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Lattice study of semileptonic H decays: H; D/u decays
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We present a study of semileptonic B -+ Dlp decays in quenched lattice QCD through a
calculation of the matrix element (D~cp"b~B) on a 24 x 48 lattice at P = 6.2, using an O(a)-
improved fermion action. We perform the calculation for several values of the initial and 6nal
heavy-quark masses around the charm mass, and three values of the light-(anti)quark mass around
the strange mass. Because the charm quark has a bare mass which is almost — the inverse lat-
tice spacing, we study the ensuing mass-dependent discretization errors, and propose a procedure
for subtracting at least some of them nonperturbatively. We extract the form factors h+ and h
After radiation corrections, we 6nd that h+ displays no dependence on the heavy-quark mass,
enabling us to identify it with an Isgur-Wise function t. Interpolating the light-quark mass to
that of the strange, we obtain an Isgur-Wise function relevant for B, ~ D, lv decays which has a
slope —(,' = 1.2+&(stat)+i(syst) at zero recoil. An extrapolation to a massless light quark enables
us to obtain an Isgur-Wise function relevant for B —+ D lv decays. This function has a slope
—g„' s ——0.9+s(stat)+2(syst) at zero recoil. We observe a slight decrease in the magnitude of the
central value of the slope as the mass of the light quark is reduced; given the errors, however, the sig-
ni6cance of this observation is limited. We then use these functions, in conjunction with heavy-quark
effective theory, to extract V,b with no free parameters from the B —+ D'lv decay rate measured by
the ALEPH, ARGUS, and CLEO Collaborations. Using the CLEO data, for instance, we obtain
~V, s~ = 0.037+i+2+i(0.99/1 + p '(1))1/1 + hil 2, where 6il s is the power corrections inversely

proportional to the square of the charm quark mass, and P '(1) is the relevant radiative correction
at zero recoil. Here, the first set of errors is experimental, the second represents the statistical
error, and the third represents the systematic error in our evaluation of the Isgur-Wise function.
We also use our Isgur-Wise functions and heavy-quark effective theory to calculate branching ratios
for B(,~

~ D~,~lv and B(,) —+ D(,)lv decays.

PACS number(s): 13.20.He, 12.15.Hh, 12.38.Gc, 12.39.Hg

I. INTRODUCTION

Semileptonic decays of B mesons have been the fo-
cus of much activity in the last few years. Experimen-
tally, their rather large branching ratios have allowed
thorough studies of their properties. Theoretically, they
have been a fertile ground for new ideas. Moreover, the
interplay between these experimental studies and new
theoretical ideas has led to a greater understanding of
the Qavor sector of the standard model and, in partic-
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ular, to measurements of the less well-known Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements Vs and V„s
[1]

The main theoretical development in the study of
hadrons containing a heavy quark, such as the b or c
quarks, is undoubtedly the discovery of heavy-quark sym-
metry [2,3] and the development of the heavy-quark ef-
fective theory (HQET) [4], which describes the strong in-
teractions of a heavy quark with gluons and light quarks
at low energies. If one considers the masses of the b

and c quarks to be much larger than the QCD scale,
AgcD, one 6nds that the dynamics of the light quarks
and gluons coupled to a b or a c quark become indepen-
dent of this heavy quark s Bavor and spin. In this limit,
QCD exhibits a new SU(4),~;„&&6 „,syminetry, known
as heavy-quark symmetry, which acts on the multiplet
(c g, c $, b g, b $). This symmetry simplifies consider-
ably the description of the decays of hadrons containing
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(&'(p') IQ'~" Ql&(p))
MpMp

+(v —v')" Ii ((u; mq, mq ), (1)

where v( ) = P& )/Mp~ &I u = v v' = (Mp2 + Mp2, —
q )/2MpMp and mq~ ~

is the mass of Q( ).
In the limit of exact heavy-quark symmetry, the two

form factors become independent of the masses of the
initial and final heavy quarks and

h (u);mq, mq )
—= 0,

Ii+((u; mq, mq )
—= ((ur), (2)

where ((~) is an Isgur-Wise function of the type de-
scribed above, whose exact functional form only depends
on the quantum numbers of the light spectator antiquark.
The only change we make to these quantum numbers in
the present paper is to vary the light-antiquark mass.
For simplicity of notation, this dependence will be left
implicit unless stated otherwise.

For heavy quarks of finite mass, there are two sources
of corrections to the simple results of Eq. (2). The first is
hard-gluon exchange between Q and Q' across the vector
current vertex. The second results from the modifica-
tions of the vector current and meson states by higher-
dimension operators in HQET. These latter corrections

a heavy quark. For instance, the 20 form factors required
to describe the semileptonic decays B~,~

—+ D~, ~/v and

B~,~
m D~ ~/v as well as the elastic form factors of B~*~~

and D *
mesons can all be expressed in terms of two

(8) )

universal form factors, („g and („known as Isgur-Wise
functions [3], which parametrize the nonperturbative dy-
namics of the light degrees of freedom. („g describes the
decays of mesons containing a heavy quark and a u or
d antiquark, and (, describes the decays of mesons con-
taining a heavy quark and an s antiquark. Moreover,
heavy-quark symmetry requires these Isgur-Wise func-
tions to be 1 when q, the square of the four-momentum
transfer, is maximum [3].

In an earlier work [5], we obtained the Isgur-Wise func-
tions („g &om a lattice study of elastic D meson scatter-
ing. A similar approach, but with a di8'erent lattice ac-
tion, was taken by Bernard et al. [6] and led to very sim-
ilar results. In the present paper, we extend our earlier
work to include decays of the form P -+ P'/v, where P~ ~

is a heavy-light pseudoscalar meson composed of a heavy
quark Q( ) with a mass around that of the charm quark,
and a light antiquark q. These processes are described
by matrix elements of the vector current Q'p~Q. These
matrix elements can, in turn, be decomposed in terms of
two form factors, h+(u;mq, mq ) and 6 (ur;mq, mq ),
given by

are proportional to inverse powers of the heavy-quark
masses. Thus, we have

h'(~, mq, mq ) = [a' + P'(~; mq, mq )
+p'(u); mq, mq )]tc((u),

for i = +, —, where n+ = 1, a = 0, p' represents the ra-
diative corrections and p', the power corrections. It is im-

portant to note that these two corrections incorporate all
of the heavy-quark mass dependence of the form factors
h'. As defined in Eq. (3), the Isgur-Wise function, ((w),
is renormalization-group invariant [7] and normalized to
one at zero recoil as required by heavy-quark symmetry

((1) =1.

TABLE I. Physical heavy-quark masses corresponding to
diferent values the heavy-quark hopping parameter
They are obtained from the corresponding chirally extrap-
olated pseudoscalar and vector meson masses, as described in
Eq. (26). For completeness, we also tabulate these chirally
extrapolated masses in lattice units (a —2.7 GeV [12]).
They were obtained by covariant linear extrapolation of the
masses M~ and M~ obtained at three values of the light an-
tiquark hopping parameter: Kq ——0.14144, 0.142 26, 0.142 62.
The pseudoscalar meson masses were computed as described
in Sec. II D, while the vector meson masses were obtained as
in [12], with a fitting range ll ( t ( 23.

Kg
0.121
0.125
0.129
0 ~ 133

Mpx

0.874 3
0.773+3
0.665+3
0.547+'

Mvx

0.896 4
0.799+'
0.696+
0.588+5

mo (GeV)
1.90
1.64
1.36
1.06

The radiative corrections can be evaluated analyti-
cally in QCD since they are perturbative. To quan-
tify them, we use Neubert's short-distance expansion
of heavy-quark currents [7]. He considers semileptonic
B —+ D/v and B + D*/v decays and computes radiative
corrections to the corresponding heavy-quark matrix ele-
ments to order o., as a function of m and mg. His calcu-
lation improves the previous leading logarithmic evalua-
tion of these corrections [8] in two ways: first, he includes
next-to-leading logarithms in running the O((rn, /mi, ) )
heavy-quark operators &om mp down to scales at which
HQET can be safely used, and second, he obtains, to
order n„ the full dependence of the heavy-quark cur-
rent on the mass ratio z = rn, /mi, The su.m of these
new contributions is as large as the leading logarithmic
term. Corrections to Neubert's computation are of or-
der n, (z lnz) with n = 0, 1, 2 and should be smaller
than 1%. The fact that Neubert's result accounts for the
full order o., dependence of the heavy-quark current on
the mass ratio z is important for us, because our range of
heavy-quark masses is quite small (see Table I): z ranges
from 0.6 to 1.

The subscript s is used to distinguish mesons in which the
light, spectator antiquark is 8 from those in which it is either
'll or d. Neubert runs the O(m, /mg) contribution at one loop.
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P+(1;mg, mg) = 0,
p+(1;mg, mg) = 0

P ((u; mg, mq) —= 0,
(u); mg, mg ) = 0,

(5)

where the last two equations hold for all u.
Our results come &om a quenched simulation on a

24s x 48 lattice at P = 6.2 on a sample of 60 gauge
field configurations [11].The lattice has an inverse lattice
spacing of around 2.7 GeV [12]. We do not suffer much
here &om errors associated with uncertainties in the de-
termination of the lattice spacing since our main results
are dimensionless and depend at most logarithmically on
the scale. Our light quarks have masses which bracket
the strange quark mass. Because our heavy quarks have
masses in the region of the charm-quark mass which are
large in lattice units (up to one-half or more), we must
contend with discretization errors proportional to powers
of amp, where mg is the mass of the heavy quark. In or-
der to reduce these discretization errors, we use the O(a)-
improved fermion action originally proposed by Sheik-
holeslaini and Wohlert [13] with which discretization er-
rors in operator matrix elements and hence in our form
factors are reduced from O(amp) to O(a, amp) [14].

The remainder of the paper is organized as follows. In
Sec. II, we present the details of our simulation, as well
as our strategy for obtaining the form factors h+ and h
&om the calculated three-point functions. In Sec. III,
we discuss discretization errors and describe a procedure
which enables us to subtract some of these errors nonper-
turbatively. In Sec. IV we present our results for the form
factors h+ and h for three values of the light-antiquark
mass and all available initial and 6nal heavy-quark com-
binations. We also extrapolate 6+ in the light-antiquark
mass to the chiral limit, and interpolate it to the strange
quark mass. In Sec. V, we study the dependence of h+
and 6 on heavy-quark mass and attempt to extract the
leading power corrections. We 6nd that 6+ displays no
measurable dependence on heavy-quark mass which en-
ables us to conclude that this forxn factor is an Isgur-

The power corrections are proportional to powers of
&&i ~

——A/(2m&~ & ) where A is the energy carried by the
light degrees of &eedom in the mesons. A will of course
depend on what these light degrees of &eedom are. In
what follows, we will use A = Ax ——500 MeV [9] when
working with light degrees of &eedoxn with spin 2 and
isospin 2. Because e( ) 6 for the heavy quarks we are
considering, we would naively expect power corrections
in h+(u) and h (u) to be of order 15—30%%up. These cor-
rections are difficult to quantify because they involve the
light degrees of &eedom and are therefore nonperturba-
tive. Luke's theorem [10],however, guarantees that there
are no O(eg) corrections to h+(u) at zero recoil and one
may expect that power corrections to h+ remain small
away &om zero recoil. This is not expected to be true
for 6 which is not protected by Luke's theorem.

For degenerate transitions where Q = Q', conservation
of the vector current Qp"Q provides further constraints
on the radiative and power corrections:

Wise function once radiative corrections are subtracted.
In Sec. VI, we study the dependence of h+ on the light-
quark mass and extract the Isgur-Wise functions („g and
(,. We find that the slopes of these functions at u = 1
are

4 ~(1) = —[o 9+-'(stat)':(syst)]

and

(,'(1) = —[1.2+ (stat)+ (syst)] .

= 3.2+2(lat) + 1.0(hqs)I'(B ~ Dtv)
(8)

D:"' = 3.3",(l.t) + 1.0(h,.),r(8, ~D.i~)
=

where the first set of errors was obtained by adding our
lattice statistical and systematic errors in quadrature and
the second set of errors, denoted by hqs, quanti6es the
uncertainty due to neglected power and radiative correc-
tions. We con&ont our predictions for these branching
ratios and ratios of widths with experimental measure-
ments where available and 6nd that they compare quite
favorably. Finally, in Sec. IX we present our conclusions.

II. DETAILS OF THE CALCULATION

A. Lattice action and operators

Since we are studying the decays of quarks whose
masses are large in lattice units, we must control dis-
cretization errors. In order to reduce these errors, we use
an O(a)-improved fermion action originally proposed by

We thus observe a slight decrease in the magnitude of
the slope with light-antiquark mass; given the errors,
however, the signi6cance of this observation is limited.
We compare our results for these Isgur-Wise functions
to other theoretical as well as experimental determina-
tions. We 6nd excellent agreement with experiment. In
Sec. VII, we use our Isgur-Wise function $ g to extract
the CKM matrix element V b &om diferent experimental
measurements of the differential decay rate for B ~ D'/v
decays. Our results for ~V,s~ are summarized in Table
XVII and are compared to other determinations of this
matrix element. Our procedure for extracting ~Vs~ dif-
fers from that proposed by Neubert [15] in that we fix
the u dependence of the difFerential decay rate with our
calculation instead of obtaining it &oxn experiment. This
enables us not only to extract ~Vs~ with no free param-
eters, but also to check the validity of nonperturbative
@CD against experiinent. We find that the u depen-
dence predicted by our calculation agrees very well with
the results of the ALEPH [16] and CLEO [17] Collabo-
rations. In Sec. VIII, we use („g and $, to compute the
branching ratios for B~,~

~ D~,~lv and B~,~
—+ D~,~lv

decays, and our results are summarized in Table XVIII.
We also compute ratios of semileptonic widths and 6nd
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Sheikholeslami and Wohlert (SW) [13], given by

where S&~ is the Wilson action:

Following the discussion in [18], we choose Ks = 0.25
and use the parameter N to control the smearing radius,
defined by

The leading discretization errors in matrix elements for
heavy-quark decays obtained &om numerical simula-
tions with the fermion action Eq. (10) are reduced &om
O(amp) to O(n, amp) and O(a2m&2), provided one also
uses improved" operators obtained by "rotating" the
field of the heavy quark Q:

(12)

Thus, to obtain an O(a)-improved evaluation of the ma-
trix element of Eq. (1), we use a "rotated" vector current

We use N = 75, giving r —5.2.
In terms of the operator Q of Eq. (15), the spatially

extended source J~ we use to create pseudoscalar mesons
composed of a heavy quark Q and a light antiquark q is
given by

where

(14)

and where the subscript I indicates that Vl is an im-
proved lattice current.

B. Extended interpolating operators

In order to isolate the ground state in correlation
functions effectively, it is useful to use extended (or
"smeared") interpolating operators for the mesons. In
this study we use gauge-invariant Jacobi smearing on the
heavy-quark field (described in detail in [18]), in which
the smeared field, qs(x, t), is defined by

C. Three-point functions and lattice form factors

&s ( ) p ~ q)g-+Q'

xiy
e '~ e ' "(JJ (ty, y)Vf (t, x)Jzt(0, 0)), (20)

The computation of the matrix ele-
ment (P'(p')Iq'p"QIP(p)) proceeds along lines similar
to earlier calculations of the electromagnetic form factor
of the pion and to determinations of the form factors cor-
responding to semileptonic decays of the D meson into
light mesons. (For recent reviews of lattice coinputations
of weak matrix elements and references to the original
literature see, for example, the reviews in [19].) Thus,
we calculate the three-point correlator

where

x'

N

K(x, x') = ) K"6"(x, x')

where J~ is the spatially extended interpolating field for
P defined in Eq. (19), VI" is the O(a)-improved vector
current of Eq. (13), and p = q+ p'. To evaluate these
correlators, we use the standard source method reviewed
in [20].

