitary operator corresponding
to the Lorentz transformation A(A, B) which takes the
system &om the Lorentz &arne where H is at rest to
the Lorentz &arne where A is at rest. It is important
to clarify this point since in general e and e+ do not
have definite helicities ~1 and K2 in the D2 rest &arne.
A similar meaning also holds for the two-particle state
l@(p)~') D, .

Let us now consider these matrix elements one by one.
First,

D, ('D2(&) IBlp(&1)p(&2)) D, = (»IBlp(0 &) &1&2)

where p(8, P) is the znagnitude of the c.m. momentum
of p which is taken to be in the direction (0, P). We
are choosing the Z axis along the direction of P1 in
the D2 rest &arne. The X and Y axes are otherwise

l

arbitrary. Using the usual expansion [5,6] of the two-
particle helicity state in the c.m. &arne in terms of the
angular-momentum states we find

~Dg ( D2(1 )IBlp(&1)p(&2))~D2

( 5 ) 1/2

B~,~.D.'~(4' ~ —&) (4)«)
where

A=A1 —A2. (5)

The angular-momentum helicity amplitudes Hp, p, are
not all independent because of C and P invariance [5]:

C P
HAg Ag —HA2 Ag

— H —Ag —Ag (6)

Because of Eq. (6),

B+ ——B + ——0.
We will call

1
B++ —— B= Bp—.

2

Next we consider the matrix element:

~Dg ( +1(0)w(P) IAI'D2(1 ))~ D,

= (p, (o, o, o); ~plAI2v)
/' 5 ) 1/2

(4vr p

p
1/2

D„' (0, 0, 0)A „

~v, cr- p.Aa p.

C invariance is trivially satisfied in this process. By P
invariance [5],

A „=A (io)

There will be three independent A amplitudes. We call
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them

A„=A„ i i ——A ~+ii (v=0, 1, 2) .

The matrix element for the process Pi(0) —+ Q(p)+pro
in the D2 and the P~ rest &ames are equal. That is,

D, W (p)~'I&l'Pi(~)) D,

&Qg (Q(p)& IUp( D2 ) Pl)@Up('Dz )' Pi) Pi (0 ))&+~

= s, H(p)~'I&l'Pi(~)) ~, . (»)
In Eq. (12), we used the fact that the transition operator
E is invariant under Lorentz transformations: namely,

D. H(p)~'I&l'P (~)) ~, = (p'(~' @') p i&11~) (14)

where p' is the magnitude of the g momentum directed
along (O', P') direction in the @m c.m. frame. Again,
using the expansion [5j of the two-particle helicity state
in the c.m. frame in terms of the angular-momentum
states, we can write

~ .W(p)~'I&l'P (~))

) 1/2

D.', (4', ~', 0')E-, (»)

Because of parity invariance the angular-momentum he-
licity amplitudes E~ satisfy the condition

U~tEUg ——E .

Using Eq. (12), we can now write

(13)
Ep ——E p.

For the matrix element of the final process @ ~ e+e
the situation is more involved. We have

D, (e (~i)"(~2)ICI@(p)) D, = ~(e (Ki)"(K2)IU~('D2 &)CU~('D2 'Pi)U~('Pi &)I&(p))~
= ~(e (Ki)e+(~2)IU~('D2, @)CUJi('D2, $)U~('D2, @)U~('D2, P, )U~('P„@)lg(p))~
= ~(e (~ i) e+(~ 2)l CU~(' D. q)UA('D2, 'Pi)U~('Pi, y)lq(p))y . (17)

In the first equality of Eq. (17), we made use of the
fact that the single-particle state I@(p))iLi, was also part
of the two-particle state of Eqs. (12) and (14). It was
obtained by successively performing two unitary opera-
tions corresponding to the two Lorentz transformations,
the first taking the @ state from its rest frame to the Pi
rest &arne and the second taking it &om the Pq rest
&arne to the D2 rest &arne. In the last equality of Eq.
(17) we now make use of the fact that

