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We calculate all of the form factors for the one-photon, KL, ~ sr+a 7' ~ m+vr e+e contri-
bution to the KL, ~ m+m e+e decay amplitude at leading order in chiral perturbation theory.
These form factors depend on one unknown constant that is a linear combination of coefBcients of
local O(p ) operators in the chiral Lagrangian for weak radiative kaon decay. We determine the
difFerential rate for KL, ~ m+m' e+e and also the magnitude of two CP-violating observables.

PACS number(s): 13.05.Es, 11.30.Er, 12.39.Fe

I. INTRODUCTION

At the present time about 20 Ki —+ m+vr e+e events
have been observed and a detailed experimental study of
this decay mode will be possible in future experiments
[1]. The Kl. ~ sr+sr e+e weak decay amplitude is
dominated by the process KL, —+ m+m p' ~ m+m e+e
where a single virtual photon creates the e+e pair. This
one-photon contribution to the decay amplitude has the
form

syGy'cx

4vr q2, [i«" "p+~p pq--
+++p+ + +-p"-I . &(&-)~~v(&+),

where G~ is Fermi's constant, o. is the electromagnetic
Gne-structure constant, sq 0.22 is the sine of the
Cabibbo angle, and f 132 MeV is the pion decay con-
stant. The m+ and vr four-momenta are denoted by p+
and p and the e+ and e four-momenta are denoted
by k+ and k . The sum of the electron and positron
four-momenta is q = k + k+. The I orentz scalar form
factors G, E~ depend on the scalar products of the four-
momenta q, p+, and p . Neglecting CP nonconservation,
under interchange of the pion four-momenta

important tree-level contribution to the form factors F~
that arises &om the small CP-even component of the Kl.
state. This contribution to the F~ form factors &om in-
direct CP nonconservation has the opposite symmetry
property under interchange of pion momenta when com-
pared with the CP-conserving contribution to I"~ [see
Eqs. (1.2) and (1.3)]. If

p+ -+ p and p —+ p+, (1 4)

then the CP-violating one-photon form factors become

F+ -+ —F

The decay amplitude that ioBows from squaring the
invariant matrix element in Eq. (1.1) and summing over
e+ and e spins is symmetric under interchange of e+
and e momenta, k ~ k+. Physical variables that are
antisymmetric under interchange of the e+ and e mo-
menta arise &om the interference of the short-distance
contributions (Z-penguin and W-box diagrams) and the
two-photon piece with the one-photon amplitude given
in Eq. (1.1).

In the minimal standard model the coupling of the
quarks to the R' bosons has the form

p+ M p and p + p+ (1.2)

the form factors become

GmG, E+ —+F, E —+F+. (1.3)

In this paper we compute the CP-conserving contribu-
tion to the form factors G, F~ using chiral perturbation
theory at one-loop order [the O(p2) amplitude vanishes].
The coefBcients of some of the local operators appearing
at the same order in the chiral expansion (i.e. , order p
counterterms, where p is a typical momentum) are deter-
mined by the experimental value of the pion charge radius
and the measured K+ —+ vr+e+e and Kg —+ sr+sr p de-
cay rates and spectra.

We also compute (in chiral perturbation theory) an

Cy —Sy C3

Cy C2C3 —82 83t ib

Cy82C3 + C283C ib

—8] Bs
clc2ss + s2cse' ~, (1.7)
Cy S2S3 C2C36

Here repeated generation indices j, k are summed over
1,2,3 and g2 is the weak SU(2) gauge coupling. V is a
3 x 3 unitary matrix [the Cabibbo-Kobayashi-Maskawa
(CKM) matrix] that arises from diagonalization of the
quark mass matrices. By redefining phases of the quark
fields it is possible to write V in terms of four angles Oq,

02, 03, and b. The 0& are analogous to the Euler angles
and b is a phase that, in the minimal standard model, is
responsible for the observed CP violation. Explicitly
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where cq = cos 0, and s; = sine;. It is possible to choose
the 0~ to lie in the first quadrant. Then the quadrant
of h has physical significance and cannot be chosen by a
phase convention of the quark fields. A value of b not
equal to 0 or m gives rise to CP violation.