Provided the three points in the correlator of Eq. (20)
are sufBciently separated in time, the ground-state con-
tribution dominates and

t, tf —taboo 4E~Ep,

where EJ (E~~) is the energy of the initial (final) meson and Zy (p ) is the matrix element (Ol J~(0)IP(p)). To cancel
the above time dependence, we normalize the three-point function by two two-point functions and consider the ratio

(22)

where
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C, (t, p)g
—= ) ' '"(Jr (t, x)Jt (0)) (23)

~2(t, p)~ - ~( 'e ~ ~~2cosh[E~(T/2 —t)] .P g (24)

Here, T is the temporal extent of the lattice. [For t « T/2, exp( —E~T/2) cosh[E~(T/2 —t)] m 2 exp( —E~t).] Thus,
in terms of the form factors defined in Eq. (1),

p, . I 1
M M'R"(t;p, q)q ~, M M

X ((v + v') "hi+~ (w; mg, mg ) + (v —v') "hi, (ai; mg, mg )),

where 6&+~ are related to the continuum form factors, h+,
by a multiplicative renormalization, up to discretization
errors, as discussed in Sec. III.

To obtain the desired form factors, we fit the ratio B'"
of Eq. (22) to the asymptotic form of Eq. (25) by mini-
mizing, with respect to the parameters 6&+t and h& t, a y
function which takes into account correlations between
the difFerent times (labeled by t), but not between the dif-
ferent equations (labeled by p). We neglect correlations
between equations, because spatial and temporal compo-
nents of Eq. (25) may be afFected difFerently by discretiza-
tion errors, as we discuss at the end of Sec. III C. The y
value that we quote indicates not only whether our ratios
B~ are asymptotic, but also whether the decomposition
of R" in terms of hI+~(~) and hI t(u) is good. In fit-
ting the ratio A~, we Gx the wave-function factors Z&(t),
the energies, E&(), and masses, MJ,(), of the mesons to
the values obtained &om a fit of the relevant two-point
functions to the asymptotic form of Eq. (24), taking into
account correlations in time.

We first obtain Iri+i(w) from the time component of
Eq. (25) alone, assuming that the contribution propor-
tional to hI i(a~) can be neglected. This approximation is
exact, up to discretization errors, for degenerate transi-
tions, i.e., transitions in which the initial and final heavy
mesons are the same, and true up to radiative and power
corrections for nondegenerate transitions, i.e., transitions
between mesons which contain the same light antiquark,
but difFerent heavy quarks [see Eq. (5)]. For these non-
degenerate transitions we can get a posteriori some idea
of the size of the contribution of hI, (~) to the time com-
ponent of Eq. (25). Holding hI+t(u) fixed to its tirne-
component value, we use all nonvanishing components of
Eq. (25) to obtain kI, (~). We find (see Sec. IVA) that
hI t(m)'s contribution to the time component of Eq. (25)
is less than about 1%, thereby justifying the approxima-
tion we make in obtaining 6+(tu)I i.

D. Lattice parameters and details of the analysis

We compute the three-point function of Eq. (20) for
four values of both the initial and final heavy-quark hop-
ping parameters, Kg and Kg taken &om 0.121, 0.125,
0.129, 0.133 (see Table I); three values of the light-

I I I I I I I I I

&DIv

1.0—

0.5—

0.0

cq~cqe 0.129I 4&~0.14144

I I I I I I I I I

10 80

FIG. 1. The ratio R (t), up to constant factors, vs t for the
case where the initial meson has momentum (0,0,0) and the
final meson, momentum (s'/12a, 0, 0). Here, the initial and
final heavy-quark hopping parameters are mg ——+~I ——0.129
while the light-quark hopping parameter is K~ = 0.14144.
The solid line is obtained from our fit of R (t) to the asymp-
totic form of Eq. (25). The dashed lines indicate the errors of
this 6t.

antiquark hopping parameter, K~ (0.141 44, 0.142 26,
0.14262); two values of the initial meson momentum
[(0,0,0) and (1,0,0) in lattice units]; and ten values of
the momentum carried by the vector current [qa(12/vr)
=(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1),
(0,1,1), (1,-1,0), (-1,0,1), (0,1,-1)]. To improve statis-
tics, we average the ratios of Eq. (22) over all equiva-
lent momenta. Moreover, data with initial or final mo-
menta greater than vr/12a are excluded because they have
larger systematic and statistical uncertainties. Finally,
we choose tf, the time at which the final Ineson is de-
stroyed [see Eq. (20)], to be half-way across the lattice
(i.e., tf. ——24) and symmetrize the three-point functions
about that point using Euclidean time reversal, also to
reduce the statistical errors.

We observe a plateau in the ratio R"(t) of Eq. (22)
around t = 12, typically extending over five time slices.
Therefore, we fit the ratio R"(t) over the range t
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TABLE II. Wave-function Z and energies EI for our heavy-light, pseudoscalar mesons and for
two values of moxnentum IpI. The energies are quoted in lattice units (a 2.7 GeV [12]). The
y /Xnp for the fits which give these results are all on the order of 1.

0.121 0.125 0.129 0.133
Kq

0.14144
Ix I

0 179 5
vr/12a 12.3+s

O.924+;
0.958+

q

Z2

16.3+;
11.4+45

gp
O.823+;
0.816+2

Z2

14.5+~4

10.3+45

g~
0.716+2
0.760+2

Z2

12.4+;
9 0+

g~
o.6oo+;
0.653+3

0.142 26 15.5+5 0.901+~ 14.2+', O.8OO+', 12.7+4 0.692+~ 10.8+3 0.575+2

7r/12a 10.5+s 0 937+ 9 7+ 0.840+3 8.8+ 0 739+ 7.7+3 0.631+3

0.142 62 0 14.7+q 0.892+4 13.5+6
s'/12a 9.8+s 0.928+4 9.1+

0.791+3 12.0+5 0.683+~ - 10.3+4 0.565+2
0.832+ 8.3+ 0.730+ 7.3+ 0.623+

ll, 12, 13 to the form given in Eq. (25) for all momentum
and heavy-quark mass combinations. For the purpose of
illustration we plot, in Fig. 1, the ratio R4(t) vs f, for the
case where the initial xneson has momentum (m/12a, 0, 0)
and the final meson, momentuxn (0,0,0). We fit the two-
point functions to the asymptotic form of Eq. (24) in the
range t = 11—22. The results of these later fits are given
in Table II.

Statistical errors are obtained from a bootstrap pro-
cedure [21]. This involves the creation of 200 bootstrap
samples &om the original set of 60 configurations by ran-
domly selecting 60 configurations per sample (with re-
placement). Statistical errors are then obtained from the
central 68% of the corresponding bootstrap distributions
as detailed in [11].

Use of the HABET implies a choice of the expansion
parameter, mq, and this requires some care [22,23]. We
define mg as follows:

—1

mq = (3M' + Mix) —A„,
4

(26)

TABLE III. P+ (u) vs u for all combinations of initial and
6nal heavy-quark mass.

Kg ~ Kgx

0.121 + 0.121
0.122 -+ 0.125
0.121 -+ 0.129
0.121 m 0.133
0.125 m 0.125
0.125 m 0.129
0.125 + 0.133
0.129 m 0.129
0.129 m 0.133
0.133 m 0.133

1.0
0

O.G17
0.037
0.063

0
0.024
0.055

0
0.039

0

1.1
—0.025
—0.008
0.013
0.040

—0.023
0.001
0.033

—0.022
0.017

—0.019

1.2
—0.047
—0.030
—0.009
0.018

—0.045
—0.021
0.012

—0.042
—0.003
—0.038

1.3
—0.068
—0.051
—0.030
—0.002
—0.065
—0.041
—0.008
—0.061
—0.022
—0.055

1.4
—O.G88
—0.071
—0.050
—0.022
—0.085
—0.060
—0.027
—0.079
—0.039
—0.071

where M& and M& are the relevant, chirally extrapolated
pseudoscalar meson and vector meson masses in lattice
units (see Table I). Since these masses correspond to
heavy-light mesons whose antiquark is massless, the light
degrees of freedom carry an energy A~ = 0.50 GeV as
discussed after Eq. (4).

In Tables III and IV, we tabulate the results that we
obtain for the radiative corrections, P+(u; mq, mq ) and
P (u;mq, mq ), of Eq. (3) for various combinations of

the heavy-quark masses and for a few values of u. As
mentioned in Sec. I, we determine these corrections with
the help of Neubert's work [7]. Since our results for the
form factors are obtained in the quenched approximation,
we set the number of quark Bavors to zero and assume
no particle thresholds in Neubert's expressions.

III. 2, DISCRETIZATION ERRORS AND HOW
TO SUBTRACT THEM NONPERTURBATIVELY

TABLE IV. P (u) vs u for all combinations of initial and
6nal heavy-quark mass.

KQ ~ Apl

0.121 + 0.121
0.121 + 0.125
0.121 + 0.129
0.121 m 0.133
0.125 m 0.125
0.125 + 0.129
0.125 m 0.133
0.129 -+ 0.129
0.129 -+ 0.133
0.133 + 0.133

1.0
0

0.001
—0.003
—0.014

0
O.GOO

—0.008
0

0.001
0

1.1
0

0.000
—0.004
—0.016

0
—0.001
—0.009

0
—0.002

0

1.2
0

—0.001
—0.005
—0.017

0
—0.001
—0.011

0
—0.004

0

1.3
0

—0.001
—0.006
—0.019

0
—0.002
—0.012

0
—0.005

0

1.4
0

—0.002
—0.007
—0.021

0
—0.003
—0.014

0
—0.006

0

There is, in fact, no rigorous way of running quenched lat-
tice +CD results since the lattice cutofF a is adjusted to
incorporate in part the effects of quenching.

For this estimate, we use the boosted value of the coupling
constant gb, i ——(SK „.i) g 1.66 and the improved bare
mass defined before Eq. (33) with sex = 0.129.

Throughout this study of semileptonic weak decays
of heavy mesons, we use an O(a)-improved fermion ac-
tion and take for the lattice vector current, the "im-
proved" operator Vl" of Eq. (13), as discussed in Sec. II A.
In concrete terms, this means that we expect mass-
dependent discretization errors to be of O(n, amq) 5'%%uo

and O((amq)2) 10% at the charm xnass4 instead of
O(amq) 40'%%uo and O((amq) ) 10% as they would be
without O(a) improvement. Thus, despite the improve-
ment expected, discretization errors in our calculation
could be significant.

Discretization errors in the lattice evaluation of the
matrix element of Eq. (1) can be parametrized as
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+(v —v')" [1+d (u))]h ((u) + O(a ), (27)

A. Determination of S&

To study discretization errors, we define an effective
renormalization constant Z& for vector currents com-
posed of degenerate quark fields (i.e. , of the form qp"q)
by

1 C2(tf,.P)
2 Cs4(t; p, 0) (28)

for tf = T/2, where T is the temporal extent of the
lattice, Cg and tf are defined in Eq. (20) and Cz in
Eq. (23). In the absence of discretization errors, Eq. (28)
yields a very accurate nonperturbative determination of
the renormalization constant Z~. To see that the ratio
of Eq. (28) is in effect Zv, one must use the fact that
the forward matrix element of the temporal component
of the vector current is the charge, up to a trivial normal-
ization factor. The factor of 2 comes &om our boundary
conditions [see Eq. (24)]. Unless stated otherwise, we
will take p = 0. In the presence of the discretization er-
rors described in Eq. (27), however, the ratio of Eq. (28)
becomes

= Zv [1 —d+(1) + O(u')] .

where Z~(a, (a)) is the usual renormalization constant
which relates the lattice vector current to the continuum
one. 5 Because this constant describes physics that takes
place above and around the lattice cutofF, it is perturba-
tive and independent of the initial and final states.

In Eq. (27), d and d are the Euclidean-invariant dis-
cretization errors to all orders in a. At O(a ) the hyper-
cubic group allows for additional errors which depend on
the Lorentz index of the vector current. The discretiza-
tion errors are nonperturbative and depend on the initial
and final states, because they correspond to matrix ele-
ments of higher-dimension operators which are artifacts
of lattice regularization. In addition, they depend on
the procedure used to cancel all the factors which relate
the three-point function to the matrix element [see Eq.
(21)]. We adopt the expedient of assuming that we can
absorb the Euclidean-invariant discretization errors into
an effective renormalization constant Z&+.

In the remainder of this section, we will at tempt to
quantify the discretization errors in our calculation more
precisely and describe a procedure which enables us to
subtract them, at least partially.

light-quark fields, between pseudoscalar states composed
of degenerate, light quarks and antiquarks where we ex-
pect Z& to be close to Z~. Using 10 gluon configurations
from our simulation at P = 6.2, we find [24]

Zv+ = 0.8314(4) at K = 0.14144,
ZP = 0.8245(4) at r = 0.14226,
Zp = 0.8214(6) at K = 0.142 62 . (30)

as our best estimate for Zv. This value is also consistent
with the expectations &om one-loop perturbation theory
[25]:

Zi = 1 —0.10g + O(g ) 0.83 at P = 6.2 (32)

when evaluated using the boosted value of the coupling
constant, obtained &om the mean field resummation of
tadpole diagrams [26].

We now turn to the evaluation of Zv. using Eq. (28) for
degenerate heavy-quark currents between pseudoscalar
mesons consisting of a heavy quark Q and a light an-
tiquark q. The results and, in particular, the difFer-
ence f'rom the value in Eq. (31), give us a measure of
the size of the discretization errors. In Table V, we
present the results for Z&, obtained &om the simu-
lation at P = 6.2 for four values of the heavy-quark
mass, and with the light-quark mass corresponding to
K~ = 0.14144, and from a simulation at P = 6.0 for
three values of the heavy-quark mass and with the light-
quark hopping parameter equal to 0.144.6 Also tabulated
are estimates of the improved, bare mass of the heavy
quark, m~&, defined by am& ——amp[1 —(z)amp], where

TABLE V. Values of the effective normalization constant
Z& as a function of the improved bare mass of the heavy
quark. The value of m~ is 0.14144 at P = 6.2 and 0.144 at
p = 6.0.

Kg
0.133
0.129
0.125
0.121

P =6.2
Ima

0.231
0.310
0.379
0.435

Zv (Kg)
0.8S13
0.9177+~
0.9428+2
0.9659+'

Kg
0.12S
0.125
0.120

P =6.0
Im&a

0.344
0.405
0.464

Zi, (~g)
0.920+
0.945+i
0 973+2

These results confirm that discretization errors are
small for light quarks (less than about 2%), and we take

Zv = 0 82(1)

We start the discussion with a review of the deter-
minations of Z&+ for currents composed of degenerate

It is important to note that similar discretization errors are
present for all definitions of the current, even the conserved
current away from the forward direction.

The simulation at P = 6.0 was performed with 36 quenched
gauge field configurations on a 16 x 48 lattice using the O(a)-
improved SW action of Eq. (10). For details of the simulation,
please see [27].
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FIG. 2. Values of Z& as functions of ma. The solid lines
represent fits to quadratic functions of ma for the data at the
two different values of P. We have also plotted the light-quark
values of Z& given in Eq. (30) but have not included them
in the fit.