U&( D2 Pi)UA( Pi P) UA( D2 0)UR~ (18)

where UR~ is the unitary operator corresponding to a
pure rotation, usually called "signer rotation. " Using
Eq. (18) and the unitarity of U~, Eq. (17) now leads to

'L) (e (~i)e+(~2) ICI@(p))'D,

where

(22)

R = A ( D2, $)A( D2, Pi)A( Pi, @), (23)

where the A's are the (4 x 4) Lorentz transformation ma-
trices. Now we note that the electron is highly relativistic
in the vP rest frame and its four-momentum vector p, can
be represented to a very good approximation as

and e@ is a unit vector in the direction e in the @ rest
frame and Riv is the (3 x 3) rotation matrix and C„,„,
are the angular-momentum helicity amplitudes.

The signer rotated unit vector B~ e~ can be obtained
in the following way. Let R represent the (4 x 4) matrix
whose spatial part gives the (3 x 3) matrix R~ mentioned
above. Then, from the definition of UR in Eq. (18).

since

= 4(e (~i)e+(~2)ICUR l&(p))o

Q (e (+ i)e+ (K2 ) I
UIi U~ C UIi~

I @(p) )~
= y(e (~i)e+(~2)IU~ Cl@(p))~ (»)

U„' CU =e.

p,„= (1,eg),Mq
(24)

= A ( Pi Q)A ( D2, Pi)A( D2, @)

R p,~
= A ( Pi, @)A ( D2, Pi)A('D2, $)p, ~

Using the expansion [5I of the two-particle helicity state
in terms of the angular-momentum states, we can write
the right-hand side of Eq. (19), as

xA ( D2, @)p,

= A ( Pi, g)A ( D2, Pi)p, ~, (2S)

~(e (~i)e+(~z)IU~ Cl@(p))~ where p, ~ is the four-momentum of e in the D2 rest
&arne:

D *„(R~eg)C„, „,
p, ~ = E,~(l, eD) ) (26)

) i/2

I, 4~)
Di„*(g",8",—P")C„,„, , (21) where eD is a unit vector in the direction of e three-

momentum in the D2 rest &arne. So,
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R p, = (1,R~ e@)

= A ( Pg, Q)A ( Dg, Pg)p, ~
= A '('Pg, g) A '('D2, 'Pg) E, (1,e~) .

The spatial part of Eq. (27) gives, within a normalization
factor, the Wigner rotated unit vector e = R~ ey(g", P")
in terms of the angles (8",vj") measured in the ~Dz
kame.

Because of the C and P invariance of the transition
operator C, the angular-momentum helicity amplitudes
C„,„, of Eq. (21) satisfy the constraint relations

~(g y. gl yl. gl/ yll)

+1/2, —1/2 +1/2, —1/2 +1,—1

) ) ) Tlc y K2, PT lc y Icy, P
(32 )

A1A2 K1 IC2 Ijt

where N is a normalization constant so chosen that TV

integrated over all the angles will give the value one. Af-
ter we substitute Eq. (31) into Eq. (32) the various
sums have to be performed. Before we do the sums we

make use of the Clebsch-Gordon series relation for the
0 functions, namely,

C P
&1 &2 &2 &1 &1 &2

The independent C amplitudes are Cp and C1..

Cp ——C++ ——C

C1 ——C+ ——C

(2S)

(3o)
and the relation

$1+$2

) (j,j,m, m',
l
J, m, + m', )

J=li1 —i2 I

x (jxj2m2m2l J, m2 + m2)D~, + ~,+ (33)

—2-++2 —1,0,+1

) . ). 4,&i,~.D.'i(4' 8, —4)
V &~P

Dl+ (yl gl yl)E

Dle (yll g (31)

We should note that the angles (8', p') (the direction
of @) and (8",P") (the direction of R~ e@) are measured
in the rest frame of ~Pq and g, respectively. Later we
will relate them to the corresponding angles (O', P') and
(8",P") measured in the D2 rest frame.