The short-distance TV-box and Z-penguin Feynman
diagrams depend. on the Vq, element of the Cabibbo-
Kobayashi-Maskawa matrix. It is very important to
be able to determine this coupling experimentally. In
this paper we calculate the contribution to the KL, ~
sr+sr e+e decay amplitude arising &om the Z-penguin
and TV-box diagrams which can be determined using
chiral perturbation theory since the left-handed current
sp&(1 —pz)d is related to a generator of chiral symmetry.
At the present time all observed CP nonconservation has
its origin in K -K mass mixing. A CP-violating vari-
able can be constructed in the decay Kl. ~ m+m e+e
that gets an important contribution &om CP nonconser-
vation in the Z-penguin and W-box diagrams, that is,
direct CP violation. The variable (in the KL, rest kame)

(2iM )
Z = exp (2.1)

where

— ') ~2+ &)'~6—0K

K+
z

)—2q/~6

(2.2)

At leading order in chiral perturbation theory f 132
MeV is the pion decay constant. Under SU(3)~ x SU(3)R
transformations the Z field transforms as

(2 3)

where I ESU(3)i, and B ESU(3) R.
At leading order in chiral perturbation theory (i.e. , or-

der p, where p is a typical four-momentum) the strong
and electromagnetic interactions of the pseudo Goldstone
bosons are described by the chiral Lagrange density

(p x J7+) . (k —k+)

l(p: x p+) (k- —k+)I
(1 8)

Qs~
l ———Tr(D„ZD"Zt) + v Tr(mqZ + mqZt), (2.4)S

is even und. er charge conjugation and odd under parity.
It is also odd under interchange of k+ and k . The real
and imaginary parts of Vz, are comparable, and hence
the CP-conserving and CP-violating parts of the Z-
penguin and TV-box diagrams are of roughly equal im-
portance. A~~ gets a significant contribution &om this
direct source of CP nonconservation. In this paper we
calculate A~~ in the minimal standard model but unfor-
tunately we find that it is quite small; lac Rl = 10

The decay Kl, ~ sr+sr e+e has been studied previ-
ously by Sehgal and Wanninger [2) and by Heiliger and
Sehgal [3]. These authors adopted a phenomenological
approach, relating the KL, —+ vr+m' e+e decay ampli-
tude to the measured Kl, ~ sr+sr p decay amplitude. In
the systematic expansion of chiral perturbation theory
we find that there may be important additional contri-
butions to the KL, ~ sr+sr e+e decay amplitude for
q = (k + k+) )) 4m, that were not included in this
previous work. It was pointed out in [2,3] that indirect

p
—pCP nonconservation &om K -K mixing gives an im-

portant contribution to the KL, ~ a+sr e+e decay rate
and consequently there is a CP-violating observable B~~
that is quite large. We reexamine B~~ using the form
factors determined in this paper.

where e is a parameter with dimensions of mass to the
third power and mq is the quark mass matrix:

(m„o 0
m =l 0 mg

&o o m) (2 5)

3m' —4m~2+ m' = 0 (2 6)

holds.
The effective Lagrangian for LS = 1 weak nonlep-

tonic decays transforms as (8~, 1R) + (27L„1R) under
SU(3) I,CRSU(3) R. The (8L„1R) amplitudes are much
larger than the (27L„1R) amplitudes and so we will ne-
glect the (27L„1R) part of the efFective Lagrangian. The
effective Lagrangian for weak radiative kaon decay is ob-
tained by gauging the effective Lagrangian for weak non-
leptonic decays with respect to the U(l)g of electromag-
netism. At leading ord.er in chiral perturbation theory
the LS = 1 transitions are described by

In this paper we neglect isospin violation in the quark
mass matrix and set m„= mg. In this approximation
the K and K+ have equal masses which we denote by
m~, and the Gell-Mann —Okubo mass relation

II. THE ONE-PHOTON AMPLITUDE Tr[D„ZD"ZtT] + H.c.
4 2

(2.7)

Chiral perturbation theory provides a systematic ap-
proach to understanding the one-photon part of the
Kl. —+ m+vr e+e decay amplitude. It uses an effec-
tive field theory that incorporates the SU(3)L, xSU(3)R
chiral symmetry of QCD and an expansion in powers of
momentum to reduce the number of operators that oc-
cur. In the chiral Lagrangian the vr's, K's, and g are
incorporated into a 3 x 3 special unitary matrix. :

(0 0 0~
T=l 000

&0 1 0) ' (2.8)

and gs is a constant determined by the measured Ks —+

The matrix T in (2.7) projects out the correct fiavor
structure of the octet
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sr+or decay rate; lgs l
5.1 . In (2.4) and (2.7) D„rep-

resents a covariant derivative

D„Z = B„Z + ieA„[Q, Z], (2.9)

where 0 0

4 0 0 i )
(2.10)

is the electromagnetic charge matrix for the three lightest
quarks, u, d, and 8.