Zv (eg) = A + Bm&a+ C(m&a)

am@ = (-,')(I/~~ —1/K.„,).
In Fig. 2, we plot the results for Z&+ as a function of

mr&a for the two values of P. Fitting this behavior to a
quadratic function of mra,

C2(tf p)
2Ep(p ) Csi(t;p, 0)

' (34)

for p = (vr/12a, 0, 0) and ty = T/2 and where Ep(p ) is
the energy of the meson with momentum p. Now it is no
longer the charge operator which appears in C3, and the
statistical errors increase significantly (see Fig. 3). The
values of ZP given by Eq. (34) are consistent with those
obtained with p = 4 to within 1.5 standard deviations.

we find A = 0.814(2) [A = 0.791(4)], B = 0.342(12)
[B = 0.397(18)], and C = —0.072(18) [C = —0.120(20)]
at P = 6.2 (P = 6.0). These fits are excellent. It is in-
teresting to note that the results extrapolate to approxi-
mately 0.81 (0.79) in the chiral limit and are thus in good
agreement with the values determined using light quarks
as can be seen in Fig. 2 where we have also plotted the
light-quark values for ZP given in Eq. (30). This fact
together with the observation that the size of the mass-
dependent efFects for a given am is very similar at the
two values of P gives us confidence that the mass depen-
dence we observe is indeed due to discretization errors.

Further results from the simulation at P = 6.2 are
presented in Table VI and in Fig. 3. For Kg ——0.129 and
0.121 we have evaluated Zv (Icy) at three values of the
mass of the light quark. The results can be seen to be
practically independent of the mass of the light quark.
We have also evaluated ZP using Eq. (28) with p
(vr/12a, 0, 0) and ic~ = 0.14144.rThe difference between
the results obtained with p = (m /12a, 0, 0) and with p =
0 is less than l%%uo. Finally, we have determined Zv (eq)
using

TABLE VI. Values of Zv for difFerent choices of the Lorentz index p, , momenta p in units ofa, and light-quark masses (given by K~) from the simulation at P = 6.2.

p —4

p —4
p, =4,
@=4,

p=o
p=0
p=0
p=0

p and p

0.133
0.129
0.125
0.121

]cq ——0.141 44
0.8913+
0.9177+
0.9428+2
O.o65o+',

zeff
V

Kq
——0.142 26

0.9168 4

0.9656+6

Kq
——0.142 62

O.O165+'

0.9658+11

p = 4, p = (s/12, 0, 0)
p = 4, p = (s/12, 0, 0)
p = 4, p = (Ir/12, 0, 0)
y, = 4, p = (s/12, 0, 0)

0.133
0.129
0.125
0.121

0.8976+
0.9248 7
0.94O8+',
0.9729 0

0.9242+

0.9734+

0.9240 24

o.o746+",,
Ii = 1, p = (s/12, 0, 0)
p, = 1, p = (s/12, 0, 0)
p = 1, p = (s/12, 0, 0)
p = 1, p = (s/12, 0, 0)

0.133
0.129
0.125
0.121

0.949+56
0 O94+57

1.042+5637

084+60

0.982+

1-089+116

0.924+—118

1.059+—160

The statistical errors in Zv (eg) are tiny, due to a cancellation in the ratio (28) of the fluctuations in the numerator
and denominator. In order to get such a dramatic cancellation of the Buctuations it is necessary to have precisely the same
moinentum in the numerator and denominator. If, for example, we take p = (s /12a, 0, 0) in Cs but average over all six equivalent
momenta in C2, ((+s/12a, 0, 0), (0, +n/12a, 0), (0, 0, +s/12a)), then the statistical error in the ratio increases enormously.
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FIG. 3. Values of Zv (mq) obtained from the simulation at
P = 6.2 at difFerent momenta and Lorentz indices. The three
curves are quadratic fits to the three sets of data.

B. Implications of the results for Z&+

C. Nonperturbative subtraction of am' errors

Having isolated and quantized the different sources of
discretization errors, we now investigate the possibility
of subtracting these errors. It is important to remem-
ber that these discretization errors are given by matrix
elements of higher-dimension operators: they are nonper-
turbative and will depend on the initial and final states

The results for ZfP (rq) with p = 0 presented above
differ &om the value of Z& given in Eq. (31) by about
10—20% for the range of quark masses used in our simula-
tions (for Icq = 0.129, which corresponds approximately
to the charm quark for both values of P, the difference is
about 12%). This difFerence is a good indication of the
size of mass-dependent discretization errors in our cal-
culation; it is consistent with our expectation that they
should be of O(a, amq) and O(a2mq2).

Our results for Z& also enable us to quantify the de-
pendence of discretization errors on momentum as well as
on the Lorentz component of the current used to obtain
them. As noted in the previous subsection, the differ-
ence between the results obtained with p = (vr/12a, 0, 0)
and with p = 0 is less than 1%. This is a clear in-
dication that as long as we limit ourselves to momenta
p such that ~p~ & vr/12a, discretization errors propor-
tional to ap are small. As for the dependence of Z~
on the Lorentz index of the current, the situation is less
clear. The ratio ZP(0. 121;p, = I)/Zv (0.121;y, = 4) for

p = (vr/12a, 0, 0) indicates that this dependence could
be as large as 11%. However, given that the statistical
errors on Zi, (0.121;p = 1) are quite large, much of this
dependence could be a statistical fj.uctuation.

where I'" is defined in Eq. (14).
Second, we find a normalization condition, i.e., a kine-

matical point at which we know the physical value of the
matrix element. For the case of degenerate transitions,
this normalization condition is simple; electromagnetic
charge conservation requires that h+(I;mq, mq) = 1.
For the case of nondegenerate transitions, the normal-
ization condition is slightly more complicated. HABET
requires, as we saw earlier, that

h+ (1;mq, mq ) = 1+p+ (1;mq, mq ) +p+ (1;mq, mq ) .

The radiative corrections, P+(1;mq, mq ), we know
&om perturbation theory. The power corrections,
p+(I; mq, mq ), are nonperturbative and are yet to be
determined in a model-independent and reliable way. We
are, however, helped here by Luke's theorem which guar-
antees that h+(I;mq, mq ) is free of corrections pro-
portional to a single power of the inverse heavy-quark
masses. Thus, p+(1;mq, mq ) eq q, + O(eq q, ) and
is small. In fact, as we shall see shortly, the exact size
of p+(I; mq, mq ) is not important for determining the
Isgur-Wise function. Thus, we will take our normaliza-
tion condition to be

6+ (1;mq, mq ) = 1 + P+ (1;mq, mq ) (36)

for both degenerate and nondegenerate transitions.
This condition determines Z& . With Z& defined by

Eq. (35) we find

1+P+(1;mq, mq )
nI+, (I;mq, mq, )

(37)

where hI+t(1; mq, mq ) is the zero-recoil form factor ob-
tained &om our lattice calculation and the O(a2) stands
for discretization errors which are not Euclidean invari-
ant. Because, as we mentioned earlier, discretization er-
rors made in the evaluation of a matrix element depend
not only on the initial and final states considered, but
also on the procedure used to obtain the matrix element,
it is very importaiit to obtain hI t(1;mq, mq~) with a
procedure as similar as possible to the one used to obtain
h+(~; mq, mq ) for ~ g 1. Thus, we get hi+~(1; mq, mq )
&om the tiine component of the ratio of Eq. (22) with
p' = g = 0. For degenerate transitions, there is an-
other zero-recoil channel, which corresponds to the for-
ward scattering of a meson with one unit of lattice mo-
mentum. We do not use the hI+t(1) from this channel
to determine Z& because it is statistically much noisier

between which the current VI is sandwiched. This means
that in any attempt to subtract them, one must evaluate
the relevant corrections with states as similar as possible
to the ones which appear in the matrix element of inter-
est. With this in mind, we have devised the following
subtraction procedure.

First, as mentioned at the beginning of Sec. III, we
assume that the mass-dependent discretization errors can
be absorbed into an overall effective normalization:

,
) [q,p„q[~( ))

( '(p') Iq'~" qI (p)) (35)
ZP(aM~, aMI, p, )
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than the one at zero momentum, and because it does not
correspond to a zero-recoil transition in the nondegener-
ate case.

Now, to subtract the discretization errors that Z& in-
corporates, we simply define the continuum form factors
to be

h+((u;mg, mg )

hi+, (1;mg, mg )
'

h (u), mg, mg )

:—[1+P+(1;mg, mg )] + . (38)h+, (1;m, m ~)

This definition yields

h+ (ur; mq, mq ) [1 + P+ (ur; mg, mg )

+p+((u;mg, mg ) —p+(1;mq, mg )
+d+(u); mq, mq )
—d+(1; mg, mq )](((u)

(39)

up to higher-order discretization errors, radiative and
power corrections. It is clear from Eq. (39) that part
of the discretization errors have been subtracted. The
subtraction is only complete, however, if d+(u) is a con-
stant. For the form factor h (u) it is less clear that we
are subtracting the relevant discretization errors. Indeed,
according to the definition of Eq. (38) the discretization
errors in h are [d (ur) —d+(1)]+O(a ). However, the as-
sumption behind this subtraction is the same as the one
made by I epage, Mackenzie, and Kronfeld [28] in their
attempt to remove discretization errors by modifying the
normalization factors which match fermion fields to their
continuum counterparts.

We wish to emphasize here that our subtraction proce-
dure removes nonperturbatively all discretization errors
which do not break Euclidean invariance and does so to
all orders in a. Thus, amongst others, all discretization
errors which are removed in mean-Geld theory by the
procedure of Kronfeld, I epage, and Mackenzie will be
removed nonperturbatively by our procedure.

As Eq. (39) indicates, in subtracting discretization er-
rors in h+, we also subtract the zero-recoil power cor-
rections, p+(1), thereby losing the ability to determine
them. This is not a serious concern in practice because
these ought to be small —they are proportional to the
square of the inverse heavy-quark mass —and therefore
dificult to isolate reliably. It does mean, however, that
even if we can reduce all of our errors to the percent
level, we will be unable to obtain the zero-recoil power
corrections to the form factor h~, relevant for B —+ D'lv
decays if we use an analogous subtraction procedure for
these decays. This is unfortunate because these 1/m,

corrections are one of the dominant theoretical uncer-
tainties in the extraction of the CKM matrix. element V ~

from experimental studies of these decays (see Sec. VII).
For obtaining the Isgur-Wise function, however, the

fact that our normalization procedure subtracts these
zero-recoil power corrections, which are nonperturbative
and difficult to quantify, is an advantage. Our hope is
that, once these corrections are subtracted, the result-
ing form factor will have smaller power corrections away
&om zero recoil.

There is one additional issue surrounding normaliza-
tion that we wish to address. As indicated in the previous
subsection, the discretization errors on our three-point
functions are typically larger for spatial than for tempo-
ral channels (see Table VI). Thus, we ought to normalize
spatial and temporal channels differently. For degenerate
transitions, this is possible because there is a zero-recoil
three-point function which has a nonzero spatial com-
ponent: Cg(t;ap = (vr/12, 0, 0), 0))g~g. As mentioned
above, however, this three-point function does not corre-
spond to a zero-recoil decay when Q g Q'. We have no
zero-recoil three-point function with a nonvanishing spa-
tial component for nondegenerate transitions (momenta
are quantized on the lattice). So, in order to treat de-
generate and nondegenerate transitions in the same way,
we will normalize h+ and h as described in Eq. (38).

It is important to note that because h+ is obtained
from the temporal component of Eq. (25) alone (see end
of Sec. II C) and is correctly normalized, it does not suf-
fer &om the possible discrepancy in normalization be-
tween temporal and spatial channels. It is h, obtained
&om both temporal and spatial components, which in
fact will absorb this discrepancy. For degenerate tran-
sitions, where 6 is, in principle, zero, the values of h,

that we obtain are therefore an indication of how large
an error this discrepancy can induce in the form factors.
For nondegenerate transitions, the values of h we ob-
tain, though contaminated to some extent by discretiza-
tion errors, can be used to put bounds on the physical
6

IV. THE FORM FACTORS h+((u) AND h (ru)

A. Results at 6xed light-quark mass

In Tables VII—IX we present the measurements of
h+(ur), h+(u)/[1+P+(u)], and h (u) which we obtain for
all available combinations of the initial and final heavy-
quark masses for light antiquarks with r~ = 0.14144 (Ta-
ble VII), 0.14226 (Table VIII), and 0.14262 (Table IX).
In these tables, the first y /KDF column corresponds to
the Gt which yields h&+& &om the temporal component of
the ratio Ri' assuming hi t(u) = 0. The second y /NDF
column corresponds to the fit which gives hi t(~) from
both temporal and spatial components when holding 6&+t

fixed to its temporal-component value. The number of
degrees of freedom (NDF) that we quote in this second
column depends on the momentum channel because the
number of nonvanishing equations for h, ~

and h, &, varies
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TABLE VII. Results for h+(u), h+(u)/[1 + I9+(cu)] and h (u) obtained with the fitting pro-
cedure described in Sec. IIC. The light-quark hoPPing Parameter is fixed to Kq

——0.14144 and
all heavy-quark mass combinations are presented. Only transitions with initial and final meson
momenta less or equal to vr/(12a) are included.

P h+(~) h+(~)/[1+ P+(~)] Z /NDF y /NDF

(o,o,o)
(1,0,0)
(1,o,o)
(1,o,o)
(1,o,o)

(1,0,0)
(1,o,o)
(o,o,o)
(0,1,0)

(—1,0, 0)

Kg
1.O3V+'

0.995+3
1037+11
1.075+3
1.156+33

= 0.121 —+ Kg~

0.95+1
0.96+44

0 90+
0.86+22

0.78+3

0.121, Kq

O 96+'
O 96+4
0.90+11

0 87+2
0.81+3

= 0.14144
3.6/2
0.5/2
1.0/2
O.4/2
1.6/2

O.12+'
o oo+'

—0.05+2
3+2

0.03+

23.6/5
8.3/6
1.3/5
16.9/8
2.9/5

(o,o,o)
(1,0,0)
(1,o,o)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, 0, 0)

Kq

1.o37+',
Q 997+4
1.Q62+
1.101+3
1.205+3

0.129 m K~I
O.98+',
0.99+5
0.89+1
O 84+'
0.75+33

0.121, Kq

O 96+'
0.96+44

p 87+1
0.83+2
o v5+'

= 0.14144
2.6/2
0.1/2
0.7/2
0.8/2
5.0/2

0.22+
—o 74+4'

0.01 2
o ov+'
Q Q8+2

22.6/5
1.7/5
O.9/S
15.4/8
6.8/5

(0,0,0)
(1,0,G)

(1,0,0)
(1,o,o)
(1,o,o)

(1,o,o)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, 0, 0)

Kg
1.O4V+'

0 995+'
1.037+
1.085+3
1.175+33

= 0.121 m Kgi
0.95+1
0.98+4
0.91+
0 86+2
0.77+2

0.125, Kq

O 95+'
0.96 4
0.91+
0.86+
0.79+3

= 0.141 44
3.9/2
0.7/2
0.7/2
0.2/2
1 1/2

O.O8+'
1.23+9741

—0.07+3
o oo+'
O.O1+;

23.3/5
3.0/5
0.9/5
13.5/8
2.9/5

(o,o,o)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(0,0,0)
(0,1,0)

(—1,0, 0)

Kg
1.O4V+',

O 995+'
1 062+2

1.111+33
1.228+3

= 0.129 + kgb
0 95+
0.98+5
Q 88+1
0.82+2
O.V2+'

0.125, Kq

0 94+
O.96+;
0.87+
0.82
0.74 3

= 0.14144
2.8/2
0.3/2
0.6/2
0.5/2
4.3/2

0 17+
1p+86

0.00 2
0 05
p p6+2

23.3/5
2.4/5
0.7/5
12.6/8
6.5/5

(O,O, G)

(1,0,0)
(1,0,0)
(1,o,o)
(1,0,0)

(0,0,0)
(1,0,0)
(1,G,O)

(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(0,0,0)
(0,1,0)

(—1, 0, 0)

(1,0,0)
(1,0,0)
(o,o,o)
(o,1,o)

(—1, 0, 0)