When p and p are unpolarized, the normalized function
describing the combined angular distribution of p, vr,
and e can be written as

If e+e is created through a virtual photon, in the high-
energy limit of the electron, Cp can be neglected com-
pared to C1.

Using Eqs. (3), (9), (15), and (21) in Eq. (1), we
obtain

Dje ( 1)mz —m&DJ

d=p p )

I8= p+p )

=0 —CT )

8 =0.+O (35)

We now notice that the terms for negative d, d' are the
complex conjugates of those with positive d, d'. After a
lengthy algebra we finally obtain the following expression
for the normalized angular distribution:

Then we see that the various sums in Eq. (32) factor out,
or in other words, the angular distribution function W
becomes a product of four sums, one involving A1 and A2,

a second involving K1 and e2, a third involving p, p', and
a fourth involving o, o' and p, . The sums over A1, A2 and
x1, v.2 are trivial. The sums over the indices p, p' and
o., a' and p, are performed after we make the following
change of variables:

where

~(g y. gl yl. gil yll)

0—+Min(L1, L2)0,2,4 0,1,2 0,2

,(, ). ).~~. ):) ~~.
L1 L2 L3

0—+Min(L3 L2)

x )
d

L1I 2
dl

gLqL2yLqL&lq(g y gi ~1. 8II ~n) (36)

A(, t gi)/+A(,2gg)l(2 + (—1) '
iA, , g,+)/ 2(Ag~ g~)/2

&L,. = ~~(22oolL~o) l&ol'
0,1

qr„= —~3) lC„l'(—1)"(11K —KlL, O),

~„;"= v 15 l~1 —
l )
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) [I—(—I)'j/2 II—(—I)'1/2+2 "2—d
/

2 ) ). 11—
I &(s+d)/2@(s d—)/2+ ( 1) @(+d)/2@(s d—)/22J-

x 11;, Lad 11;, — L2d
s+ d —(s —d) s+ d -(s —d)

2 ' 2 2
' 2

(4o)

In the above equations,

Bp ——v 2B++ —— ~2B

We also use the normalizations

A =A gg ——A (41)

IBpl' = I&pl'+ I&II' = I@pl'+ 21-EII' = l&pl'+ I&II'+ l&21' = 1. (42)

Finally, the angular function Pd, d
' ' is defined as

' ——[(Dd,'Dd, 'dDd' y Dd, 'Dd, dDd') + (—1) '(Dd, 'Dd, ' dD d + Dd, 'Dd; dD d )] . (43)

The arguments of the Wigner functions D~', D+', and D+' are ($, 0, —P), (P', O', —P'), and R~ e~ = (P",0",P"),
respectively.

The angles (O', P') and (0",P") are measured in the Pi and in the g rest &ames, respectively. Their relations to
the angles (O', P') and (0",P") measured in the D2 rest frame are given below:

(44)

(cos 0' —1)(p2/pl) + cos O' Ql —p2 1 —(p2/pl ) + cos 0'[(p2/pl) —p2]cos0' =
(1 —P22 cos2 0')

(45)

Since 0 & 0' & 7t, sino' has to be positive and so it will
be given by the positive square root

sin0' = +pl —cos20',

sing" = —[cos P' sin 0"sing" —sin gV sin 0" cos P"],
ql

(49)

([M~2 —(Mg+ M ) ][MJ2, —(My —M )2])I/2
[M' + (M~2 —M2)]

M~2 + M~2
(47)

If the direction of the unit vector e = A~ ey (where
ey is the unit vector in the direction of the electron mo-
mentum in the @ &arne) is given by the spherical polar
angles 0",P", then these angles are related to the corre-
sponding angles (O', P") measured in the D2 rest &arne
by the relations

