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+ED radiative corrections for parton distributions
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I discuss radiative corrections due to the emission of photons from quarks which contribute to
deep inelastic lepton-nucleon scattering as well as to pp collisions at high energies. These corrections
are dominated by quark-mass singularities which have to be absorbed into the parton distribution
functions. Observable effects appear as a modification of the Q dependence of the distribution
functions. Numerical results indicate, however, that these +ED corrections are negligible except at
extremely large q and large m Th. erefore it is safe to neglect the single and multiple photon effects
in pp scattering at CERN LHC energies.

PACS number(s): 13.40.Ks, 12.15.Lk, 13.60.Hb

I. INTRODUCTION

High-energy scattering experiments with charged par-
ticles require the inclusion of electromagnetic radiative
corrections due to the virtual and real emission of pho-
tons. These QED corrections are known to a high preci-
sion as far as they are related to radiation &om leptons,
as, e.g. , in the case of initial state radiation in e e an-
nihilation (see, e.g. , [1]) or in the case of leptonic correc-
tions in deep inelastic lepton-nucleon scattering [2]. In
processes involving charged hadrons in the initial or final
state there are QED corrections related to photon emis-
sion from hadrons or their constituents. Photons origi-
nating &om hadron decays or emerging during hadroniza-
tion are usually modeled in Monte Carlo programs sim-
ulating the hadronic final state and are not considered
in this paper. In the following I want to discuss the ef-
fect of photon radiation &om quarks entering or leaving
the underlying hard scattering process. I will show that
the corresponding corrections are negligible, even at very
high energies.

In e+e annihilation into hadrons, QED corrections
of the type considered here appear as photon radiation
&om the final state quarks. Final state radiation does
not pose a severe problem since as a consequence of
the Kinoshita-Lee-Nauenberg (KLN) theorem the corre-
sponding corrections are small. The situation is difFerent
in deep inelastic scattering or in hadron collisions. In
this case there are QED corrections related to the emis-
sion of photons &om quarks in the initial state. These
corrections contain mass singularities related to the ini-
tial state partons. Using dimensional regularization, as is
usual in QCD calculations, these mass singularities ap-
pear as poles in 1/(D —4). If one regulates the mass
singularities with the help of finite quark masses, as is
widespread in QED calculations, one finds terms propor-
tional to ln m .

In an early calculation of radiative corrections to
charged current neutrino scattering by Kiskis [3], the
author was worried by this fact, since it; makes a large
difference whether one uses m~ = 350 MeV (a typical
constituent quark mass) leading to in@2/m2 10.9 for

p = Miv, or m~ = 5 MeV (a typical value for the cur-
rent quark mass) leading to ln M~~/m2 19.4. Later,
De Rujula, Petronzio, and Savoy-Navarro [4] have ar-
gued that the unphysical dependence on quark masses
can be absorbed by a redefinition of parton distribution
functions. This redefinition, or renormalization of parton
distribution functions, is well known in the calculation of
QCD radiative corrections where in. complete analogy to
photon radiation the emission of gluons leads to mass
singularities as well.

The essential property of mass singularities is that they
factorize [5]; i.e. , they can be written as a convolution of
the parton-level Born cross section OB ',„"with a kernel
K((, p ) describing the effect of radiation and containing
the mass-singular terms. Explicitly, for first-order correc-
tions and omitting the summation over parton types, the
mass singular part has the form

Here f(() is a parton distribution function, p the mo-
mentum of the incoming hadron, and ( a dimensionless
variable characterizing the amount of energy available
for the hard scattering process after radiation. The min-
imum of (, (;„=z, is determined by the kinematics of
the process. The energy scale p, (factorization scale) re-
mains arbitrary unless the nonsingular contributions are
specified. Choosing p to be a typical mass scale of the
process, it is usually possible to avoid the appearance of
large nonsingular corrections. The lowest-order cross sec-
tion is itself a convolution of parton cross sections with
parton distribution functions:

Adding these contributions, one can absorb the mass sin-
gular terms by a redefinition of the parton distribution
functions:
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The bare parton distribution functions f(() are, in
fact, not measurable. It is rather the renormalized dis-
tributions f""that have to be identified with measured
(i.e., finite) quantities. The appearance of mass singular-
ities in unphysical quantities is an artifact of the pertur-
bative treatment. By the redefinition Eq. (4), the mass
singularities disappear from the observable cross section
and the renormalized distribution functions become de-
pendent on the factorization scale p . The p dependence
is controlled by the well known Gribov-Lipatov-Altarelli-
Parisi (GLAP) equations [6]. In deep inelastic scattering
they are equivalent to the renormalization group equa-
tions for the Wilson coeKcients and express the fact that
observable effects are independent of the energy scale at
which the distribution functions are renormalized. The
solution of the GLAP equations corresponds to the re-
summation of all powers n of the leading logarithms
n."(ln p,z)".

Since mass singularities are universal, i.e., indepen-
dent of the process under consideration, the definition
of renormalized parton distributions is also universal.
Therefore it is possible to discuss the bulk of radia-
tive corrections in terms of parton distribution functions.
This will be true if there is only one large scale in the pro-
cess (e.g. , in inclusive deep inelastic scattering ep -+ eX
with x not small). Then radiative corrections which are
not mass singular cannot contain large logarithms.