Kg
1.062+
O.99V+'

p37+1
1.101+3
1.205+3

Kg
1.062+
O 994+4
1.062+22

1.127+4,
1.261+34

= 0.121 m Kgi
0 95+
O 99+'
O 93+'
0.85+
o vv+'

= 0.129 m Kg~

0.91
0.95 4
0.87+1
p 78+2
0.68+2

0.129, Kq

O 93+'
O.g6+44

091
0.84+
o 77+3

0.129, Kq

O 93+'
0.95 4
088
0.81+
0.72+2

= 0.141 44
4.4/2
0.9/2
0.4/2
0.2/2
0.7/2

= 0.14144
3.1/2
1.3/2
0.4/2
0.3/2
3.1/2

0 03+
p 30+38
—0.09+3

p p3+2
—0.01+2

0.11 2
o oo+'
0.02+32

O O2+'
o o4+'

22.5/5
3.8/5
o.s/s
10.4/8
3.0/5

23.4/5
5.1/6
0.5/5
9.9/8
6.0/5

(o,o,o)
(1,0,0)
(1,0,0)
(1,0,0)
(1,o,o)

(1,0,0)
(1,o,o)
(o,o,o)
(0» o)

(—1, 0, 0)

Kg
1.088+2
1.005+44

1 037
1.128+44

1.252+4

= 0.121 +

0 94+
1.00+55

Q.96+1
p 84+2
0.75+3

Kgi ——0.133) Kq

O 9O+'
O 94+'
p g1+1
O.81+'
0.74 3

= 0.14144
5.2/2
1.5/2
0.2/2
0.2/2
0.2/2

—0.03+3
p p6+24

—0.12 3
—O O8+'
—0.04+2

21.9/5
4.3/5
0.3/5
7.7/8
3.3/5

(0,0,0)
(1,o,o)
(1,0,0)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(0,0,0)
(0,1,0)

(—1, o, o)

Kg
1.088+'
0.996+55

p62+2
1 155+
1.351+45

= 0.129 -+
0.92 1
o gv+4

0.90+11

0 78+2
0 67+2

Kgi = 0.1331 Kq

O 9O+'
O.94+;
p 88+1
0 78+2
O 69+'

= 0.14144
3.7/2
2.1/2
0.2/2
0.2/2
1.6/2

0 06+
0 06+5657

—0.06+2
Q 02+2

0.01+

23.7/5
5.0/5
0.4/5
7.4/8
5.4/5
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TABLE VII. (Continued)

(o,o,o)
(1,0,0)
(1,0,0)
(1,o,o)
(1,0,0)

(1,0,0)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, 0, 0)

Kg
1.047+
0.994+3

047+2
1.096+

1g 7+3

= 0.125 —+ Kg~

O.93+',
O.g6+44

088
0 82+22

o.74+',

0 125 Kq

O 95+'
0.96 4
0 89+1
Q 84+2

0.77+3

= 0.141 44
3.4/2
0.9/2
O.7/2
0.4/2
2.4/2

0.12+
o.oo+',

—0.04 2
0.02 2
o o4+'

24.2/5
6.5/6
0.8/5
13.6/8
4.5/5

(o,o,o)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(0,0,0)
(0,1,0)

(—1, o, o)

Kg
1 o47+'
1.000+44

1.O88+32

1 13g+
1.278+44

= 0.133 + Kgl
O.98+',
1 00+
0 88+
P 81+2
0.69 2

0.125, Kq

o 94+'
0.95+4
0 85+1
Q 79+2
o.7o+',

= 0.141 44
2.2/2
0.1/2
0.6/2
0.4/2
6.4/2

O.23+',
—o 46+4'

o.o4+',
08+2

0 Pg+2

19.4/5
1.7/5
0.7/5
10.2/8
8.4/5

(o,o,o)
(l)0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(1,0,0)
(1 o o)
(o,o,o)
(0,1,0)

(—1, 0, 0)

Kg
1.088+~
1.000+44

047+2
1.13g+44

1.278+4

= 0.125 -+ Kgt
0 93+
o 99+'
o 94+'
0.82+
O 72+

0.133, Kq

0-0',
'

O 94+4
o go+'
0.80+
o.72+',

= 0.141 44
4.6/2
1.8/2
0.2/2
O.2/2
O.7/2

0.01 2
p 02+30

—O Og+'

0 p5+2

P Q2+2

23.4/5
4.7/5
O.3/5
7.7/8
4.2/5

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(0,0,0)
(0,1,0)

(—1, 0, 0)

Kg
1.088+2
Q 994+6
1.088+2
1.184+55

1.375+5

= 0.133 —+ Kgl
0.88+
o 95+'
0.84+
p 73+2
0.60+2

0.133, Kq

0.90+
o 95+'
O.86+'
o.75+',
Q 65+2

= 0.141 44
2.8/2
1.6/2
0.3/2
0.2/2
2.8/2

0.10+
0.00+00

—0.02 2
0.01 2
0 03+2

21.3/5
4.3/6
o.6/5
6.4/8
6.3/5

with initial and final meson mornenta.
As evidenced by the low values in the first y /NDF col-

umn of all three tables, the fits which give h&+~ &om the
temporal component of R" are very good. The fact that
the values in the second g /NDF column of these tables
are generally larger may be due to the fact that spatial
and temporal components of our three-point functions
may have different discretization errors, as described in
Sec. III. When we fit these components simultaneously to
the asymptotic form of Eq. (25) while holding h&+i fixed,
we are not fitting to a form which takes into account these
discrepancies and consequently obtain a larger y /NDF.
As discussed in Sec. IIC, however, this fitting strategy
is the only one that guarantees that h+ does not suffer
significantly &om discretization errors.

Given the number of different mass combinations and
momentum channels we have, our results for h+(u)/[I+
P+(u)) are remarkably consistent. Keeping the light-
quark mass fixed we find that for recoils ~ which are
approximately the same, the values of h+(cu)/[I+P+((u)]
are equal within errors even when they are obtained &om
difFerent momentum and/or heavy-quark inass combina-
tions. This supports the validity of our procedure and is
also an indication that the radiative corrections obtained
using Neubert's results [7] are accurate. The fact that
h+(u)/[I + P+(u)] does not appear to depend strongly
on the mass of the heavy quarks is also an indication that
the coefIicients of the corrections proportional to inverse
powers of the heavy-quark masses are not very large (see
Sec. V).

There are two momentum combinations on which we
wish to comment. The first is p = (m/12a, o, o) to
p' = (7r/12a, o, o) which, for degenerate transitions, has
zero recoil. For such transitions, current conservation re-
quires that h+((vr/12a, 0, 0) ~ (vr/12a, 0, 0)) equal 1. We
find values of h+((vr/12a, o, o) -+ (m/12a, o, o)) which are
just barely consistent with 1 at the level of 10. for K~ =
0.14144. The situation deteriorates when the mass of the
light quark decreases (see Tables VIII and IX). Since for
given quark masses h+((m/12a, o, o) + (7r/12a, o, o)) is
extracted from a single three-point function [the one with
p' = (vr/12a, o, 0) and q = (0, 0, 0)], it is much more sus-
ceptible to statistical Huctuations than most other val-
ues of h+ which are obtained from averages of three-
point functions over many equivalent momentum com-
binations. To show that this slight discrepancy is sta-
tistical, we consider two measures of h+((m/12a, o, 0) -+
(vr/12a, o, o)) which use the same three-point function
and normalization. The first is

h+((vr/12a, o, o) + (m/12a, 0, 0))

ZP(~~;(0, 0, 0) ~ (o, o, o))
ZP(Kg, (~/12a, o, o) ~ (m. /12a, 0, 0))

with Zv defined in Eq. (28). The second is the ex-
pression above multiplied by the ratio C2 (ty., (vr/
12a, o, o))/C2(tt, vr/12a) where C~(t~,.m/12a) is the av-
erage of the six p = (+m./12a, o, o), (0, +m/12a, o) and
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TABLE VIII. Results for h+(u), h+(id)/[I + P+(w)], and h (u) obtained with the fitting pro-
cedure described in Sec. IIC. The light-quark hoPPing Parameter is 6xed to Kq

——0.14226 and
all heavy-quark mass combinations are presented. Only transitions with initial and 6nal meson
momenta less or equal to s /(12a) are included.

(o,o,o)
(1,o,o)
(1,0,0)
(1,0,0)
(1,0,0)

(1,0,0)
(1,o,o)
(o,o,o)
(0,1,0)

(—1, 0, 0)

Kg
1.039+2
O.996+',
1.039+2
1.080 4

165+

h+ (cd)
= 0.121 m

O.95+',
0.89+
0 g7+2

0.84+3
0.81 4

~'( )/[1+ 0+( )1 ~'/N»
KgI ——0.121, Kq

——0.142 26
0 96+ 3.4/2
0.89+7 0.2/2
0.88+2 O.7/2
0.86+3 0.2/2
0.84+4 1.3/2

Ii (cu)

0.14 4
0 00+

—o o4+'
0.04+43

0.05+4

y /NDF

20.8/5
2.9/6
0.7/5
8.6/8
3.7/5

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(1,o,o)

(1,o,o)
(1,0,0)
(0,0,0)
(0,1,0)

(—1, 0, 0)

Kg
1.039+
0.999+4
1.o67+',
1.109+54

1.219+54

= 0.129 —+ Kgl
0.99+
P g3+8

0.87+22

0.83+43

0.78+4

0 121 Kq

096
0.89+7
p 85+2
0.83+3
o 79+5

= 0.142 26
3.0/2
0.1/2
0.3/2
0.5/2
3.5/2

0.23+3
p 72+83

0.01+4
0.06+43

0.10 3

18.8/5
0.6/5
o.6/5
8.1/8
6 8/5

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, 0, 0)

Kg
1.050+2
0.996+4
1 039
1.091+44

1 ~ 187+4

= 0.121 m Kg~

o.95+',
0.90+7
0.89+2
O.g4+43

0.81 4

0.125,
O 95+'
0.89+7
0.88 2
o.s5+'
0.83+

Kq: Os 142 26
3.4/2
0.3/2
0 6/2
0.1/2
1.0/2

0.09+4
p g 1+119—162
—o.o4+'

O O1+4

0.03+3

19.8/5
1.1/5
0.6/5
6.3/8
3.8/5

(0,0,0)
(1,o,o)
(1,0,0)
(1,0,0)
(1,o,o)

(1,0,0)
(1,0,0)
(o,o,o)
(0» o)

(—1, 0, 0)

Kg
1.050+
o 997+'
1 067+3
1.12O+',
1.244+5

= 0.129 + Kg~

0 96+
O.91+'
0.86 2
0.81+3
0.75 4

0.125, Kq

0 95+1
0.89+7
0.85+
0.81+43

o.7s+;

= 0.142 26
3.2/2
0.1/2
O.3/2
0.2/2
2.8/2

0.18+3
p gg+143—107
o.oo+;
0.04+3
0.08+33

19.1/5
0.8/5
0.7/5
6.0/8
6.6/5

(o,o,o)
(1,0,0)
(1,o,o)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, 0, 0)

Kg
1.067+2
O 999+'
1.039
1.109+54

1 21g+

= 0.121 + Kgi
0.95
0.91 7
p g1+2
0.83+3
0.80 4

0.129, Kq

O 93+'
0.88+77

p 89+2
0.82+3
0.81+4

= 0.142 26
3.7/2
o.7/2
0.3/2
0.1/2
0.7/2

o.o4+'
—O O4+57
—o o4+'
—0.02+3
0.01+44

18.6/5
1.9/5
0.5/5
4.4/8
4.1/5

(o,o,o)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, o, o)

Kg
1.067+2
0.995+5
1.067+2
1.138+5
1.282+5

= 0.129 m Kgi
0.91+
0.88+7
p 84+2

o 77+3
0.71+44

0.129, Kq

0 93+1
0.88 7
p 86+2
o 79+4
0.76+44

= 0.142 26
3.5/2
0.5/2
0.3/2
0.1/2
2.1/2

0.12+3
0.00 0—0.01+53

0.02+3
0.05+2

19.2/5
1.6/6
0.8/5
4.2/8
6.6/5

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(0,0,0)
(o,1,o)

(—1, 0, 0)

Kg
1.097+3
1.009+5
1.039+
1.141+65

1.273+;

= 0.121 —+ Kgi
0.94+',
0 91+8
p g4+2

0.82+33

0-79 '.
'

0.133, Kq

0.90+1
0.85+
0 89+2
0.80+3
0 79+

= 0.142 26
4.2/2
1.7/2
0.1/2
0.1/2
0.4/2

—0.02 3—o 37+39
—0 06+
—o.o6+'
—0.01+44

17.8/5
3.0/5
0.8/5
3.0/8
4.4/5

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(0,0,0)
(0,1,0)

(—1, 0, 0)

Kg
1.o97+'

ggg+8
1-067+32
1171+6
] 343+6

= 0.129 m Kg~
0 91
p gg+8

o.ss+'
0.77+3
0.71+43

0.133, Kq

O 9O+'
0.84 8
0.86+22

0.77 3
0.73+44

= 0.14226
4.1/2
2.1/2
O.2/2
0.1/2
1.3/2

0.05+4
63+92—104—O.O2+'

—0.02+2
0.03+3

19.5/5
3.3/5
1.1/5
2.7/8
6.7/5
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TABLE IX. Results for h+(u), h+(u)/[1 + P+(&u)j, and h (u) obtained with the fitting pro-
cedure described in Sec. IIC. The light-quark hopping parameter is fixed to Kq

——0.14262 and
all heavy-quark mass combinations are presented. Only transitions with initial and final meson
momenta less or equal to s/(12a) are included.

h+(~) h, +(~/[1 + P+(cu)j y /NDF y /NDF

(0,0,0)
(1,0,0)
(1,0,0)
(1,o,o)
(1,0,0)

(1,0,0)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, 0, 0)

Kg
1.041 2
O SSV+4

1.O41+',
1.083+4
1.170 4

= 0.121 m
095

p 7g+11

0.84+3
0.82+5
o s4+'

K~i ——0.121, Kq

0 96+2
0 79+
0.85+3
0.84 5
0.88+

= 0.14262
2.7/2
O.1/2
0.8/2
0.1/2
0.5/2

0.12+
o oo+'

—0.05+7
P 02+6
0 04+

12.8/5
1.1/6
1.0/5
4.8/8
2.5/5

(o,o,o)
(1,o,o)
(1,0,0)
(1,0,0)
(1,0,0)

(1,o,o)
(1,0,0)
(0,0,0)
(0,1,0)

(—1, 0, 0)

Kg
1.041+2
1 001+56

1.070+3
1.114+55

1 226+

= 0.129 + Kgt
0 99+
0 82+»
0.85 3
0.82 5
0.81+67

0.121, Kq

096
o 79+"
0.83+3
0.82 5
0.82 7

= 0.14262
3.O/2
0.1/2
O.2/2
0.2/2
1.6/2

0.22 6
36+125—100

—0.01 7
o o5+'
0.10+4

11.0/5
0.9/5
1.1/5
5.0/8
4.5/5

(o,o,o)
(1,o,o)
(1,o,o)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(0,0,0)
(o,l,o)

(—1,0, 0)

Kg
1.052+2
0.998+5
1.041+
1.095+55

1 1g2+

= 0.121 m Kgi
0.96+
o 7o+"
0.86+33

O.S2+'
o s5+'

0.125, Kq

p 96+2
o.vs+",,
0.86+3
0.83+55

P 88+6

= 0.14262
2.5/2
0.1/2
0.8/2
0.2/2
0.4/2

0.08+
25+187—251—O.O3+:

0 00+
0 03+

11.5/5
1.0/5
1.0/5
3.4 /8
2.6/5

(o,o,o)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, 0, 0)