The KL state

II~I ) = IIt2) + elhi) (2.1i)
0KL

is mostly the CP-odd state

, (l~') + l~ )), (2.i2)

with small admixture of the CP-even state

, ( I
~') —II(- ) ) (2.13)

0KL

The parameter e characterizes CP none onservat ion in—0K -K mixing . At leading order in chiral perturbation
theory the Kg m m +m p* ~ m +sr e+e decay ampli-
tude arises though the CP-even comp onent of KL Writ-
ing the form factors contributing to Kg —+ m +vr p* as a
power series in the chiral expansion,

+ Fq +, G = G(') q G(') +.. . , (2.14)

where the superscript denotes the order of chiral per-
turbat ion theory, we find that the Fey nman diagrams in

Fig . 1 give

FIG . 1. Feynman diagrams contributing to E+ ) .

one- loop Fey nman diagrams involving vertices Rom the
leading Lagrange densities in (2.4) and (2.7) . However,
the form factor G( ) arises solely &om local operators as
the one- loop Fey nman diagrams and tree graphs invo 1v-

ing the Wess-Zumino term [4,5] do not contribute. The
contribution of the 0(p ) local operators to G(2) is Axed

by the measured KL, -+ a+sr p decay rate [6,7] to be

G(~)p lG(')
l
= 40 . (2.i6)

(,) 32gs f (mrs —m' )vr' e

[g' + 2 .p+]
(2.i5)

(i) 32gsf (mls m )vr e

[q2 + 2q p ]

Despite the fact that e = 0.0023e' [in a phase conven-
tion where the K -+ vrvr(I = 0) decay amplitude is real]
is small, it is important to keep this part of the decay
amplitude . Other contributions not proportional to e do
not occur until higher order in chira 1 perturbation theory.
We neglect direct sources of CP nonconservation in the
one-photon part of the decay amplitude. Experimental
information on ~' suggests that they are small .

At the next order in the chiral expansion the form fac-
tors G( ), F+( ) arise from 0(p ) local operators and from

I

F""Tr[Q(D ZD Zts 16'

+D„Z'D„Z)], (2»)
and

The experimentally observed K~ ~ sr+ vr p 0alitz plot
suggests that the form factor G has significant mo

ment-

umm
dependence . This indicates that G ( ) is not negligi-

ble, and that our extraction of G( ) from the rate is not
completely justified [8].

The form factors E+ get contributions both from lo-
cal operators of 0(p ) [9] and &om one-loop diagrams
involving vertices kom the leading Lagrange densit ies in
(2.4) and (2.7) . For KL, ~ sr+or e+e the local operators
that contribute are

G 2

i [ai (p)F""Tr[QT(ZD„Z ) (ZD„Z )] + a2 (p)F""Tr[Q(ZD„Z )T(ZD„Z )]
216vr2

+a3 (p)F""Tr[T[Q, Z]D„Zt ZD„Zt —TD„ZD„ZtZ [Zt, Q]] + a4 (p)F""Tr [TZD„Zt [Q, Z]D„Z ]] + H.c. (2.18)
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The coeKcients A„,aq, a2, a3 and a4 depend on the
renormalization procedure used and we employ dimen-
sional regularization with the modified minimal subtrac-
tion scheme (MS). The dependence of the coeKcients
A„, aq 2 3 4 on the subtraction point p cancels that com-

ing &om the one-loop diagrams. Note that the basis of
operators in Eq. (2.18) is slightly difFerent than that used
in [9]. With this basis of operators the combination of
counterterms

K+ +E&

mL,
——a3 —a4 (2»)

is independent of the subtraction point p at one loop.
The value of A„ is fixed by the measured sr+ charge

radius; (r ) = 0.44 + 0.02 fm . The one-loop diagrams
in Fig. 2 give (using MS)

V. ,
T+

27r2
A-(s) = —

I 3
If'(~.')

—24[2 ln(m /p, ) + in(m~/p )], (2.20)

which implies that (at the subtraction point p, = 1 GeV)

A„(l GeV) = —0.91 + 0.06 . (2.21)

PIG. 2. Feynman diagrams contributing to the sr+ charge
radius, (r ), at leading order in chiral perturbation theory.