«s p" = —[p2p2 sin 0' + cos 0' cos gV sin 0"cos gV'
ql

+ cos 8' sin P' sin 0" sin P" —sin 0' cos 0"p2],
(48)

where cos0' is given by Eq. (45). In Eq. (45), pl is the
parameter v/c of @ in the Pi rest &arne and p2 is v/c
Gf Pq in the D2 rest kame. If M~ and MD denote the
masses of the P& and the D2 states, respectively, simple
relativistic kinematics gives

cos 0 = [
—+1+2(PI + P2 cos 0 )

+PI(sill 0 cos Q sill 0 cos tP + slI10 sill/ sill 0

x sin p") + plp2 (pi p2 + cos 0') cos 0"]—, (50)
7l

I

sin0" = +pl —cos2 0" = —,
rl

where

II' = [(p2P2 sin 8'+ cos 0' cosP' sin 0"cos P"

+ cos 0 sill Q sill 0 sill gV —sin 0 cos 0 f2)

+(cos P' sin 0" sin P" —sin P' sin 0"cos P") ], (52)

rI —[pl p2 (1 + pi/32 cos 0') —pl pl (sin 0' c os Q' sin 0"cos Q

+ sing sin P sin 0" sin P")
—plp2(p2+ plcos0') cos0"] . (53)

The constants p; (i = 1, 2) are related to p; (i = 1,2) by
the relations
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Substituting Eqs. (47) into Eq. (54) gives

Mp2 + M~2

2MpMg

MD+ Mp
2MDMp

(55)

It is also useful to note that, in Eq. (43),

f 4ir
Mo =

IE2L+ I) (56)

Po =1,

P4 = 3(p)' '
(57)

QO

1 2 1
(1 —3l~ol') =

2 2' (58)

~o' = —~2(l&ol' —lail')
~o' = —~2(l&o I' —lail')

= 6i lm(EiEo),
~ = 2(IE.I'+ —.'IE.I'),

= 6 Re(Ei Eo),
z,"= 6lz, l',
00 L11

A0 1) AP 0

no' = (IAol' —2IAil'+ IA2I')
2

no' = —('p')' '(IAol'+ —,'IAil' —IA21'),

ni = i( r ) [Im(AiAo) + ~61m(A2Ai)],

n" = —(v)"[IAoI' —IAil' —IA21']

ni = —( z ) ~ [Re(AiAo) —~6Re(A2Ai)],
n" = 2(—)' 'Re(A A*)

(59)

Finally, the explicit expressions for the nonzero coeK-
cients in Eq. (36) are

ton, of the @ meson and of the electron. Since our result
of Eq. (36) is expressed as a sum of products of the or-
thonormal Wigner D functions, we can obtain the o.
and the E' coefBcients as an integral of R' over those or-
thonormal functions. Once these coefBcients are known
we can determine uniquely the magnitudes of all the he-
licity amplitudes, as well as the cosines of their relative
phases. The sines of the relative phases are not deter-
mined uniquely. But if the sine of one of the phases is
known, then the sines of the other phases can be calcu-
lated. The angles in the expression of Eq. (36) are not
all measured in the D2 rest kame or the pp c.m. kame.
They are related to the angles measured in the pp c.m.
frame through Eqs. (38)—(55). Even though these equa-
tions may look formidable, the two sets of angles can be
related through a computer program, which is routinely
done by the experimentalists.

The partially integrated angular distributions obtained
&om Eq. (36) will look a lot siinpler and we can. gain
greater insight &om them. We consider six cases of
partially integrated angular distributions. From these
alone, we can determine the magnitudes of all the he-
licity amplitudes, as well as the cosines of their relative
phases. In addition, we can also obtain the products
Im(EiEo)lm(AiAo) and lm(EiEo)lm(A2Ai). So if we
know the sine of one of the relative phases, we can get
the sines of all the other relative phases. By considering
the combined angular distribution of all three particles
p, Q, and e we do not get any new information. But
it will serve as a further check on the results we already
obtained.