Kg
1.052+
0.998+6
1.070+3

125+6
1.252+

= 0.129 —+ Kgi
O.96+'
o so+»
0.84+3
O Vo+'

0.78+56

0.125, Kq

o o4+'
0 79+
0.83+3
0.80+5
0 81+

= 0.14262
3.0/2
O.2/2
0.3/2
O. l/2
1.3/2

O.16+;
p ] 1+211—177
0.00 6
O O3+'
o o7+'

10.6/5
1.1/5
1.3/5
3.6/8
4.4/5

(o,o,o)
(1,0,0)
(1,o,o)
(1,0,0)
(1,0,0)

(1,0,0)
(1,o,o)
(0,0,0)
(011,0)

(—1, 0, 0)

Kg
1.070+3
1 001+56

1.041
1.114+55

1.226+5

= 0.121 m Kgi
0.96+
0 79+—13
o.so+;
0.81+5

85+6

0.129, Kq

0 94
o 76+
0.87 3
0.81+55

P 86+6

= 0.14262
2.4 /2
0.2/2
0.6/2
O.3/2
0.3/2

0 03+
—0 70+—106—0.02+

P2+6

0 01+66

10.3/5
1.4/5
0.8/5
2.3/8
2.8/5

(o,o,o)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(1,0,0)
(1,0,0)
(0,0,0)
(o,l,o)

(—1,o, o)

Kg
1.070+3
0.998+7
1.070+
1145+66
1.292+6

= 0.129 + Kgi
0.91+
o 77+"
0.82+3
0.75+54

o 74+'

0.129, Kq

p 92+2
0.77+12
0.83+33

o V7+'
0.79 6

= 0.14262
3.2/2
0.1/2
O.3/2
O.2/2
0.9/2

O.1O+;
0 00+
0 01+
0.01+44

o o5+'

10.4/5
1.5/6
1.3/5
2.5/8
4.5/5

(o,o,o)
(1,0,0)
(1,0,0)
(1,o,o)
(1,0,0)

(1,0,0)
(1,0,0)
(0,0,0)
(0,1,0)

(—1, 0, 0)

Kg
1.1O2+'
1.O12+'
1.041+22

147+
1.283+66

= 0.121 —+ Kgi
O.95+',

O 77+"
0.92 3
0.80+55

0 84+66

0.133, Kq

O O1+'
0 73+12—14
0.88+3
0.78+5
O S3+'

= 0.14262
2.6/2
0.9/2
0.3/2
O.2/2
0.2/2

—0 03+
—o.87+"—64
—0.01+8
—0.06+64
—0 01+

9.5/5
2.0/5
0.7/5
1.6/8
2.9/5

(o,o,o)
(1,0,0)
(1,o,o)
(1,0,0)
(1,o,o)

(1,0,0)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, o, o)

Kg
1.1O2+'
] p02+8
1 o7o+'
1.179+7

357+8

= 0.129 m KgI
0.91+
o 75+"
o s6+'
o 75+4

0 74+

0.133, Kq

Q 9Q+2

o 72+"—13
O.84+',
0.75+4
0 76+

= 0.14262
3.6/2
1.0/2
0.2/2
O.2/2
0.6/2

0.03+5
5+149—155

0.00+5
—0.02+4
0.03+4

10.6/5
2.0/5
1.4/5
1.8/8
4.7/5
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(0, 0, +a/12a) two-point functions. Using the values
of Z& given in Table VI, the erst procedure gives
h+ ((vr/12a, 0, 0) -+ (vr/12a, 0, 0)) equal to 1 to within
1%, even when the mass of the light spectator antiquark
is reduced, while the second procedure gives results very
much in line with the rather low results of Tables VII—IX.
The reason why the first procedure is more precise is ex-
plained in footnote 7. Moreover, that the results given by
the second procedure agree better with our standard pro-
cedure for obtaining h+ should not be too surprising, as
the latter also makes use of average two-point functions.

The second small inconsistency we wish to com-
ment on is the one arising from the compari-
son of h, + ((0, 0, 0) + (a/12a, 0, 0); mg, mg ) with
h+((vr/12a, 0, 0) m (0, 0, 0); mg, mg), for which ur is the
same. To check the validity of our results, we have re-
analyzed our data by fitting our three-point functions

I

directly to the asymptotic form given in Eq. (21), fix-
ing the energies and wave-functions factors which ap-
pear in this asymptotic form to their two-point func-
tion values, and normalizing the resulting 6&+~(ur) ac-
cording to Eq. (38). This procedure yields values for
h+ which are nearly identical to the ones given in Ta-
bles VII—IX. The only values that c'hange significantly
compared to the size of their error bars are those cor-
responding to h+((0, 0, 0) -+ (vr/12a, 0, 0);my, mg ). In
this difFerent way of analyzing the data, the values we
find for h+((0, 0, 0) ~ (m/12a, 0, 0); my, mg ) are lower,
making them nearer the values for h+((7r/12a, 0, 0) -+
(0, 0, 0); mg, mg). This partial bridging of the gap, how-
ever, comes at the expense of large y /NDF's ranging
from 2 to 5. One can fix both problems, bridging the gap
completely and bringing the y /NDF down, by fitting the
time component of our three-point functions to

4(t i
)

i ( ) i"( ). (E- E- +b-E)t -E- t~-(PI(,1)i@4(0)iP(p))
t, ty —t —+ 4EpEp

with an extra parameter bE, instead of to the form given
in Eq. (21). The parameter bE is designed to absorb
slight statistical difFerences in the time behavior of two-
and three-point functions. One would worry about the
consistency of adding this extra parameter if it were to
be large compared to the values of the various energies
which enter the exponential factor in Eq. (41) since it
is inconsistent to allow for changes in the energies while
holding wave-function factors fixed —the two quantities
are extremely correlated —and it is inconsistent to claim
that Ep —Ep~ is difFerent for two- and three-point func-
tions but that Ep is the same. However, we find values
of bE which are on the order of 10 and consistent with
zero.

In addition to reconciling the values for Ii+((0, 0, 0)
(vr /12a, 0, 0); mg, mg ) and h+((ir/12a, 0, 0) -+

(0, 0, 0); mg, mg), this method increases the statistical
errors on all values of h+(u) because of the additional
freedom introduced by the new parameter. We do not use
this new fitting method as our main one because of the
potential inconsistencies mentioned above and because
the introduction of the extra parameter bE is difIicult
to generalize sensibly to situations where one simulta-
neously fits more than one four-vector component of a
three-point function.

The results given by all of these difFerent methods
of analyzing the data are consistent within statistical
errors. This gives us faith that the results for h+ in
Tables VII—IX are valid representations of our data.
The most likely reason, then, for the slight discrep-
ancy between h+((0, 0, 0) + (vr/12a, 0, 0);mg, mg ) and
6+((vr/12a, 0, 0) ~ (0, 0, 0);my, mg) is that it arises
&om the same statistical fIuctuation that yields the
low value for 6+((m./12a, 0, 0) ~ (vr/12a, 0, 0); mg, mg).

Like the three-point function which
gives h+ ((m/12a, 0, 0) ~ (m/12a, 0, 0); mg, mg) the one
from which h+((vr/12a, 0, 0) ~ (0, 0, 0);mg, mg) is ob-
tained is not averaged with equivalent three-point func-
tions. h+((0, 0, 0) -+ (vr/12a, 0, 0); mg, my~), on the
other hand, is obtained &om the average of the six
three-point functions corresponding to the transitions
(0, 0, 0) -+ (Sir/12a, 0, 0), (0, +or/12a, 0), (0, 0, +m/12a).

As mentioned earlier, current conservation requires
that h (u) = 0 for degenerate transitions. In order to
determine whether our results are consistent with this
requirement, we must know how large the discretization
errors on h (ur) might be. As suggested by the results
for ZP (see Table VI), there inay be discretization errors
of the order of 10% which cause the spatial components
of our three-point functions to be low compared to the
temporal components. One can easily convince oneself,
by considering the set of equations corresponding to dif-
ferent components of the vector current in Eq. (25), that
such discretization errors would cause ~h (u) ~

to take on
values up to about 0.1. This is indeed what we 6nd.
Thus, to the level of accuracy with which we can deter-
mine ~h (u)~, we can conclude that h (ur) is consistent
with zero for degenerate transitions.

For nondegenerate transitions, the results we obtain
for h (u) resemble very much those found in degenerate
transitions. They are consistent with zero at the level of
20..s Thus, as far as we can resolve, h (u) is small for
all w, most probably less than about 0.1 to 0.2.

Using this information, we can now put a bound on the
size of the error that we are making on Ii+(u) by neglect-
ing the contribution of h (u) to the temporal component

This ratio of two-point functions should of course be 1 in
the limit of infinite statistics.

h (ur) is large with large errors when p = p'
(vr/12a, 0, 0), because its coefBcient in the equation which de-
termines it is v —v = (n/12)(1/aM„1/aM„~), a small—
number when M„M„i.
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of Eq. (25). Using the fact that the ratio of velocity fac-
tors, r = [v —v ~/(v + v ), is at most 0.07, and that
h+ (u1) is always greater than 0.6, we find that the error we
make on h+(~) is at most r „h (u) „/h+(u);„ l%%uo

to 2%%uo. In most situations, if not all, it will be smaller
than that. Thus, neglecting the contribution of h (u) in
obtaining h+(ur) is a very good approximation indeed.

TABLE X. Results for u and h+(u)/[1 + P+(~)I, for
0.143 15(2), obtained froin covariant, linear

extrapolations of the results for tcq ——0.141 44, 0.142 26,
0.14262. All heavy-quark mass combinations are presented.
The first y /N» column corresponds to the u extrapolation;
the second to the extrapolation of h+(u)/[1 + P+(u)].

~'/N» h+(~)/[1 +@+(~)j ~'/No,

B. Chiral extrapolation

In the previous section we determined h+(w) for many
difFerent combinations of initial and final heavy quarks
and for three light antiquarks whose masses straddle that
of the strange quark. In the present section we describe
the extrapolation of our results for h+(u)/[I + P+(tu)]
to vanishing light-antiquark mass for which K~ = K„;t ——

0.14315(2) [29]. The chirally extrapolated results are
relevant for the study of semileptonic decays of heavy-
light mesons whose light antiquark is a u or a d. These
results are summarized in Table X.

The extrapolations are covariant and linear in the im-
proved, bare quark mass, am = am&[1 —(1/2)am&],
where am~ = (1/2K~ —1/2r„;t). We fit h+/(1 + P+)
and (u to the forms ni, + (amI) + Pg+ and a (amI) + P
respectively. Then, h+„.t/(1 + P+) = P~+ and u„;t
P . The y2/NDF for these extrapolations are given in
columns four and six of Table X. As evidenced by the
small values of these y2/NDF's, the extrapolations are
for the most part very smooth. The only extrapola-
tion which has an anornalously large y /NDF is the one
for h+((~/12a, 0, 0) -+ ()r/12a, 0, 0); mg, mg ). As men-
tioned in Sec. IV A, even though current conservation re-
quires that h+((m/12a, 0, 0) ~ ()r/12a, 0, 0); mz, my~) =
1 when q = q', our results do not quite satisfy this ca+-
straint due to a statistical Huctuation. As Tables VII—IX
further indicate, this constraint is less and less well satis-
fied as the mass of the light quark is reduced. The corre-
lated extrapolation appears to correct for this downward
trend in the data, but does so at the expense of a, large
y /NDF.

We do not extrapolate h (u) because this form fac-
tor potentially suHers &om rather large discretization er-
rors as discussed in Sec. II 0 and is therefore not entirely
physical.

(o,o,o}
(1,0,0)
(1,0,0)
(1,0,0)
(l,o,o)

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(o,o,o)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(o,o,o)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

eg ——0.129 m
(1,0,0) 1.042+8
(1,0,0) 1.001+
(0,0,0) 1.073+4
(0,1,0) 1.118+s

(—1,0, 0) 1.235+t

0.1/1
0.3/1
O.3/1
0.2/1
O.2/1

0.121, &q —&crit
0.97+ i
0 96+
0.84+2

83+5
0 80+6

)cd = 0.121 +

(1,0,0) 1.054+s
(1,0,0) 0.998+s
(0,0,0) 1.042+s
(0,1,0) 1.098+

(—1, 0, 0) 1.199+s

0.2/1
0.2/1
0.1/1
0.2/1
0.1/1

0.125, &q —Kcrit
0.95+2
0 94+
0 87+32

0.84+64

0 83+6

eg ——0.129 —+

(l,o,o) l.o54+',
(1,0,0) 0.998+7

(0,0,0) 1.073+
(0,1,0) 1.130+r

(—1, 0, 0) 1.262+s

0.2/1
0.3/1
0.3/1
0.3/1
0.2/1

0.125, Kq —Kcrit
0.95+',
0 95+'
0 85+32

0.81 4
0 79+'

tag ——0.121 -+
(1,0,0) 1.073+4
(1,0,Q) 1.001+r
(0,0,0) 1.042+ s
(0,1,0) 1.118+

(—1, 0, 0) 1.235+ t

O.3/1
0.3/1
0.1/1
Q.2/1
0.2/1

0.129, &q = &crit
0.93+2
0 93+'
0.88 2
0.82+
0 81+

eg ——0.129 m
(1,0,0) 1.073+4
(1,0,0) 0.997+r
(0 0 0) 1 073+
(0,1,0) 1.150+s

(—1, 0, 0) 1.304+s

0.3/1
0.4/1
0.3/1
0.3/1
0.2/1

0.129, &q —Kcrit
0.93+i
0 93+
0.85+2
0 79+
0 77+'

0~121 ~ Kgl: 0 121) +q —~crit
(1,0,0) 1.042+ s 0.1/1 0.97+2
(1,0,0) 0.997+s 0.2/1 0.94+s
(0,0,0) 1.042+s 0.1/1 0.87+2
(0,1,0) 1.086+s 0.1/1 0.86+4

(—1, 0, 0) 1.175+s 0.1/1 0.85+s

Q.O/1
4.6/1
2.3/1
0.5/1
1.1/1

0.0/1
4.1l1
0.3/1
0.1/1
0.8/1

0.4/1
4.3/1
1.1/1
0.3/1
1.7/1

O.2/1
4.1/1
1.3/1
0.4/1
0.6/1

0.6/1
4.7/1
1.6/1
0 4ll
1.7/1

0.1/1
4 0/1
1 9ll
0.6/1
o.7/1

C. Interpolation to the strange quark

In the present section we describe the interpolation of
our results for h+(u)/[1 + P+(w)] in the light-antiquark
mass to the mass of the strange quark (ic, = 0.1419(1)
[29]). The interpolated results are relevant for the study
of semileptonic decays of heavy-light mesons which con-
tain a strange antiquark. The results are summarized
in Table XI. They are obtained &om the same covari-
ant, linear its as the chirally extrapolated results of
Sec. IVB so that g /NDF are the same as in Table X.
The only difference is that the interpolated results are
h+/(1+P+) = nh+(aml)+Pg+ and o~, = n (amI)+P,

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(l,o,o)

(0,0,0)
(l,o,o)
(1,0,0)
(1,0,0)
(1,0,0)

eg ——0.121 —+
(1,0,0) 1.108+s
(1,0,0) 1.013+q

(0,0,0) 1.042+s
(0,1,0) 1.154+„

(—1, O, O) 1.296+,'

eg ——0.129 —+
(1,0,0) 1.108+s
(1,0,0) 1.002+
(0,0,0) 1.073+4
(0,1,0) 1.188+s

(—1, 0, 0) 1.374+s

0.4/1
0.4/1
0.1/1
0.3/1
0.3/1

O.4/1
0.4/1
O.3/1
0.4/1
0.3/1

0.133)

0.133, Kq —Kcrit
0 90+
0.92+;
0 89+32

0.80+
0.79+',

~q —&crit
0.90+
0 90+
0 86+2
0.77+4
0 74+'

0.5/1
5.1/1
2.2/1
0.7/l
1.7/1

0.0/1
4.0/1
1.6/1
0.6/1
0.9/1
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TABLE XI. Results for ~ and h+(~)/[1 + P+(u)], for
tcv = a, = 0.1419(1),obtained from covariant, linear interpo-
lations of the results for Kq

——0.14144, 0.14226, 0.14262. All
heavy-quark mass combinations are presented. The y /Nnp
are the same as for the chiral extrapolations (see Table X).