A linear combination of a~ and a2 is fixed by the mea-
sured K+ —+ vr+e+e decay amplitude. Fortunately it
is the same combination of a~ and a2 that enters into
the Kl, ~ vr+m e+e decay amplitude. The one-photon
part of the K+ —+ vr+e+e decay amplitude can be writ-
ten in terms of a single form factor f (q ):
M( ~1(K+ M 7r+e+e )

This relation defines the p independent constant tU+ [10]
which has been experimentally determined to be [11]

m+ ——0.89+0.24 (2.25)

—f(q')p"u(k )p„t (k+) . (2.22)
Using the central values of A„(1 GeV) and iU+ we find
that

The one-loop diagrams in Fig. 3 and the operators in
(2.17) and (2.18) give [10] ai(1 GeV) + 2a2(1 GeV) = —6.0, (2.26)

where

f(q') = 2«(&~(q') + &-(q') —s»(mK/~')
—

s ln(m'/p')
+- [ i(P) + 2 2(P)] —4A.,(p) + s j

= 2«[4~(q') + &-(q') + ~+] (2.»)

(2.24)

with an associated error around 10'Fo [which is correlated
with the uncertainty in A„(1 GeV)]. Throughout the
remainder of this work we will use the central values of
A„(1 GeV) and ai(1 GeV)+2a2(1 GeV) and suppress
the associated uncertainties. Note that the contributions
A„(1 GeV) and (ai + 2a2) (1 GeV) to f (q ) are sep-
arately quite large but they almost cancel against each
other.

At O(p ) the form factors I"+ for Kl, -+ vr+7r e+e
decay follow from the Feynman diagrams in Fig. 4 and
tree-level matrix elements of the operators in (2.17) and
(2.18). We find, using MS subtraction, that

=g8 ——q a~ p +2a2 p +6a3 p —6a4@ —4q A„p + —q + ~ +

—4 dx q x(1 —x) lnI
('m' —q'~(1 —~)l, ( q'x(1 —x) l

0 p2 ) ( m2
2

(2.27)
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where

x(1 —x)(q2+2q p )
m~(1 —x) + m2z —m2z(1 —x) )

(2.28)

1 1 ' ( *(1—x)(q'+2q p )p~„= —m& —m dyy dz 2+— dz 1n 1—
9 ~

p p @2~ (q2+ 2q. p ) p ( m2~(l —x) + m~x —m2x(l —x) p'('- ') 2
3 p p g m2~(1 —y) + m2y —m2y(1 —y) )

q2x(1 —x) + 2q pixy+3 dy dx 1n 1—
p p ( m21( (1 —y) + m2y —m2y(1 —y) p
1 1—Q 1+ dyy —2[[q(1 —z) + p y] (4q+ 6p++4p ) —2mz —2p+ (q+ p )]

0 0

f (x —1)(3m2~ —2m2) l f'
p q +2p q

with

p~ = m& (1 —y) + m„y —m y(1 —y) —q z(1 —z) —2q .p xy . (2.29)

/ ~K, rt
+

K', ~+j
( -pK, 11:

K+ I~

K, z+ + 43K+ „+

+ +E.K, z

(b)

FIG. 3. The Feynman diagrams contributing to the amplitude for K+ —+ m+p' at leading order in chira]. perturbation theory.
The solid square denotes a vertex from the gauged weak Lagrangian in (2.7), the solid circle denotes a vertex from the gauged
~t~ong Lagrangian in (2.4). (a) involves only weak and electromagnetic vertices while (b) also has a strong vertex. (c)
th«ontribution from the kaon and pion charge radii (including both loop graphs and the tree-level counterterm). (d) is the
contribution of the weak counterterm as given by (2.18). We have not shown the wave-function renormalization of the tree
graphs for the process as the sum of these graphs vanish.
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The other function is

q ~z(l —x) + 2q .p zy )
——(m~ —m ) dy dz ln~ 1—

may+ m2 (1 —y)2 )

dy dx lni 1—q2x(l —x) + 2q. p+zy)
may+ m'(1 —y)2 )

+2 dyy dx (p+ + p—+ q) [q(1 —z) + yp ——p+]
0 0 P2

m2~{z —1) l ( x(1 —x){q'+2q.p )&
dz/ 1+z+, ~

f
ln/ 1—

q2+2q. p y q m2(1 —z)'+m2~z y
(2.30)

with

Ia2 = m~y+ m (1 —y)
—q x(1 —x) —2q. p xy . (2.31)

The Gell-Mann —Okubo mass formula (2.6) has been
used to simplify some of the dependence on the pseu-
doscalar masses in (2.28) and (2.30). E+ is obtained
from (2.27) by taking p+ ~ p and p ~ p+. No-
tice that the combination of coefficients (a2 + 2a2) and