The above prescription for the treatment; of mass sin-
gularities applies to both QCD and QED corrections.
Taking into account QED corrections, the renormaliza-
tion of parton distributions has to include terms due to
the emission of photons from quarks, in addition to those
due to the emission of gluons. Then, also the GLAP
equations are modified by an additional term of the order
of the electromagnetic fine-structure constant o, Apart
from small nonsingular contributions, the resulting mod-
ified scale dependence of parton distribution functions is
the only observable effect of QED corrections in high-
energy scattering of hadrons.

The modification of the GLAP evolution equations by
QED corrections has also been discussed in [7]. In this
work, I will present and discuss numerical results for their
solutions including terms of order O(n, (n, ln pz)") for
arbitrary n relevant for present and future experiments
such as at the DESY ep collider HERA or at the CERN

xoB . (Q)) (3)

with renormalized distribution functions

Large Hadron Collider (LHC). Moreover, I will give a
simple prescription to approximately take into account
the QED corrections of valence parton distributions.

The prescription to be described below applies to com-
pletely inclusive measurements of any process hzh2 —+ X,
i.e. , where emitted photons are not restricted by energy
or angle cuts to a specific phase-space region. Experi-
mentally this means that no attempt is made to observe
emitted photons. It is a more complicated task to derive
cross sections for the production of isolated hard photons
(see, for example, [8] and references therein). In this case,
mass singular contributions can be avoided by imposing
isolation cuts. For a measurement of direct photon pro-
duction without isolation cuts one has to absorb part of
the mass singular contributions into photon fragmenta-
tion functions describing the nonperturbative emission of
collinear photons from partons.

XI. FOKMALXSM

they read

qX(~ t) =— —P ] (» t)qx(&/z t)
d n (t) 'dz
dt ' 2' z

+P,«(z, t)G(z/z, t), (6)

—G(x, t) = ' —) P«, (z, t)qZ(x/z, t)
d n, (t) dz

dt '
2m z

+Pc)c(z, t) G(x/z, t)

To leading logarithmic accuracy (LLA), the splitting
kernels P;~z are scale independent and given by (see, e.g. ,
[9, »])

1+" 3P
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z

1 1
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After having absorbed mass singular terms into the
parton distribution functions, qy(x, pz) for quarks with
flavor f and G(x, p2) for gluons, the resulting dependence
on the energy scale p, at which the process probes the
parton content of the hadrons is described by the GLAP
evolution equations [6]. Using the scale variable

t =in@ /A,
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thus, if the integral is restricted to the range x & z & 1,
an additional term f(1) ln(1 —x) has to be taken into
account.

The inclusion of QED corrections modifies the evolu-
tion equation for the charged parton distributions by an
additional term:

d n (t) dz—qt (x, t) = ' —Pqgq(z, t)qg(x/z, t)
dt '

2m z

+P,&G(z, t) G(x/z, t)

+ '
P~& (z,—t)qy(x/z, t), (11)

n, (t) dz

where

— 2 1+" 3P~ (z) = ey + —b'(1 —z)
(1 —z)+ 2

2
e&

q/q (12)

Here the running electromagnetic fine-structure constant
appears, which is given by

n(0)
1 ——,-„P,e', (t —t, )0(t —t, )

' (13)

with t
&

——ln(m&/A ) and n(0) = 1/137.036. . . . et are
the fermion charges in units of the positron charge and
the fermion-mass thresholds have been approximated by
the step function e(t —t z).

It is convenient to use the following combinations of
parton distribution functions:

U(x) = ) [u(x) + u(x)],
gen

D(x) = ) (d(x) + d(x)),
gen

~(*) = U(*) + D(*)

(i4)

A(x) = U(x) —D(z),

where P,„means summation over the generations.
Then, denoting the convolution of splitting kernels with
distribution functions by the symbol {3 and the deriva-
tive with respect to the scale variable t by an overdot,
the evolution equations can be written as

In the following, I restrict myself to the LLA and omit
the argument t in P;/~. The running strong fine-structure
constant is given by

1 33 —2'n, (t) =, bp ——

b0C
' 12' (9)

Note that the "+" distribution appearing in Eq. (8) is
defined for the interval &om 0 to 1:

Z = —'P ( g) Z + 2' —'P
gG {3G2' 2'

r' sP' g
~

—Z+ —A~,
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~

-Z+ —Z ~,2~ ' ' 2~ ~~~ E6 18

G = —'PG. (q {3Z+ —'P~gc. {3G.
2~ 27'
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In contrast with the pure QCD evolution, the nonsinglet
combination of parton distributions A(x) does not decou-
ple &om the singlet sector due to the difFerent charges of
up- and down-type quarks. For our purpose it is conve-
nient to separate the solution of the equations without
the QED term, i.e. , to write

Z=Z +o., L=L +b, G=G +g, (16)

where Z, 6, and G obey the evolution equations Eq.
(15) with n, = 0. rr, b, and g are corrections of relative
order O(n, ). Neglecting terms of order O(n, ), one ob-
tains equations for the QED contributions to the parton
distributions:

III. NUMERICAL RESULTS

Equations (17) lend themselves directly to an itera-
tive numerical solution, given the QCD evolved solutions
Z (z, t) and 4 (z, t). The use of Eqs. (15) would require
initial conditions for qf (x, tp) aiid G(x, tp) at some refer-
ence scale tp ——ln(Qp2/A2). High precision and a stable
numerical algorithm is needed if the small corrections of
O{n,) were to be determined directly from Eqs. (15) in-
stead of Eqs. (17). Therefore it is preferable to use Eqs.
(17). I checked my algorithm by comparing the solutions
from these two equations. As an additional check, the al-
gorithm was used to solve Eqs. (15) with n, = 0 and ini-
tial conditions qt(z, tp) taken from one of the commonly
used parametrizations of parton distribution functions,
as provided for example by the program library PAKPDF
[ll]. The resulting Q dependence of the pure QCD evo-
lution was then compared with the Q2 dependence of the
corresponding parametrization. In view of the fact that
the available parametrizations are only approximate so-
lutions of the GLAP equations having their own limited
precision, the agreement between these diferent methods

o. = —'Pqyq ts o + 2&f—'
Pqg~ g g

+—P' e
~

—&+-& ~,
2vr « I 18 6

n, fl 5
h = 'P

&, g 8—+ P' Ca
~

——Z+ —6 ~,
2m

~ ~ 2m. «~ q6 18
O.s as

g = —Pzgq {3o + —PG/z {3g.
2 27r

Note that although the gluons do not couple directly to
photons, their distribution function is modified through
higher-order contributions induced by their coupling to
the quarks. The correction g is formally of order
O(n, n, ). In Eqs. (17) the full n, evolution of the QED
contributions is kept.
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the power o. and other details of the distribution func-
tions. The valence parts of U(x) and D(x), however,
which vanish at x = 0, receive positive corrections at
small x, thus producing the well known physical picture:
radiation of gluons as well as of photons leads to a de-
pletion at large x and an enhancement at small x; i.e.,
partons are shifted to smaller x.

The corrections strongly depend on the input distribu-
tion functions; difFerences at the per-mille level are found.
But still these differences are irrelevant when compared
with the expected experimental precision of structure-
function measurements.

For valence distributions there is a simple prescription
to include the efFect of QED radiation. Using as variable
the evolution length (in leading order)

((t) = dt' ' = ln —,, a, (t') 1
2~ 2' bp tp

the GLAP equation for valence quark distributions has
the simple form

d 'd'
d(. ' ' z~(»(.) = —&9/q(z & )q ~(x/z & ) (20)

q„$(xa, t) M q„~/(x, t) (22)

with

( (t) ) sme~bo/(Cs Qy e~)

& .(t )r

Then, the substitution

(,(t) -+ (,+,(t) = dt' ' +I ~~ (t) et ~.(t)~
2 C 2 )

=(,(t) + z ln ' (2l)
~.(t)

2 y' f eg Ae tp

automatically takes account of QED radiative effects.
This means, the evolution length is increased by QED ra-
diation. Given the solution q ~(x, t) of Eq. (20), one ob-
tains the solution of the GLAP equation including QED
efFects by

This simple prescription is sufBcient for including
quarkonic QED corrections into the structure functions
at large x where valence contributions dominate.

IV. CONCLUDING REMARKS

I have shown that radiation of photons &om quarks
leads to negligible corrections of cross sections for high-
energy scattering processes involving hadrons. The lead-
ing eKect is a modification of the scale dependence of par-
ton distribution functions described by a modification of
the GLAP evolution equations. These equations include
the efFect of multiple photon emission as far as it is en-
hanced by a logarithm of the energy scale of the process.
Nonleading corrections have not been calculated, but in
the case of an inclusive measurement as considered here,
they are of the order of O(o.,/vr) 0.2% and therefore
also negligible. One should note, however, that in exper-
iments which apply cuts on the energy and/or the angle
of emitted photons, one would have to take into account
enhancement factors of the type ln(Eb, /E, „t) and/or
lne, „t. A discussion of these eKects is beyond the scope
of the present work.

I did not discuss the question of how to model the
production of soft or collinear photons in the final state
of a hard scattering process. This should be viewed as a
part of the nonperturbative hadronization process. Com-
monly used Monte Carlo programs apply a two-step pro-
cedure where in a erst step a parton cascade is devel-
oped. This cascade obeys the GLAP evolution and may
allow for photon emission in addition to gluon radiation.
The termination of the parton cascade requires a cut-oK
which could be implemented in a reasonable way by us-
ing e8'ective quark masses. Usually those quark masses
are identi6ed with the constituent quark masses. It is
important to understand, however, that a calculation of
QED corrections to the total cross section within such
an approach, i.e., using definite values for quark masses
and not factorizing the corresponding mass singular con-
tributions, would be misleading and usually would lead
to a gross overestimation of the efFect. The virtue of
these Monte Carlo programs is to provide a model for
the distribution of energy and momentum among Anal
state hadrons and photons.
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