P P h+(~)/[1+ P+((u)]

where m, is the improved, bare mass of the strange
quark.

V. DEPENDENCE OF h+(cy)
ON HEAVV-QUARK MASS

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

(o,o,o)
(1,o,o)
(1,0,0)
(1,0,0)
(1,0,0)

Kg ——0.121
(1,0,0)
(1,0,0)
(0,0,0)
(0,1,0)

(—1, 0, 0)

Kg ——0.129
(1,0,0)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, o, o)

Kg
——0.121

(1,0,0)
(1,0,0)
(0,0,0)
(0,1,0)

(—1, 0, 0)

Kg ——0.129
(1,0,0)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, 0, 0)

~ Kg& = 0.121) Kq = KIs

1 039
0.996+43

1.039+
1.079 3
1.161+

-+ K~i ——0.121, Kq = K

1.039 2
0.999+4
1.065+
1.106+44

1.213+44

—+ K~I ——0.125, Kq = K,
1.049+
0.996+44

1 039
1.089 3

182+4

—+ K~i ——0.125, Kq = K,
1 O49+'
0.996+44

065+2
1.117+4
1.238+5

O.96+',
o 97+5
O 9O+'
0 87+32

0.82 3

O.96+',
o.97+'
0.86+
O.S3+',
o.76+'

0.95+i
o 97+'
O 90+'
o.s5+',
0.80+43

0.94+ i
o.97+;
Q 87+2
O.S2+'
0.75 3

Having obtained h+(ur) to good accuracy, we can now
attempt to determine the dependence of this quantity
on the masses of the initial and 6nal heavy quarks. For
the purpose of this study, we have calculated h+(u)/[I+
P+(u)] for additional heavy-quark combinations when
Kq

——0.14144. We concentrate on the results which cor-
respond to our heaviest, light antiquark (rs = 0.14144)
because these results have smaller statistical uncertain-
ties and will therefore enable us to resolve the dependence
on heavy-quark mass more accurately. We will assume, in
the following, that our Gndings for eq ——0.14144 provide
a good description of the dependence on heavy-quark
mass of our results for smaller light-antiquark masses.
That this assumption may be justified is con6rmed by
the mild dependence of h+(ur) on light-antiquark mass
(see Sec. VI).

The first indication that the dependence of h+(ur)/[1+
P+(u)] on heavy-quark mass must be very weak is shown
in Fig. 4. In this 6gure, we plot together the form factors
h+(u) [1+P+(u)] for each of our four Q ~ q, degener-
ate transitions with Kq ——0.14144. It is natural to begin
looking for small heavy-quark mass effects in this data
because its normalization is Bee of uncertainties associ-
ated with radiative or power corrections (see Sec. III C).

The four sets of data lie very much on the same curve.
To show this more precisely, we 6t each set individually

(0,0,0)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

Kg = 0.121
(1,0,0)
(1,0,0)
(0,0,0)
(0,1,0)

(—1,0, 0)

~ Kgi ——0.129, Kq = K,
p65+2

0.999+4
1.039+
1.106+44

1.213+44

O.93+',
0.96+6
0.90 1
0 84+32

0.78+3

!
I I I I I I I I I I I I I I I I

1.0 —-

(o,o,o)
(1,0,0)
(1,o,o)
(1,0,0)
(1,0,0)

(0,0,0)
(1,o,o)
(1,0,0)
(1,o,o)
(1,0,0)

(o,o,o)
(1,0,0)
(1,0,0)
(1,0,0)
(1,0,0)

Kg ——0.129
(1,0,0)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, 0, 0)

Kg ——0.121
(1,0,0)
(1,0,0)
(o,o,o)
(0,1,0)

(—1, 0, 0)

Kg ——0.129
(1,0,0)
(1,0,0)
(0,0,0)
(0,1,0)

(—1, 0, 0)

—+ K~i ——0.129, Kq = K,
1.065+22

0.995+4
1 Q65+2

1.134+55

1 273+46

~ Kgi = 0.1331 Kq = Kp

1.094+3
1.007+54

1.039+2
136+4

1 264+46

—+ Kgl ——0.133, Kq = K,
1.094+33

Q 998+6
1.065+22

1.165+6
1.332+'

0 93+
0.96+56

Q 87+2
0 80+32

o.73+',

O.9O+',

0 95+
0.91+i
0-81+32

o 75+'

O.9O+',
0 94+'
Q 87+2
0-78+32

p 7Q+3

3
+

+
~ 0.5—

+
A

& cq=0. 121
0 pgq=0. 125
0 mq=0. 129
&'& eq=0. 133

I I I I I I I I I I I I I I I I0 0~ lgf

1.0 1.1 1.2 1.3 1.4

FIG. 4. h+ (u)/[1+P+ (u)] vs &u for all four elastic scattering
reactions: Kg ——K~i ——0.121, 0.129, 0.133. The light-quark
hopping parameter is 6xed to Kq ——0.14144. The curves are
obtained by fitting each heavy-quark data set to s(N&(u).
The data points as well as the curves corresponding to dif-
ferent heavy quarks are really indistinguishable. The 1/tng
corrections to h+(u)/[1 + P+(m)] cannot therefore be very
large. (See text for details. )
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to the parametrizations (NR(id) and s(NR(id), where

2 f 2 id —11
(NR(id)—: exp !

—(2p —1)id+ 1 ( id+ 1) (42)

is a parametrization for the Isgur-Wise function sug-
gested by Neubert and Rieckert in [30]. In Eq. (42),
p2 = —('(1). We have introduced the supplementary pa-
rameter 8 to absorb possible normalization errors. We
summarize our 6ndings in Table XII and plot the fit
curves in Fig. 4. These results clearly show that the four
different data sets are entirely compatible and suggest
that the dependence of h+(id)/[1+p+(id)] on heavy-quark
mass is quite small over most of the range of experimen-
tally accessible recoils.

Before interpreting this observation, let us quantify
this heavy-quark-mass dependence more precisely. We
will do so under the assumption that this small depen-
dence is due to power corrections. We have also tested
the assumption that it is due to amp-discretization er-
rors but 6nd that this assumption is less well satisfied by
our data (i.e., it leads to higher y /NDF). According to
Eq. (3), we have

h+ (~d) = [1+~+(~)l&(~) (43)

Now, to leading order in the heavy-quark expansion,

p+(id; mq, mq ) = gq(id, n, z)eq
+gq) (id) n~) z)eq)

+O(eq ) tq) ) eqtq) ) )
2 2 (44)

where eq()) = A4i44/(2mq( )), 2 the argument of n, is

mq, mq or some average of the two and z = mq/mq .
The functions gg and gal correspond to matrix elements
of dimension-five operators in the HQET Lagrangian
evaluated at order O(eq(, )). These two functions inust

be equal when Q = Q'. They must also be equal in the
absence of radiative corrections as HQET cannot distin-
guish the flavor of a heavy quark at order O(eq(, )). In
the presence of radiative corrections, however, the two
functions will have difFerent values when Q g Q'. The
amount by which they differ will be partly governed by
logarithms of the heavy-quark masses, as indicated by

I

TABLE XII. Results of fits of our data for
h+(id)/[1 + P+(~d)] to the parametrizations s(NR(|d) and
fNR(id) described in the text. The
four rq = K&(= 0.121,0.125, 0.129, 0.133) transitions with
mq

——0.14144 are considered in turn. Only transitions with
initial and final meson momenta less or equal to (z /12a) are
included.

I
Kg =Kg

0.121
0.125
0.129
0.133

(p',
1.4+;
1 4+2

1 4+
1.4+,'

S(N R (id )
s)
0.99+

~

0 99+1
0.99+i
0 99+'

y /NDF
12.5/3
13.6/3
13.5/3
11.1/3

(NR(id)
X /NoF
13.0/4
14.1/4
13.9/4
11.5/4

P
1.6+3
1.6+3

5+2

1.4+

the presence of the running coupling constant in the func-
tions' arguments. The way in which gg and gg depend
on z will also be different. Nevertheless, since the dif-
ference between gg and gg~ is a difference of radiative
corrections, it is very small. We will neglect this differ-
ence in what follows and assume that

p+(~d; mq, mq ) = g(id) (eq + eq )

+ ('Q) Q')'q'q' n"Q n"Q') ( 5)

It is worthwhile noting, at this point, that Luke's theorem
requires

g(1) =0. (46)

To evaluate g(id) we need h+(id; mq, mql) at a fixed
id for different Q or Q'. Because momenta on the lattice
are quantized this is diKcult to achieve. There is one
kinematical situation, however, where we have enough
measurements of h+(id) at fixed ~d for different heavy
quarks to determine g(id). When the momentum of one
of the mesons vanishes, u become independent of that
meson's mass. There are four values of ~ for which this
happens, corresponding to !p! = m/12a and !p'! = 0 for
r,q = 0.121, 0.129, and !p! = 0 and !p'! = n/12a for

= 0.125, 0.133. For each of these four points, we
have four measurements of h+(id) corresponding to four
different values of the mass of the meson which is at rest.
We pick one of these four measurements and use it to
normalize the remaining three. Thus, we construct the
ratio

R+(id, x) =—
1 ( Ii+(id;mq, mq )/[1+ p+(~d;mq, mq )] )

!
1—

eq~ ( Ii+(id; mq), mq )/[1+ p+(~d; mqi, mq )]j
= g (id ) (1 —x) + 0(eq, eq, ), (47)

Since we are only interested in compariiig h+(id)/[1 +
P+(&d)] for difFerent heavy-quark mass, any reasonable
parametrization will do.

The fact that the values of y /NoF are relatively high for
all of these fits is explained after Eq. (50) in Sec. VI.

Here, A4&44 is the energy carried by the light degrees of
freedom when eq = 0.14144. We take it to be A4q44

(a /4) [3(Mv. —Mvx) + (MF —MFx)] + Ax = 0.63 GeV.

I

with x = mqi/mq. Here we have assumed that it is the
initial meson which has vanishing momentum. We then
fit the resulting three data points for R+ at 6xed u to a
straight line in x. The slope and intercept of this line is
g(id) [see Eq. (47)]. We summarize the details of these
fits in Table XIII. In Fig. 5, we show this data with the
corresponding fit (solid line) for each one of the four val-
ues of u. The data for R+ satisfies the parametrization of
Eq. (47) surprisingly well. One should remember that all
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TABLE XIII. Power corrections to h+(u) for four values
of u when Kq

——0.14144. See text for de6nition of B+ and
g(~).

pC Kg Kgi pg pgi
1 0.121 0.121 (1,00) (ppp) 1.037+i I.pp

0.125 1.16
0.129 1.40
0.133 1.79
g(w) = 0.073+si with y /NDp = 0.1/2

0
—0.015+
—O.O31+",

052+51

2 0.121 0 125 (0,0,0) (1,0,0) 1.047+2 1.pp
0.125 1.16
0.129 1.40
0.133 1.79

g(u)) = —0.041+~o with y /NDp = 0.4/2

0
0.002+7
0.021+15
0.031+213T

3 0.129 0.121 (1,0,0) (0,0,0) 1.062+
0.125
0.129
0.133
g(~) = 0.083+o', with y /NDp =

1.00
1.16
1.40
1.79
0.8/2

0
—0.006+
—0 049+
—0.062 44

4 0.121 0.133 (0,0,0) (1,0,0) 1.088 2 1.00
0.125 1.16
0.129 1.40
0.133 1.79

g(cu) = —0.025+so with y /NDp = 0.5/2

0
0.010+12
0 013+2236

0 003+

power corrections are subtracted at ~ = 1 by our normal-
ization procedure [see Eq. (39) and ensuing discussion].
However, this is not a problem if one is interested only
in O(eg, eg ) power corrections to h+ since these must
vanish at zero recoil according [Eq. (46)].

In Fig. 6, we plot g as a function of u. g(~) is consistent
with zero over the range of recoils ~ that we can explore
(1 ( ar & 1.1). Since g(ur) shows no trend over that
range and since the functions h+(u)/[I + P+(u)] plot-
ted in Fig. 4 exhibit no mass dependence over a range
of recoils from 1 to 1.4, we conclude that g(~) ought to
remain small (less than. about 0.2) over the full range of
experimentally interesting recoils (1 ( u ( 1.55). We
believe that these results indicate that the 1/mg cor-
rections to h+(u) and the remaining amp discretization
errors in h+(u) are genuinely small because we explore a
non-negligible range of heavy-quark masses —&om about
1 to 2 GeV. It seems quite unlikely that discretization er-
rors or higher-order power corrections would cancel the
leading power corrections over such a range.

Because g(u) appears to be less than about 0.2 over
the full range of recoils, we predict that power correc-
tions to the form factor 6+ corresponding to physical
B -+ Dlv decays must be less than about O(e, ) —3%
to O[0.2 x (es + e, ), e2] 5 —10% over the full range
of recoils for mg = 4.80 GeV, m = 1.45 GeV, and
A = 0.50 GeV [9].is This is significantly smaller than the

O(e ) 1 5%[0(e,) and O(es) may each contribute an ad-
ditional 5%] that one may naively have expected. It ap-
pears, then, that the protection Luke's theorem provides
a zero recoil extends over the full range of recoils and
that for the particular combination h+(w)/[I + p+(u)]
the Bavor component of the heavy-quark symmetry is
well satis6ed in the charmed sector. This is in stark con-
trast with our findings for the decay constant, fD, of
the pseudoscalar D meson [12]. In [12], we find that the
O(e, ) corrections to the heavy-quark limit prediction for
this decay constant are of the order of 30%.

These results for g(~) also mean that our results for
h+(u)/[I + p+(u)] are, to a good approximation, in-
finite heavy-quark-mass results. Thus, the functions
h+(ar)/[I +p+(~)] that we measure are effectively Isgur-
Wise functions and we can consistently combine data
corresponding to diferent initial and final heavy quarks.
This is what we do in the following.

In principle one could also try to quantify power cor-
rections to h (u). In the absence of radiative corrections,
we find from the results of [9] that these power correc-
tions are given by

(ur; mg, mg ) = [1 —2'(ur)]( —eg + eg ), (48)

where, like g(ur) defined in Sec. V, rI(ur) is a sublead-
ing, universal form factor. i4 Equation (48) indicates that
power corrections proportional to eg are equal and op-
posite to those proportional to eg . This prediction is
consistent with the mass dependence we observe in our
results. However, because our normalization procedure is
optimized for determining h+(u) and not h (~), it is not
clear to what extent the mass dependence due to power
corrections can be resolved from that due to discretiza-
tion errors and to higher-ord. er power corrections coming
&om our normalization procedure [see Eq. (38)].

VI. DEPENDENCE OF h+((u) ON LIGHT-QUARK

MASS: ISGUR-WISE FUNCTIONS

We established in the previous section that, for fixed
light-antiquark mass, we can combine the results for
h+(~)/[I + p+(~)] corresponding to difFerent values of
the initial and Anal heavy-quark mass. We further estab-
lished that the resulting function is an Isgur-Wise func-
tion: („s(u) when the mass of the light antiquark van-
ishes; (,(~) when the light antiquark is given the mass
of the strange quark.