A, that appear in the expression for E+ has a rela-(2)

tive sign difFerence compared to the combination that
appears in the expression for f(s) given in Eq. (2.23).
The uncertainty in A„(l GeV) and m+ gives rise to
about a 10' uncertainty in the combination of coun-
terterms that appears in (2.27). The one-photon part
of the KL, ~ sr+sr e+e decay amplitude is the largest
and dominates the rate. In the next section we use
the form factors calculated here to obtain dl'(KL, -+

sr+a e+e )/dq . One (scale-independent) linear combi-
nation of counterterms mL, ——aa =-a4 is not determined by
the present experimental data and consequently we can-
not predict the rate for KL, ~ m+m e+e . However, this
is the only undetermined constant and the entire function
dl'(KL, ~ sr+~ e+e )/dq is experimentally accessible.

III. THE DIFFERENTIAL DECAY RATE

The KL, —+ a+7r e+e decay rate is obtained by squar-
ing the invariant matrix element (1.1), summing over the
e+ and e spins, and integrating over the phase space.
Since the e+ and e four-momenta only occur in the lep-
ton trace, Tr[P p P+p„], the phase-space integrations
over k and k+ produce a factor

d3k d3k+ 4 4 1

{ ), o
( ),

"
o (2~)'~'(q —k- —&+) T [J-7- 8+7/] = (q~q- —q'qp—-) . (3.1)

The remaining phase-space integrations can be taken to be over q and the sum and difFerence of the pion energies in
the KL, rest frame, Es ——pe+ +p, Erp = p+ —p . The contribution of the form factors F~ and G to dI'/dq2 do not
interfere. Therefore, we can write

dI' dr~ drF
(KL, m ~+sr e+e ) =

dg dg Ig
(3.2)

where

dl G

Ig

2 2 2

[m q —m (p . q) —m (p+ q) +2(p+. p )(q. p+)(q p ) —q (p+ p ) ],

«~ f «~II&+v. s+ —+-v. s-I'
m~ 2 27t' 3q
—q (fE [m++ /E

f
m + 2 Re(E+E*)p+ p )] . (3.3)

In Eqs. (3.2) and (3.3) the difference of pion energies is integrated over the region E~ " ( ED ( E&—" where
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E(max)
D

2m~E~ + q —m& —4m

2mKEs + g —m (3.4)

0K„
0K„ 0K„

0K„

K, z

K

K„

K

0
KL 0

KL

0
KL

0K„

0
KL

(K, ~o), (K, q)
( +, K ) , ( +, K )

0K„ 0
KL

0
KL +m

n+

0
KL 0K„

0
KL

(m, m) = (K, z ), (K, g )
(~, K ), (~, K )

(c)

0
KL 0K„

K

K0
L

0K„

0
KL

0
KL

FIG. 4. Feynman diagrams contributing to the CP-conserving amplitude for KL, —+ m+m. p at leading order in chiral
perturbation theory. The notation is the same as in Fig. 3 and we have not shown the wave-function renormalization of the
tree graphs for the process as the sum of these graphs vanish.
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and the sum of pion energies is integrated over the region
E&™"}( E~ ( E&

" where the boundaries are 30
1dI

I dy

20

35-
I

\

1

I

I

(min) m~ —q + 4m~2 2 2

2m+
(3 5)

15-

/0-

The scalar products appearing in the expression for the
rates are easily expressed in terms of Eg, ED, and q: 5-

p+ p = i(q —mI~ —2m + 2mIrES), 0.2

q Ji~ = ', ( mjr-E—s+ mgEg —q'+ mr~), (3 6)

p 2 ( mrcEs mls ED q + mK)

, (Kr, m sr+sr e+e )
dq

dl G(2) (gI y (1) dI y'(2)

dq2 dq2 dq2

In Fig. 5, we have graphed, for each of the three terms
on the right-hand side of (3.7),

The form factors F+ and F+ have the opposite prop-(i) (2)

erty under interchange of pion momenta and conse-
quently they do not interfere in dl'/dq2. Neglecting terms
in chiral expansion of O(p ) and higher the diff'erential

decay rate given in (3.2) becomes

FIG. 5. The differential decay spectrum as a function of y
the invariant mass of the lepton pair normalized to m~ —2m
The dot-dashed curve is the contribution from I'+, the dot-
ted curve is the contribution from I"+ mith mL, = 0 and the
dashed curve is the contribution from G . The total dif-
ferential decay rate for mL, ——0 is given by the solid curve.