In deriving the partially integrated angular distribu-
tions, we make use of the results

f
27r 27r 7r

dn dp D~', (n, P, p)D~ „,(n, P, p) sin PdP
0 0 0

8vr2
b~pb~ „b,~, (61)

(2j + 1)

2' 2' 7r

dn dp D~, (n, P, p) sinPdP
0 0 0

8+2
oh ob, o, (62)2j+1

Im(Ai Ao) — Im(A2Ai )
4i . (10), 1

no' = 3 IA. I'+ —IAil'+ -IA. I'
3 6

ni = 3( z ) Re(AiAo) + Re(A&Ai)

n = 3 (—';)"R.e(A.A,*) . (60)

Equation (36) looks rather complicated because it gives
the combined angular distribution function of the pho-

2' 7r

dp DMM (p, 8, —p) sin 8d8
0 0

dP D~+M, (P, 8, —@)sin 8d8
0 0

+1
2ir~M M', 0 dMM, (—8) sin 8d8 . (63)

Case 1. We will integrate over (8', P') and (8",P").
We are only observing the photon. Using Eqs. (61)—
(63) and substituting for the n and the Z coefficients the
expressions given in Eqs. (59) and (60) we finally obtaiii
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~(0, 4) = —1+
I

—
I I

—
I

(io& (4~)" (
4~ (, 7~ g5y

+-IA~I —IA21 ~ Y»(0)
2

(6i+
I

—
I
«~1 IAol' ——IAil'(7) ~

3

~ —IA2I Y4()(0)6 (64)

where 8' is the angle between Pq and @ in the Pq rest
frame. This angle is related to the angle 8' measured
in the D2 rest »me through Eq. (45). Since Pq and
the photon p move in opposite directions in the D2 rest
&arne, 8' can be measured by measuring the angle be-
tween p and the total momentum of e+ and e in the pp
c m. »me Since we»ready»ow IAoI IA~I »d IA2I
this angular distribution will enable us to calculate IEol
and IEq I

through the normalization relation of Eqs. (42).
Case 3. Only the angular distribution of the electron

with respect to the photon is observed. We integrate over
(0, $) and (O', P'):

~(0' +') = —1 —(IAoI' —2IA~I'+ IA21')4'
Z/2

x(IEol —IEil ) I

—
I

. (4l
Y»(0 ) (65)

where 8 is the angle between the proton and the photon
as measured in the pp c.m. &arne which is the same as the
lab &arne. So once this angular distribution is measured,
using the orthonormality of the spherical harmonics and
the normalizations given by Eqs. (42), we can determine
the magnitudes of the angular-momentum helicity am-
plitudes, IAol IA&l »d IA21.

Case 2. Here we will observe the angular distribution
of vP in the ~D2 rest »me by determining the angular
distribution of the total momentum of e e+ in the pp
c.m. &arne. To get the theoretical expression for this
angular distribution we integrate over (0, P) and (0",P").
We Anally obtain

(0/I y/8 )

W(0, P; O', P'; 0",P") sin 0d0dg sin 0'd0'dP'

X/2

1 —(IEoI —IE~I ) I

—
I

Y20(0 )
1 (4~) ff

4'
(66)

where we neglected ICol compared to ICOSI

The angle 0" which gives the "Wigner rotated" direc-
tion of e in the Q rest frame is related to the angle 0"
which gives the direction of e observed in the D2 rest
frame or the lab frame through Eqs. (48)—(53). We also
notice that (7r —0") is the angle between p and e in the
D2 rest &arne.