We plot („~(u) and (,(u) in Figs. 7 and 8, respectively.
We fit the corresponding data to the parametrizations
s(NR(ar), (NR(~). The parameter s is added to absorb
possible uncertainties in the normalization of these form
factors. Because the parametrization (NR(u) is only one
of many possible parametrizations, we also Bt our results
to s(i;„(~), (h„((u), („„g((u), and s(~„g((u) where

We have included, in this estimate, potential higher-order
corrections that may have been subtracted by our normaliza-
tion procedure.

Luke's theorem does not constrain g(ur) at u = 1 as it did
g(~).
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FIG. 5. R+ vs z = m&/mq
at fixed w for four values of

The solid lines are ob-
tained by fitting these results
to the parametrization given in
Eq. (47) and the dotted lines
represent errors. The slope
and intercept of this line is
the subleading form factor g(ur)
[Eqs. (45) and (43)]. The
light-quark hopping parameter
is scq

——0.14144.
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&I'-(~) = I —p'(~ —I)

is a simple linear parametrization, and

(~„~g(~) = I —p (ur —I) + —(cu —I)
2

(49)

(50)

to vq
——0.14144, 0.14226, and 0.14262.

The fact that the values of y /NDF are relatively high
for all of these its should not in itself be taken as an in-
dication that the paranxetrizations of Eqs. (42), (49), and
(50) are poor representatioxxs of the Isgur-Wise functions.
These large values of y /NDF are due to the discrepancy

is a quadratic parametrization. The parameter c in
Eq. (50) is, of course, the curvature of the Isgur-Wise
function at ~ = 1. We tabulate the results of these dif-
ferent Gts in Table XIV. In this table, we also present the
results of performing these fits on the data corresponding

1.0—

4f

0.5—
3 0.5—

0.0— 8 () 9+8+4
—3—2

Lq +cd

I I I I I I I I I I I I I I I I0 0
1.0 1.1 1.P, 1.3 1.4

—0.5—

1.0 1.2

FIG. 6. The subleading form factor g(u) [Eqs. (45) and
(43)]. The light-quark hopping paraxneter is m~ = 0.141 44.

FIG. 7. (,d(u) = h+(m)/[1 + p+(cu)] vs sd for sl~ = sl«, s.
The different symbols correspond to different values of initial
and final heavy-quark mass. The solid curve is obtained by
fitting these results to sfNa(cu) while the dashed curve corre-
sponds to a fit to s(s;„(sd) and the dotted curve corresponds
to a fit to s(~„q(sd). The value of p shown on the plot is the
one given in Eq. (51).
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3
0.5—

2 12+9+2—z—f
PCq=PCS

I I I I I I I I I I I I I I I I0 0
1.0 1.1 1.8 1.3 1.4

FIG. 8. (,(u) = Ii+(u)/[1+ P+(cu)j vs u for N, q
= N, The

di8'erent symbols correspond to different values of initial and
final heavy-quark mass. The solid curve is obtained by 6tting
these results to st'NR(m) while the dashed curve corresponds
to a fit to st'I;„(u) and the dotted curve corresponds to a fit
to s(q„d(u). The value of p shown on the plot is the one
given in Eq. (52).

that we mentioned in Sec. IVA between our measure-
ments of h+((0, 0, 0) ~ (ir/12a, 0, 0);my, mg ) and of
Ii+((vr/12a, 0, 0) ~ (0, 0, 0);my, mq). Because of this
discrepancy, no parametrization can fit our data with a
good value of X /NDF. X /NDF's nevertheless seem to fa-
vor the use of the extra parameter 8 but do not seriously

discriminate between sgNR(w), sf~I„(w), and s$quad(~).
We have tried fitting our data to yet other parametriza-
tions and of all the fitting functions, s(I;„(u) yields the
lowest values for p . The reason for this is that ski;„(ai)
is the only parametrization which does not have positive
curvature. Since s(I;„(ur) is in that sense an exception,
we will not use it as our standard fitting function but
because it is a valid parametrization for these Isgur-%'ise
functions we will make certain that our results have errors
which encompass the values it gives for the slope. BLu.-
thermore, since both s(NR(ai) and st„d(u) give nearly
identical fits (see Figs. 7 and 8), we will use s(NR(ai)
as our standard in the following because it has one less
parameter and yields better Xz/NDF's.

Having already argued in Sec. V that mass-
dependent discretization errors are small, we turn to
momentum-dependent lattice artifacts. To quantify
these momentum-dependent discretization errors we re-
sort to the following procedure. We fit the data for
g„,d (ai) and (,(ai) for fixed initial and final meson
Inomentum and all heavy-quark combinations, to the
parametrization s(NR(u). The variation in the results of
fits to these diferent momentum sets should give us some
indication of how large these momentum-dependent lat-
tice artifacts are. Some of this variation, of course, may
be due to statistical Huctuations of the sort we mentioned
in Sec. IVA.

We summarize the results of the fits to the different
momentum sets in Table XV. It is reassuring that the
value of s for the case (0, 0, 0) m (a/12a, 0, 0) is very close
to 1, because the corresponding data are our best points.
They are the points for which our normalization proce-
dure is optimal because they are obtained &om three-

TABLE XIV. Results of fits of our data for h+(u)/[1 + p+(w)j to the parametrizations (NR(w),
(I;„(m), and (q„d(u) with and without the additional parameter s, as described in the text. For
fixed Kq, all heavy-quark mass combinations are used. Only transitions with initial and final meson
momenta less or equal to ir/(12a) are included. Here rc„;& ——0.143 15(2) and N, , = 0.1419(1).

Kq

0.141 44

0.142 26
0.142 62

Kcrit

P
1.3+
1.2+',
1.0+3
o 7+'
o 9+'

S(NR (&)
S

O.98+'
O 98+'
0 g6+
o 94+'
p 96+2

x /NDF
109/38
95/38
113/38
100/38
69/38

(NR(a )
X'/NoF

1.5+2 121/39
1.4+ 106/39
1.4+~ 140/39
1.4+4 134/39
1.3+ 88/39

Kq

0.14144

0.142 26
Oa142 62

Kcrit

P
1.O+',

o 9+'
0 8+21

o 6+'
0 7+

S(I;„(~)
8

0.97
0 g7+1
p 96+2
093
0 95

x'/N»
ill/38
97/38
114/38
100/38
71/38

P
1.3+
1.2+'
1.2+'

1+2

1.1+2

lin ~
X /NOF
159/39
139/39
170/39
155/39
111/39

Kq

0.141 44

0.142 26
0.142 62

Kcrit

P
1.2+;
1.2

p+2

0 7+
1.0+3

C

6+1 2—1.3
0+le2—1.5

] 4+1e3
1 0

1.1+2 2—2.6
2.3+"—2.0

&tquad (~)

0.98 1
g8+2

p 96+2
g4+2

0.97+3

x'/NDF
108/37
94/37
113/37
100/37
69/37

P
1.6+
1 5+2

+2

1.7'+44

1.5+3

quad(&)
C

3 9+—1.4
4 0+1.4—1 ~ 3
5 1+"—1.6
6 9+2+1—2.2
5 o+"—1.6

x /NDF
115/38
99/38
125/38
114/38
74/38
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TABLE XV. The different momentum sets for f„,q(&u) and

(,(ur) are fit to the parametrization s(Na(&u) [Eq. (42)]. A
momentum set comprises all combinations of initial and final
heavy quarks with fixed initial and final momenta. These
different fits are used to estimate remaining systematics (see
text).

P
(o,o,o)
(1,0,0)
(1,0,0)
(1,o,o)

P
(1,0)0)
(o,o,o)
(0,1,0)

(—1, 0, 0)

p
1.1+;
1.3+54

1 2+
0 7+

(-,s(~)
s y /NDF

1.01+ 0.3/6
0 93+ 0.8/6
O.95+; O.1/6
0.95+s 0.2 /6

p
12+
1 4+
1 4+

1+2

8
1.00+'
0.95+2
0.96+',
0 95+

y /Nnp
O. 1/6
0.7/6
0.1/6
0.4/6

p„d ——0.9+s (stat)+2 (syst)

for („g(a) and

point functions which are much more correlated with the
three-point function which yields the normalization fac-
tor Ii+ (1) '

Furthermore, these data have the smallest statistical
errors and should have the smallest discretization er-
rors, because the momenta of the incoming and outgoing
mesons are less than or equal to the initial and final mo-
menta of other momentum sets.

To accommodate the spread in the values in the slope
parameters p„d and p, corresponding to („g(u) and
(,(u), we assign systematic errors to these parameters
which encompass all the central values given in Table XV.
The central value and statistical errors that we quote are
given by fitting s(NR(u) to all momentum sets put to-
gether (see Table XIV). Thus, our final results for the
slope at u = 1 are

p, = 1.2+2(stat)+, (syst) (52)

p„g(,„p) = 0.87(12)(20), (53)

where the second error is theoretical and accounts for the
uncertainty in the size of 1/m, corrections [33]. Equa-
tions (51) and (53) agree remarkably well.

As can be inferred from Eqs. (51) and (52) and from
Table XIV our results are compatible with the statement
that p is constant with light-quark mass, possibly de-
creasing slightly as this mass decreases. Such a decrease
is consistent with one's intuition that it is more diFicult
to make the light degrees of keedom recoil, the heav-
ier these degrees of freedom are. Furthermore, Hggaasen

for (, (cu). Even though the exact values of these slope
parameters are slightly different if different parametriza-
tions for the Isgur-% ise functions are used, these differ-
ences are well within our error bars.

In Table XVI we compare our predictions for the slope
of the Isgur-Wise functions („gand (, with those of other
authors. We find that our predictions for p2 lie safely
above the lower bound of Bjorken [31] and below the
upper bound of de Rafael and Taron [32]. Our results
for p, also agree with the lattice result of Bernard et al.
[6] obtained with Wilson fermions for a light spectator
antiquark with mass mq m„although the details and
systematics of the two calculations are different. The
authors of [6] do not quote a value of p2

& for vanishing
light-quark mass.

Also for comparison, we quote an average experimental
value for the slope of the Isgur-Wise function compiled
by Neubert [33] &om very recent results of the ALEPH
[16] and CLEO [17] Collaborations as well as older data
Rom the ARGUS Collaboration [34]:

TABLE XVI. Coinparison of our lattice results for —(„' s(1) and —(,'(1) to the theoretical pre-
dictions of various authors.

Reference
UK+CD

Bernard, Shen, and Soni [6]
de Rafael and Taron [32]
Close and Wambach [37]

Narison [42]
Neubert [9]

Voloshin [43]
Bjorken [31]

Blok and Shifman [44]
Hggaasen and Sadzikowski [35]

Rosner [45]
Burdman [46]

Dai, Huang, and Jin [47]

—(„' ~(1)
0.9+s(stat)+~ (syst)

p & 1.42
1.40

1.00(2)
0.66(5)
1.4(3)

0.35 & p' & 1.15
0.98

1.59(43)
1.08(10)
1.05(20)

p' & 0.25

-('(1)
1.2+', (stat)+', (syst)

1.24(26) (stat) (26) (syst)

1.64

1.135

For readers familiar with the methods used to calculate three-point functions, the reason why the three-point functions
corresponding to (0, 0, 0) ~ (vr/12a, o, o) and (0, 0, 0) + (0, 0, 0) are strongly correlated is because they are built up from
the same exponentiated propagator. Indeed, the initial momentum in our notation is the momentum of the exponentiated
propagator.
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and Sadzikowski [35] find a decrease in slope which is very
similar to the trend we observe in the central value of p2

when we include the extra parameter s in our its. In fact,
our predictions for p itself are in excellent agreement
with theirs. Their prediction is based on an improved
bag model calculation and is an extension of earlier work
by Sadzikowski and Zalewski [36]. A similar decrease in
slope with spectator quark mass is observed by Close and
Wambach [37] though the values they quote for p2

& and
p~ are slightly larger than the ones we find.

To test the robustness of our predictions for p, we
have explored many di8'erent procedures for obtain-
ing h+(ur), two of which we have already described in
Sec. IVA. To obtain h+(ur) for degenerate transitions,
we have in addition tried normalizing our lattice results
for hi+t (u) by hi+t ((vr/12a, 0, 0) ~ (vr/12a, 0, 0)) instead
of by hi+~ ((0, 0, 0) -+ (0, 0, 0)) [see Eq. (38)]. When fitted
to the s$(w) parametrizations, the results obtained us-
ing all of these methods give very similar values for the
slope parameter p . They only differ in the value of s
they predict, i.e., in their overall normalization. Thus,
we are quite confident that our predictions for the slope
are reliable but believe that it is important to allow for
the extra normalization parameter s.

VII. EXTRACTION OF V,g

In Sec. IV, we obtained h+(u) for a variety of P ~ P'
transitions where P(P') is a pseudoscalar meson com-
posed of a heavy quark Q(Q') and a light antiquark q. In
our study, both Q and Q' are quarks with masses around
that of the charm quark. In Sec. V, however, we showed
that our results for h+(u)/[1+ P+(u)] are independent
of heavy-quark mass for masses around the charm quark
mass or larger. This means, modulo the issue of power
corrections at zero recoil, that our results can be used to
describe not only P -+ P' transitions with Q(Q') c but
Bq m Dq decays as well, where the subscript q labels the
flavor of the light antiquark. In Sec. VI, we studied the
dependence of h+(u)/[1+P+ (u)] on the mass of the light,
spectator quark, m~, and obtained results for („q(u) and
(,(u). All of this means that our result for („~, once
multiplied by (1+P&+,), is in fact the form factor h+
relevant for B„s~ D s transitions, while (1+P&+ )(,
is the form factor 6+ relevant for B, ~ D, transitions.

Now, the differential decay width for B ~ Dlv is, in
the limit of zero lepton mass [9],

dI"(B(,) + D(,) lv)

So, in principle, we could obtain lV, ql by comparing
our theoretical prediction for dI'(B(, )

-+ D(, ) lv)/dku to
an experimental measurement of this rate. A major
problem with this approach is that the rate dI'(B(, ) ~
D(,) lv/du is helicity suppressed, as evidenced by the fac-
tor (u —1)s~2, so that it is very difficult to get accurate
experimental measurements close to cu = 1 where the
predictions of HABET are most reliable. Another prob-
lem with obtaining lV~l Rom B(,) —+ D(,)lv decays is
that one must know h (u) to better accuracy than is
given by our calculation: an error of 0.1 on 6 leads
to an uncertainty of about 10%%uo in the rate. We should

I

mention, however, that Neubert [9] has estimated h us-
ing perturbation theory and sum rules in HABET and has
found that its magnitude does not exceed 0.04 over the
whole range of recoils ~. If this is true, its contribution
to the rate of Eq. (54) should not exceed 4%.

We have not exhausted the predictions of heavy-quark
symmetry. We have yet to exploit the spin component
of this symmetry. Using a combination of the spin and
ffavor symmetry, we can relate our predictions for $(u)
h+ (u)/[I+P+ (u)] to the form factors required to describe
B~,~

~ D~,~lv decays. These form factors are defined by

[9]

(D(.) (p' &) lc~"~lB(.) (p))

M~, , M~.

(D(.) (p' e) lc&"&'5IB(.) (p))

M~, , Mg).

= zh (Ld)e e v vp,

= (~ + 1)e*"h '(~) —e' v (v"h~'(~) + v'"h~'(ur)),

h'(~) = [~'+ &'(~) + ~'(~)]&-.~(.) (~) (56)

where v = p/M~&
&

and v' = p'/Mri. . In the heavy-

quark limit, these four form factors can be expressed in
terms of the single Isgur-Wise function, ( g(,). There
are, of course, radiative and power corrections to these
heavy-quark symmetry predictions. Thus, one has

with i = V, Aq, A2, A3 and

1A A V

n '=0.A (57)

Luke's theorem [10] further guarantees that, at zero re-
coil, h ' is free of O(eg, e, ) corrections, i.e. , p '(1)
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0(e&2, e2). Because h+' is the only form factor to contribute to the differential decay rate for B(,) ~ D&,&lv decays at
zero recoil, Luke s theorem implies that the leading nonperturbative corrections to this rate must be small at ~ = 1.
More precisely, in the limit of zero lepton mass,

dI'(B(, ) m D(,)lv) Q2
sM~, , (M~( )

—MD; ) [1+P '(1)] Q(u2 —l((u+ l)2]Vs~2(2 q( )(~)

( ~ ) M~( )
—2™g()Mg)(. + MD.