The branching fraction over this range of e+e invariant
mass is dominated by the region of low q2 and for typical
values of nI, it receives comparable contributions from
the form factors G and F~ ~. However, in the region of
high q the branching fraction is likely to be dominated

by the E+) form factor. Por q2 ) (80 MeV) (corre-
sponding to y ) 0.37) and ml, = 0 the three terms on
the RHS of (3.7) contribute

10 8(KI, ~ vr+m e+e;q ) (80 MeV) )
1 dI' 2 1 dI'= 2y(mJr —2m )I ~ . dg I'~ dq2

' (3.8)
= 0.61+ 0.07+ 1.8 = 2.6 . (3.10)

where y = ~q~/(mlr —2m ), I'~~ is the total width of
the KL„and we have set ml. ——0.

Integrating the three terms on the right-hand side
(RHS) of (3.7) over the invariant mass interval q~ ) (30
MeV)2 (corresponding to y ) 0.14) we find that for
tDL, =0

10 x 8(KL, m sr+~ e+e;q ) (30 MeV) )

= 3.8 + 0.78 + 3.4 = 8.0 . (3.9)

A summary of our results for the rate can be found
in Table I. We have displayed the contribution to the
branching ratio (in units of 10 s) from the three form
factors G F~ ~, and F~ ~ for diferent values of the min-
imum lepton pair invariant mass q;„. Since the loop
contribution to the form factor F+ is small, it will be
difficult to extract a unique value for m~ for dl'/dq2 data
alone; a twofold ambiguity in the value of ml, will persist.
The contribution to the rate from G and F~ ~ are numer-
ically similar to that computed in [2,3], differing only

TABLE I. Contributions to the branching ratio (10 ) for a range of q

Lover cut q

(10 MeV)
(20 MeV)
(30 MeV)
(40 MeV)
(60 MeV)
(80 MeV)

(100 MeV)
(120 MeV)
(180 MeV)

B(10 )o
8.8
5.6
3.8
2.7
1.3
0.6
0.3
0.1

0.000 72

~(10 ')~()
3.3
1.5
0.8
0.5
0.2
0.07
0.03
0.01

0.000 1

B(10 (,)
3.6 —3.4mL, + 0.S'IL
3.5 —3.3mL, + 0.S'il
3.4 —3.2m' + 0.8m2

3.1 —3.0ml. + 0.7mL,
2.6 —2.4mL, + 0.6~L,
1.9 —1.8toL, + 0.4val.
1.3 —1.2'Wi, + 0.3tDL

0.74 —0.68tul, + 0.16m&
0.027 —0.025tuL, + 0.006mI.
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because we have retained the q dependence in E~ &. For
ugL, = 2 the contribution of I'+ to the rate is small and
our results are similar to those in [2,3].

IV. THE S-PENGUIN AND R -BOX AMPLITUDE

The short-distance R'-box and Z-penguin diagrams
give the effective I agrange density

si Gy'cx
&sD = ( sp„(l —ps) dep" p, e + H.c.

2
(4 1)

(4.2)

Here we only keep the part that contains the lepton axial
vector current (the vector current is neglected). It is only
the axial vector current that gives rise to observables that
are antisymmetric under interchange of e+ and e four-
momenta, k+ M k

In (4.1) the quantity $ receives significant contributions
&om both the top quark and charm quark loops and is
given by

logarithmic level [12,13]. There is some sensitivity to the
values of AqcD, m, and mi but ( is of order 10 and
(& is of order unity.

The quark-level Lagrange density in Eq. (4.3) can be
converted into a Lagrange density involving the vr, K,
and g hadrons using the Noether procedure. Equating
the QCD chiral currents with those obtained from chiral
variations of the efFective Lagrangian in Eq. (2.4) leads
to

l:sD = —( f Tr(0"ZZtT)ep„use+ H.c. (4.5)
2 2

Expanding out Z in terms of the meson fields M we 6nd
that the Lagrange density (4.5) implies that the short-
distance contribution to the WL, ~ sr+sr e+e decay
amplitude &om the TV-box and Z-penguin diagrams is

M = ((p" + (*p")u(k )p„p v(k ) . (4.6)

V. THE ASYMMETRY Acr

where

g(Z) + g(W') (4.3)

V,*,Vip/V„*, V„g = (P —1+ i@)fV,bl (4.4)

A value of lV,bl 0.04 is obtained from inclusive B ~
X ev decay and &om exclusive B ~ D'ev decay. Al-
though the values of p and g are not determined by
present data, they are expected to be of order unity.