Case 4. Here we obtain the combined angular distribu-
tion of p and e by integrating over (O', P'). The partially
integrated angular distribution function g' (0, P; 0",P")
in this case is given by

)Y (8, d; 8",d") =jW(8, t8; 8', 8)'; 8",8)") ~ 'n8'88'd8)'

1 10 ( 2 1 2 2) (4')
128~2 «~Yoo(0) + —

I
IAol'+ -IA~I' —IA21'

I I

—
I

Y.O(0)
r E5r

18 ( 2 2 2 1 2) (47r)+—
I

IAoI' —-IA~I'+ -IA21'
l l

—
I

Y4o(0)
7 E 3 6 & &9)

1/2

«~Yoo(0") —(IEo I' —IE~ I')
I

—
I&5) Y2() (0")

+ [Im(E&Eo) (ImA&Ao + V 6 ImA2A,*)3O~3
7

——Re(Eq Eo) (ReAqAo —~6 ReA2A~)] x —Re[Y&~ (0, P)Yq (0",P")]

54~io+ ImEqEo
I

Im(AqAo) — Im(A2Ao)
I7 )

1 „(, 1 8~
6 ) 3 5

——Re(E&Eo)
I

Re(A~Ao) + Re(A2A*, ) I
x Re[Y,*,(0, P)Y21(0",P")]

IEgl Re(A2Ao) —Re[Y22(0, p)Y22(0, $ )]

+ ]E, ] Re(A2AO)Re]Y'2(8, $)Y2*(8'', 8)")] ).



52 ANGULAR DISTRIBUTION IN THE DECAY OF THE SINGLET. . . 5113

The magnitudes, as well as the real parts of the products of the helicity amplitudes, can be obtained from other
partially integrated angular distributions. So the measurement of this angular distribution will enable us to determine
Im(EiEO)Im(AiA0) and Im(EiE0)Im(A2Ai). We remind the reader again that 8 is the angle between the photon
and the proton as measured in the D2 rest kame. The angle 8" is related to the angle (vr —0 ) between p and e
measured in the D2 rest frame, through Eqs. (48)—(63).

Case 5. Here we get the combined angular distribution of vP(8', qV) and e (8",(|V'). We obtain

ee(e e'', e , e"), ="fw(ee;e, e ;'e 'e"),'"eeeee

0,2 0,2 0—+Min(L g L 3) I d
(—1

X [YL~d(8 ~ 4' )YLed(8 ~ 4 ) + YLgd(8 ~ 4' )YL~d(8 ~ '(t' )]

(IEoI' —IEil') Y2o(8") — (IAOI' —2IAil'+ IA2I')(IEoI' —IEil') Y»(8')
8~ 2~

+-(IAol —2IAii'+ IA2I')
I

IEOI'+ -IEil'
I
Y-(8')Y20(8")

5 )

—3 Re(Ei EO)Re[Y2i(8', y') Y2i (8",y")] + 3IEi I Re[Y22 (8', (jl') Y22(8", y")] (68)

Previous comments on the angles 8' and 8" apply here also. By measuring combined angular distribution of @ and e
we can now determine Re(EiEO), in addition to the magnitudes of the helicity amplitudes. The angular distribution
of vP(8', P') can be determined either by measuring the angular distribution of the total momentum of e and e+ into
which g decays or of the total momentum of the two p's into which vrO decays since vr and @ have equal and opposite
momenta in the Pq rest kame.

Case 6. Here we get the combined angular distribution of p(8, (t)) and @(8',(t)') by integrating over the directions
(8",gV') orily. We obtain.

8' (e, e;e', e') = fw(e, e;e', e';e", e") sisse"de"ee"

0,2,4 0,2 mOMin(Lq, Lg)

p LxL~ GAOL~

g(2L, , + 1)(21„~ 1)

X [YL „,(8, (t )YL„d (8', P') + YL,d (O', P') + YL,d (8, P)YL d, (O', P')] .