((u+ 1) (Mg, ,
—Mg). )2

where P+'(I) = —0.01 [7] and K(u) incorporates the
radiative corrections, P~, (~), away &om u = 1, the
nonperturbative power corrections, p+' (&u), and the con-
tributions of the three other form factors to the rate.
Prom what we have said above, it should be clear that
K(1) = 1+ O(e2&, e, ). One can also show [9] that in the
limit of exact heavy-quark symmetry, K(u) = 1 for all &u.

Moreover, since we have factored out („~(,) (u) in the ex-
pression for the rate, the contributions of the three other
form factors will be normalized by („~(,). This means
that K(u) is a collection of radiative and power correc-
tions [see Eqs. (56) and (57)], many of which are kine-
matically suppressed: deviations of K(ur) from 1 ought to
remain small. Neubert estimates [9], using perturbation
theory and sum rules in HQET, that K(ur) may reduce
the slope parameter, p by 0.09 which corresponds to an
enhancement of the rate by about 10'%%up at maximum re-
coil and by a smaller amount for smaller u. However, we
cannot estimate yet how the physical K(u) deviates Rom
its values in the heavy-quark limit Rom our lattice cal-
culation. For that we need to study Qq(0 ) -+ Q'q(l )
decays, which we are currently analyzing. We also need
to determine the I/m, corrections to h '(1), which as
discussed in Sec. IIIC, we cannot get with a procedure
analogous to the one presented in this paper. Hence, we
will assume that K(u) = K(1) for all u which is a reason-
able assumption given the size of our errors on the slope
parameter p . We can then use our lattice determination
of („~(w) to extract V,s from the experimentally mea-
sured differential decay rate for B ~ D*tv (B, ~ D,*lv
has not yet been measured). This analysis differs from
Neubert's extraction of ]V,s~ [15] in that we fix the u
dependence of the differential decay rate using our calcu-
lation instead of fitting it kom experiment. This enables
us not only to extract ~V,s~ with no Bee parameters, but
also to check the validity of nonperturbative QCD against
experiment. We find that the u dependence predicted by
our calculation agrees very well with the results of the
ALEPH [16] and CLEO [17] collaborations.

In Figs. 9—ll we show least y fits to experimental
data for V~s~[1+ P '(1)]K(ur)(„g(cu) from ALEPH [16],
ARGUS [34], and CLEO [17], respectively. The only pa-
rameter is ~V,s~. The slope of the Isgur-Wise function is
constrained to the value given by our lattice calculation
[see Eq. (51)] and the functional form for the Isgur-Wise

function that is used is (NR of Eq. (42).~s The results of
these fits are summarized in Table XVII. Our results fa-
vor ALEPH and CLEO data over that of ARGUS. Using
the data &om CLEO, for instance, we find

I I I I I I I I I I I ) I

0.06—
o UK@CD
l'l A&.&PH

~ 0.043

+
0.08

2 p g+2+4—3-2

~V.,]
= O.O4a+s+'+'

O Oo
1.0

I l I I t I I I I I I

1.4 1.6

As can be seen from Fig. 7 other parametrizations give
very similar curves when fit to our results for („,z. Therefore,
results for ~V q~ obtained with these other parametrizations
will be well within our quoted error bars.

FIG. 9. Least y Bt to experimental data for
~V q~[1 + P '(1)]K(~)((cu) from ALEPH [16] assuming
K(u) = K(1). In this fit, the slope of the Isgur-Wise function
is constrained to the value given by our lattice calculation [see
Eq. (51)] and the functional form for the Isgur-Wise function
that is used is fN& of Eq. (42). The first set of errors on

~V,q~ is due to experimental uncertainties, the second set of
errors results from the lattice statistical errors on p, and the
third, from the lattice systematic errors on p . The experi-
mental points were obtained from a measurement of the rate
dB(B m D"Iv)/du. Also shown are our appropriately scaled,
chirally extrapolated results (octagons).
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I I I I I I I I I I I I I

0.06—
0 UKQCD
l'l ARGUS

0.0351 + 0.0019 6 0.0020 CLEO [17],
0.0385 + 0.0044 + 0.0035 ALEPH [16, (60)

f 0.0392 + 0.0043 + 0.0025 ARGUS [34],

where the first error is statistical and the second sys-
tematic. These results have been rescaled by Neubert
[33] using the new lifetime values 7xao = 1.61(8) ps
and rex+ = 1.65(7) ps [40]. These new lifetixnes re-
duce ]VI,][1 + p '(1)]K(1) by approximately 1%. Our
results compare very well with these experimental mea-
surements, especially in the case of the CLEO result.
This is due to the fact that our Isgur-Wise function has
an cu dependence which agrees very well with that of the
CLEO data.

FIG. 10. Same fit as in Fig. 9 but for experimental data
from the ARGUS Collaboration [34].

VIII. EXCLUSIVE DECAY RATES

+1+2+4 ( 0.99 l 1
lV sl: 0 037 1 2 1 l l (59)

where big ~ are the power corrections proportional to
1/m2 in K(1) which have been the subject of much con-
troversy of late [33,38].

For comparison, we present recent experimental pre-
dictions for ]V,s]K(l) obtained &om a linear fit to the
data

I I I I I I I I I I I I I

0.06—
& UKQCD
l'l CLEO II

~ 0.043

+
0.08

8
O 9+8+4-s-a

]V l
0 037+1+2+4

o.oo
1.0

FIG. 11. Same fit as in Fig. 9 but for experimental data
from the CLED Collaboration [17].

The ARGUS result has been corrected for the new D
branching fractions [39].

Having determined the Isgur-Wise functions $„g and
we can evaluate exclusive branching ratios. For

B(,) ~ D(,)lv decays, all we have to do is integrate
Eq. (54) and multiply the results by the B~,l meson life-
time. We approximate Ix+ in Eq. (54) by (1+P+)$NR with
p given by Eq. (51) or Eq. (52) depending on whether the
light antiquark is a u, d, or an s (see Sec. VII). We neglect
the O(es, e ) power corrections to h+ since they appear
to be small (see Sec. V) but add a 10% error to account
for possible higher-order power corrections. We further
neglect the contribution of 6 in accordance with Neu-
bert's findings that this form factor is smaller than 0.04
over the whole range of u [see discussion after Eq. (54)]
but add 20% to our errors since an III (~)l 0.2((~) is
consistent with radiative corrections and order of magni-
tude estimates of power corrections.

The branching ratios for B(,) —+ D( )/v decays are
equally simple to obtain. Here it is Eq. (58) that we
must integrate over the range j ( w ( (M&2

(e)
MD. )/2Mxx& IMxx. . The Isgur-Wise functions used are

(e) (e) (e)
'

the same as for B(,) ~ D(,)Lv decays. As discussed after
Eq. (58), we assume K(u) = K(1). We further assume
K(u) = 1 which leads to an uncertainty of the order of
O(2e, ) 5 —10% in the branching ratios.

We suxnmarize our results for 8(B~,l -+ Di, lie) and
8(B~,l —+ D&,ltv) in Table XVIII. The first set of er-
rors is obtained by adding our lattice statistical and sys-
texnatic errors in quadrature. The second set of errors
corresponds to the uncertainty due to deviations 6.om
the heavy-quark limit. For comparison, we list the ex-
perixnentally measured values for these branching ratios.
Agreement with our predictions is very satisfactory.

Finally, we give a prediction for the ratio of the rates
r B(s) ~ D(,)~& and for B(s) + D(s)~& In this ra

the factors of lV,sl cancel and lifetimes do not appear.
This ratio is thus a purely theoretical prediction. We
And
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TABLE XVII. Results for ]Vbi from a fit of iV bi[1+ p '(1)]K(u)(Na(~) to experimental data
with (N&(tu) fixed by our lattice computation [i.e. , p is given by Eq. (51)] and K(cu) = K(1). The
experimental data are obtained from the differential branching ratio for B ~ D*/v decays. In the

iV,bi column, the first set of errors is due to experimental uncertainties, the second set of errors
results from the lattice statistical errors on p, and the third, from the lattice systematic errors on

P ~

Experiment

ALEPH
ARGUS
CLEO II

iV~ii ('+~ „(")(1+6',i )

0.042(2)+s+,
0.033(2)+ +

0.037(1)+ +,

y'/le F

3.0/5
9.9/7
4.5/6

I'(B m D'lv) = 3.2+2(lat) + 1.0(hqs)

I (B, -+ D;lv) +z= 3.3+ (lat) + 1.0(hqs)I'B, mD, lv (62)

where the Grst set of errors was obtained by adding our
lattice statistical and systematic errors in quadrature and
the second set of errors, denoted by hqs, quanti6es the
uncertainty due to neglected power and radiative cor-
rections. For comparison, the experimental result for
I (B m D'lv)/I'(B + Dlv) is 2.1(1) [41]. Though low
compared to our prediction, this result is consistent with
ours within errors.

IX. CONCLUSIONS

We have presented an extensive study of semileptonic
8(,) ~ D~,)lv decays where we evaluate the matrix el-

ement, (D]cp"biB), for inany different values of mb and
m around the physical charm mass and three values of
the light antiquark mass around that of the strange. Be-
cause the charm quark has a bare mass which is almost 3
the inverse lattice spacing, mass-dependent discretization
errors are a problem that we must contend with. To re-
duce these errors we use an O(a)-improved quark action
in which the leading such errors are no longer O(amp)
but rather O(a, amp, (amp)z) This reduc. es discretiza-
tion errors Rom O(40%) to O(5 —15%%uo) at the mass of
the charm. To reduce thein even further we describe, in
Sec. IIIC, a procedure for subtracting them at least par-
tially. Only those discretization errors which have the

same dependence on u as h+(u) will be fully subtracted.
We believe, however, that the observation in Sec. V of
li+(w)'s lack of dependence on heavy-quark mass indi-
cates that a fairly large proportion of discretization errors
are eliminated with our procedure.

The fact that we obtain h+(u) and h (u) for many
values of the initial and final heavy-quark masses en-
ables us to study their heavy-quark-mass dependence.
We find that the residual dependence of li+/[1+ P+(~)]
on the heavy-quark mass is consistent with zero. Given
our errors, we conclude that power corrections to the
form factor h, + for physical B ~ D transitions are less
than 10%. This is much smaller than the 25% corrections
one is entitled to expect for form factors not protected
by Luke's theorem. It is also in stark contrast with our
findings for the decay constant, fD, of the pseudoscalar
D meson [12]. In [12], we find that the O(e, ) corrections
to the heavy-quark limit prediction for this constant are
on the order of 30%. Thus, it appears that the pro-
tection from O(A~~D/m, ) effects that Luke's theorem
provides at zero recoil extends to some extent over the
full range of experimentally accessible u. Our results for
h+(u)/[1 + P+(u)] are then, to a good approximation,
the corresponding Isgur-Wise function.

Having obtained the Isgur-Wise function from
h+(u)/[1 + P+(w)] for three values of the mass of the
light, spectator antiquark, we can study its depen-
dence on light-quark mass. Interpolating the light an-
tiquark to the strange, we obtain an Isgur-Wise func-

tion relevant for B, ~ D,*)lv decays which has a slope
1.2+z(stat)+i(syst) at zero recoil when fit to a

parametrization proposed by Neubert and Rieckert [30].
Extrapolating to a massless light antiquark yields an
Isgur-Wise function relevant for B m D(*)lv decays.

TABLE XVIII. Our predictions for various branching ratios compared to the experimentally
measured values for these ratios. Our results are obtained assuming iV, bi = 0.038 [41] &so = 1.53
ps, 7go = 1.54 ps [48], Miio = 5.28 GeV, Miio = 5.38 GeV, Mii+ = 1.87 GeV, M~+ = 1.97 GeV,
Mri. + ——2.01 GeV, and Mo.+ = 2.11 GeV [49]. Our errors are explained in the text. We only

consider here semileptonic B and B, decays because the experimental data for charged B meson
decays are much less precise. The quoted experimental numbers were taken from [41].

UK+CD
ARGUS
CLEO I
CLEO II

B —+ DLv
1.5 4 + 0.3

2.1 + 0.7 + 0.6
1.8 + 0.6 + 0.3

B, wD, lv
1.3+ + 0.3

BmD lv
4.8 + 0 5

4.7 + 0.6 + 0.6
4.1 + 0.5 + 0.7

4.50+ 0.44+ 0.44

B, + D,'lv
4.4+4, + 0.4
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I'(B, -+ D, lv)
(64)

where the first set of errors was obtained by adding our
lattice statistical and systematic errors in quadrature and
the second set of errors, denoted by hqs, quantifies the

This function has a slope —$„' &
——0.9+s(stat)+z(syst)

at zero recoil. We observe a slight decrease in the magni-
tude of the central value of the slope as the mass of the
light antiquark is reduced in accordance with one s un-
derstanding that more massive degrees of &eedom have
more inertia. Given the errors, however, the significance
of this observation is limited.

We also use these functions, in conjunction with heavy-
quark efFective theory, to extract V p &om the experimen-
tally measured B + D*/v decay rate. Our procedure for
extracting ]V,b] difFers from that proposed by Neubert
[15] in that we fix the ~ dependence of the differential
decay rate using our calculation instead of fitting it &om
experiment. This enables us not only to extract ]Vs] with
no &ee parameters, but also to check the validity of non-
perturbative @CD against experiment. We find that the
~ dependence predicted by our calculation agrees very
well with the results of the ALEPH [16] and CLEO [17]
collaborations. Using the data &om CLEO, for instance,
we find

+i+2+4 f 0.99 l 1
037—i-2-i I 1+P„,(1))I 1+bV,s = 0.037

where big ~ is the power correction proportional to 1/m
at zero recoil and P '(1), the relevant radiative correc-
tion. Here, the first set of errors is due to experimental
uncertainties, the second due to statistical errors and the
third to systematic errors in our evaluation of the Isgur-
Wise function. We also use our Isgur-Wise functions and
heavy-quark effective theory to calculate branching ratios
for B~,~

~ D~, ~/v and B~,~
-+ D~,&lv decays. Agreement

with experiment is very good. Finally, we compute the
following ratios of rates:

) = 3.2+', (lat) + 1.0(hqs)I'(B m Dlv)

and

uncertainty due to neglected power and radiative cor-
rections. In these ratios, the factors of ]V,s[ cancel and
B-meson lifetimes are absent: they are purely theoretical
predictions.

We are currently extending our study to the matrix
elements relevant for B~,~

~ D~,~lv decays. This will

enable us not only to check our predictions for the var-
ious Isgur-Wise functions but also to test the heavy-
quark spin symmetry. We are also undertaking a study
of semileptonic Ap ~ A, and:-p ~, decays, where the

As(, &
is a J =

2 baryon composed of a b(c) quark and
two light quarks coupled to spin and isospin 0 and the
:-s(,), another J =

2 baryon composed of a b(c) quark
and two light quarks but this time with spin 0, isospin 2,
and strangeness —1. That study should provide many in-
teresting phenomenological predictions which are at the
limit of current experimental knowledge as well as many
tests of the heavy-quark symmetry. Finally, we are plan-
ning to repeat these studies on lattices with different lat-
tice spacing in order to remove discretization errors in a
more systematic way.
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