The quantities ( and (i have been calculated includ-
ing perturbative QCD corrections at the next-to-leading

is the sum of the contributions of the Z-penguin and
R'-box diagrams. It is convenient to express the com-
bination of elements of the Cabibbo-Kobayashi-Maskawa
matrix that enters in $ in terms of lV, bl and the standard
coordinates p+ ig of the unitarity triangle

It is the interference of M( ) in (4.6) with M( ~) in
(1.1) that produces the asymmetry Ac~ defined in (1.8)
(essentially K7 of [3]). For calculation of Ac~ it is con-
venient to use the phase-space variables used by Pais and
Treiman [14] for Ki4 decay (rather than those used for
the total rate in Sec. III). They are q2 = (k+ + k )2,
s = (p+ + p ), 0, the angle formed by the sr+ three-
momentum and the KL, three-momentum in the m vr

rest &arne; 0~, the angle between the e three-momentum
and the Kl, three-momentum in the e+e rest frame; P,
the angle between the normals to the planes de6ned in
the KL, rest &arne by the m+vr pair and the e+e pair.
In terms of these variables

(p xp+). (k —k+) (. )
l(p x p+) (k —k+)I

and the asymmetry is

2'
dP sgn(sin P) l

dc dc, dsdq PA Re(M(sD) M('~)),2~ 2~ sms~l'~ ( o
(5.2)

where c = cos0, c = cos0 . The other kinematic functions appearing in this expression are

P=[1 —4m /8] ~

(m122 —s —q') '
)

- 1/2
—8Q

2 (5.3)

In order to evaluate the contributing form factors the following scalar products of four vectors are required:



5104 JOHN K. EI.WOOD, MARK B.WISE, AND MARTIN J. SAVAGE 52

q p~ = —,'(m~ —s —q') —-', PX cos 8. ,

q. p = -'(mR —s —q') + —,'PX cos8

p+ p = -', (s —2m'),
s p ~p+p k+k~ = —4PX/sq2 sin8, sin8 sing .

(5.4)

If the variables 8 and q are not integrated over the complete phase space then it is understood that the same is to
be done for the Kl, width I'~ in the denominator of Eq. (5.2).

The form factor G does not enter into Re(M( D& Mli~l) (a sum over e+ and e spins is understood). Integrating
our cos8, and P we find that

G»

sioux

2 2 2

Azz = s s dc dsdq sin 82 ~

2 27r f m~1' ic

xp X —[Im($)[Re(F+) + Re(F )] + Re($)[Im(F+) —Im(F )]] . (5 5)

The integration over cos0 implies that at leading non-
trivial order of chiral perturbation theory Im(F+)—
Im(E ) m Im(F+( l) —Im(F( ) re8ecting indirect CP
violation &om e and Re(F+) + Re(F ) ~ Re(F+ ) +(2)

Re(F ) in Eq. (5.5).
Using (4.2) and (4.4) we can write the CP-violating

asymmetry in terms of the real and imaginary parts of
the CKM elements

mass qmj„normalized to the branching ratios given in
Table I assuming mI, = 0.

We find that direct and indirect sources of CP non-
conservation give comparable contributions to A~~. In
our computation we have neglected final-state mvr inter-
actions which are formally higher order in chiral pertur-
bation theory. With the values of Aq and A2 given in
Table II, ~Ac~~ is only of order 10 and further refine-
ments of our calculation do not seem warranted.

Aci = Ai((p —1)(Vs~ (i —(,) —A2il)Vs~ (i, (5.6)

Ag ——2.7 x 10, A2 ——3.9 x 10 (5 7)

1or q2 ) (30 'MeV)2 and

A& —2.4 x 10, A2 ——8.4 x 10 (5 8)

for q2 ) (80 MeV) 2. In Table II we present Ai and A2 for
a range of values of the minimum lepton pair invariant

where Ai arises from indirect CP nonconservation (i.e. ,—0K —K mixing) and A2 arises &om direct CP noncon-
servation. We are only able to predict ~A~~~ since the
sign of gs is not known. Our expressions for F+ and(~)

F+ with ural. = 0 give (up to an overall sign)

V'I. THE ASYMMETBY H~~

Using the kinematic variables introduced in the previ-
ous section the CP-violating observable B~~ is defined
as

Bcp ——(sgn(sing cosP)) . (6.1)

At leading order in chiral perturbation theory it arises
&om the interference of F~ with G( ). The CP-
violating form factors F~ are not small because they
occur at a lower order in chiral perturbation theory than
the other form factors, F+( and G( ). Consequently, as(2)

was noted in [2,3], Bc~ is quite large. Neglecting MlsDi
we find after integrating over P and cos8, that