By substituting for the coefficients from Eq. {57)—(60), we finally obtain

{69)

@'(8,4»8' 4') = ——— (IA I' —2IA I'+ IA I') (IEoI' —IE I')Yo(8')
8m 2vr

10 1 ( 1+—
I

IAol'+ -IAil' —IA21'
I
Y»(8)7/5~ q

+—(IEil' —Eol')((IAoI' —IAil' —IA2I') Y»(8)Y»(8')
7

+V 3[Re(Ai A()) —~6 Re(A2Ai)]Re[Y2'i (8, y) Y2i (8', y')]
—2V 6 Re(A2AO) Re[Y2'2 (8, Q) Y22 (8', p')])

+
I

IAoI' —-IAil'+ -IA2I'
I

Y4o(8)
7~sr ( 3 6

+ (IE I' —IE I')
I

IAoI'+-IA I'+-IA I' IY (8)Y (8')

Re(A2A;) Re[Y42(8, y) Y,,(8', @')]

+
I

—
I I Re(AiA0) + Re(A2Ai)

I
Re[Y4'i(8, @)Y2i(8',y')](10) (

t 10'"
+3

I

—
I( 7)
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Again, 0 represeiits the angle between p and p in the iD2 rest frame. The angles (O', P') are related to (O', P')
through Eqs. (44)—(46). The angles (O', P') represents the direction of g in the D2 rest frame. For example, (vr —0')
is the angle between p and @ in the D2 rest frame or the pp c.m. frame. The direction of g can be obtained from
the direction of the total momentum of e+ and e or the direction of the total momentum of the two p's into which
vr decays. By measuring this angular distribution, one can determine the real parts of all A;A*- and &om there the
cosines of the relative phases of the helicity amplitudes A; (i = 0, 1, 2).

We can also obtain all the above information on the helicity amplitudes by looking at the combined angular
distribution of p, @, and e as given by Eq. (36). Using the orthonormality of the Wigner D functions, we can write
the coefBcient of the Y&,&

' ' angular function as

P12713(dpi' '~g' '[1+ (—I) '4o][I + (—I) '4'o]

= (2Li+1)(2Lg+1)(2L~+1) jW( dp; 'd, d'; d", d)V ' ' 'dBdB'dB", (71)

where P&,&
' ' is defined by Eq. (43). If the angular

distribution TV is determined at suKciently large num-
bers of points the integral on the right-hand side can be
performed numerically for all possible allowed values of
L& ) L2 y L3 d and d A close examination of the ex-
pressions for PL„, pL„, n&,' ' given by Eqs. (57)—(60)
show that this will enable us to redetermine not only
all the magnitudes of the helicity amplitudes and the
cosines of all their relative phases, but also the products
Im(EiE())lm(AiA()) and Im(EiEo)lm(A2Ai). They do
not enable us to determine all the sines of the relative
phases uniquely. But if the sine of the relative phase be-
tween any two is known by some other means, it enables
us to determine the sines of the relative phases between
any other two. All this information can also be obtained
by measuring the six partially integrated angular distri-
butions mentioned above. Moreover, the experimental
verification of the partially integrated angular distribu-
tion functions in cases (1)—(6) is a confirmation of the
discovery of the singlet D2 state and its J quantum
numbers.

Finally, the E3, M2, and E1 multipole amplitudes in
the decay D2 —+ Pq + p are related to the helicity am-

(2k+1
A„(v = 0, 1, 2) = ) ag

l

~=i

x(kl; —1, v]2, v —1), (72)

where a~, a2, and a3 are the E1, M2, and the E3 mul-

tipole amplitudes, respectively. Since the transformation
is orthogonal:

lail'+ la2I'+ lasl' = I&ol'+ l&il'+ l&sl' = 1. (»)
In order to determine the multipole amplitudes ay (k =
1, 2, 3) uniquely, one should determine the amplitudes A.„
(v = 0, 1, 2) uniquely. The relative phases of the multi-
pole amplitudes are nontrivial. The potential model cal-
culations [7] suggest that the multipole amplitudes in the

D2 ~ Pq + p transition are in general complex.
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