Lower cut q~;„
(10 MeV)
(20 MeV)
(30 MeV)
(40 MeV)
(60 MeV)
(80 MeV)

(100 MeV)
(120 MeV)
(180 MeV)

Ag
2.0 x 10
2.5 x 1P
2.7 x 10
2.8 x 10
2.7 x 10
2.4 x 10
2.1 x 10
1.8 x 10
1.3 x 10

A2
2.0 x 10
3.0 x 10
3.9 x 10
4.8 x 10
68 x 10
8.5 x 10
9.8 x 10-'

0.11
0.13

TABLE II. The CP-violating quantities Aq, Aq with
mL, = 0 for difFerent values of q

TABLE III. The GP-violating observable ~Hci x 8(10 ) ~

for a range of values of q

Lower cut q )Etoi x 8(10 ')) (%)
(10 MeV) 134
(20 MeV) 78
(30 MeV) 50
(40 MeV) 33
(60 MeV) 14
(80 MeV) 6.3
(100 MeV) 2.5
(120 MeV) 0.92
(180 MeV) 0.0086
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dc dsdq sin 0„P X —Im[G(F+ —F*)] . (6.2)

If the variables 8 and q are not integrated over the entire
phase space then it is understood that the same is to
be done to the KL, width I'~ in the denominator of
(6.2). The form factor G is real at leading order in chiral
perturbation theory and the imaginary part arises from

the phase in E+ —E induced by K -K mixing. Theo
—0

integration over cos0 implies that E+—E ~ E+ —E
in Eq. (6.2). Using our expressions for F+ and the value
of ]G( )[ we find that with mL, ——0, ~Bcp] 6.3'%%uo for
q ) (30 MeV) and ~Bcp~ 2.4%%uo for q2 ) (80 MeV)2.
The asymmetries for a range of values of q~j„are shown
in Table III. Note that in Table III 8(10 s) denotes the
Kl. —+ a+a e+e branching ratio in units of 10 with
the same cut on q imposed. We have neglected final-
state vrvr interactions because they arise at higher order
in chiral perturbation theory. Our prediction for ~B~p[
has considerable uncertainty because of the neglect of
final-state vrvr interactions and because neglected O(ps)
contributions to G seem to be important.

VII. CONCLUSION

In this paper we have calculated the one-photon con-
tribution to the Kl. —+ m+m e+e decay rate. We used
chira} perturbation theory to determine the form factors
and for e+e pairs with high invariant mass (q &) 4m, )
found that there may be important new contributions
that were not included in previous work [2,3]. The am-
plitude for Kl. ~ vr+vr e+e depends on the undeter-
mined (renormalization scale-independent) combination
of counterterms toL, . We found that for q2 = (k++k )
(30 MeV) the branching ratio for KL, ~ m+x e+e
is approximately (8.0 —3.2tvl. + 0.8to12) x 10 s and for

q ) (80 MeV) the branching ratio is approximately
(2.6 —1.8mL, + 0.4m+2) x 10

One interesting aspect of this decay mode is that the
CP-even component of the KL, state contributes at a

lower order in chiral perturbation theory than the CP-
odd component. This enhances CP-violating effects in
KL, —+ sr+sr e+e decay. For example, the CP-violating
observable [2,3] B~p = (sgn(sing cos P)), where P is the
angle between the normals to the vr+vr and e+e planes,
is about 6%%uo for q2 ) (30 MeV)2 if tuL, = 0. The CP
violating observable A~p = (sgn(sing)) arises from the
interference of R'-box and Z-penguin amplitudes with
the one-photon part of the decay amplitude. Unfortu-
nately, we find that A~~ is of order 10 and hence most
likely unmeasurable.

Chiral perturbation theory has been extensively ap-
plied to nonleptonic, semileptonic, and radiative kaon
decays. The study of KL, m m+vr e+e ofFers an oppor-
tunity to determine the linear combination of coefBcients
in the O(p ) chiral Lagrangian that we call toL, and to
test the applicability of O(p ) chiral perturbation theory
for kaon decay.

Some improvements in our calculations are possible.
While a full computation of the O(ps) contribution to
E~ and G arising &om two-loop diagrams and new local
operators does not seem feasible it should be possible
to calculate the leading contribution to the absorptive
parts of G and E+ —E . Note that the absorptive parts
come &om both mm —+ wrier rescattering and because of CP
nonconservation from wrier ~ vrmp*. We hope to present
results for this in a future publication.
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