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Evidence for virtual Compton scattering from the proton
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In virtual Compton scattering an electron is scattered off a nucleon such that the nucleon emits
a photon. We show that these events can be selected experimentally, and present the first evidence
for virtual Compton scattering from the proton in data obtained at the Stanford Linear Accelerator
Center. The angular and energy dependence of the data is well described by a calculation that
includes the coherent sum of electron and proton radiation.

PACS number(s): 13.60.Fz, 14.20.Dh

A central question in subatomic physics is the descrip-
tion of the nucleon in terms of quarks and gluons. Tradi-
tionally, the electromagnetic structure of the nucleon has
been investigated with elastic electron scattering, deep-
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inelastic scattering, and real Compton scattering. Elas-
tic scattering has yielded the electromagnetic form fac-
tors [1,2] related to charge and current distributions in
the nucleon. Deep-inelastic scattering has established the
existence of pointlike partons inside the nucleon [3], and
provides access to the momentum and spin distributions
of these partons. Real Compton scattering has provided
information on the electric and magnetic polarizabilities
of the nucleon [4,5] which enter as the leading corrections
to the low-energy theorem (LET) [6].

Here, the virtual Compton (VC) scattering process
p*N ~ pN is discussed, where a photon with virtuality
Q2 is absorbed on a nucleon which subsequently radiates
a real photon with energy (momentum) cu' (q'). This
process is intrinsically a rich probe of nucleon dynamics,
since one can independently map out the dependence of
the VC process on Q2, the virtual photon's polarization,
and the invariant mass of the hadronic intermediate state
W, given by

W = M + 2~'(E„—pI).

Here pf, Ez, and Iare respectively the momentum com-
ponent along the q' direction, the energy, and the mass
of the outgoing proton. In addition, one can experimen-
tally select the polarization of incident beam, target, or
recoiling proton. In the limit Q2 -+ 0 the VC reduces to
the real Compton process, while in the limit R' —+ M it
becomes equivalent to elastic electron-proton scattering.

The VC process provides a particularly interesting
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energy (momentum). For the reaction eN —+ eNp one
has u' = E and q' = p" . Figure 1 demonstrates this
efI'ect with the data recently obtained at SI.AC. The tails
due to radiation of the incident and scattered electrons
are readily observed. It is seen that the radiated events
are distributed along lines with E = ~p ~

as required
for real photons.

The angular distribution of the emitted photons can
be reconstructed kom the measured p . We will only
consider events with a missing energy ( ~') larger than
20 MeV since in the region ~' + 0 MeV the experimental
resolutions, 8 MeV (10 MeV/c) in missing energy (mo-
mentum), do not permit an. accurate reconstruction of
the photon angle. Furthermore, applying a lower cuto6'
in u' is needed to minimize efFects due to multiphoton
emission. Figure 2 shows the angular distribution of the
count rate for events with E & 30 MeV. The invari-
ant mass of the photons has been reconstructed &om the
kinematics and the photon events are well separated from
the m -production channel. It is seen that electron radi-
ation is predominantly in the direction of the initial and
final electrons, in accordance with the peaking approxi-
mation [20]. Note that a broad distribution of events is
seen in the direction of the outgoing proton.

Next, the angular distributions were calculated in the
soft-photon limit. Here, the proton contribution corre-
sponds to radiation &om a Dirac particle with the usual
form factors Fq(Q2) and E2(Q ). The standard formal-
ism by Mo and Tsai [21] was extended to coincidence
(e, e'p) reactions [22], enabling a calculation of the soft-
photon differential cross section of the ~H(e, e'p)p reac-
tion. This di8'erential cross section was reduced to the

cross section for (multi)photon emission with total en-
ergy u' and angle 0~ in the scattering plane. For this
we used polar coordinates, integrating over the range of
tan(P~) accepted by the phase space. Effects arising from
imperfect knowledge of the phase space were suppressed
through an energy cut, u' & 80 MeV, applied for radiated
photons along the incident electron beam. The absolute
photon rate was calculated by folding the cross section
over the spectrometer acceptances and including experi-
mental resolutions. No normalization factors were used.
The data has a systematic uncertainty of 6.6%, which is
mainly due to uncertainty in the detection phase space.
As Fig. 2 shows, the agreement between data and simu-
lation is excellent.

Having verified. that we satisfactorily understand the
angular distribution of radiated events (note that only
about 3 x 10 out of a total of 5 x 10 events have ra-
diated more than 30 MeV), a region sensitive to the VC
scattering process is selected. That such a region exists
is illustrated in Fig. 3, which shows the calculated angu-
lar distribution of radiated photons in the single-photon
limit. For this, the total radiative eKects can be divided
into three parts, one solely due to electron radiation (6„),
one due to the contribution &om electron-proton inter-
ference (h,z), and one due to the contribution Rom direct
proton radiation (h'„„) only. It is seen that radiation from
the proton is dominant for photon angles less than —80,
while in the photon angle range between —60 and —20
one expects about a similar amount of photons originat-
ing &om VC processes as from Bethe-Heitler processes
(see also the inset of Fig. 2). We would like to point
out the differences between Figs. 2 and 3. In Fig. 3
the prominent dip along the proton angle re8ects the
character of dipole radiation boosted along the particle's
momentum, emphasized in the single-photon limit. The
electron radiation peaks (b„) also have sharp minima at
their maxima, but because the boost of the dipole pat-
tern is so large, the minima are so narrow that they are
not shown in the figure. In Fig. 2 a complete angular
distribution of radiated photons is calculated, where all
multiphoton contributions are taken into account.

In Fig. 4 we show the number of radiated events versus
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FIG. 2. Calculated angular distribution of radiated events
in comparison with NE-18 data for u' ) 30 MeV. The
solid (dotted; see inset) curve shows the prediction in the
soft-photon limit for Bethe-Heitler and VC contributions
(Bethe-Heitler only). The central angle 8~ for the incident
(scattered) electron and outgoing proton are 0' (37.29') and
—43.29', respectively. Note that the inset shows the region
—60 ( 8~ ( —20' with a different vertical scale.
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FIG. 3. Angular distribution of radiated photons in the
single-photon limit. No acceptance effects are taken into
account. The various curves denote the b„(dotted), h,„
(dot-dashed), and b„„(dashed) contributions. The solid curve
shows the coherent sum of the various contributions.
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FIG. 4. Number of radiated events versus the cutofF en-

ergy u', in the intervals —60' & 8~ & —20' [radiation along
the proton direction (a)], —20' & e~ & 20' [radiation along
the incident electron direction (b)], 20' & 8~ & 50' [radia-
tion along the scattered electron direction (c)], and the re-
gion 50' & e~ & 90' (d). The solid (dotted) curve shows the
prediction in the soft-photon limit for Bethe-Heitler and VC
contributions (Bethe-Heitler only).

the cutoff energy cu', in various intervals 40~. The dotted
curve shows the prediction when only Bethe-Heitler con-
tributions are taken into account. This calculation gives
a good description of the energy dependence of the data
measured in the intervals —20' & 9~ & 20' [Fig. 4(b)],
and 20 & 8& & 50' [Fig. 4(c)], corresponding to radi-
ation along the incident and scattered electron. A good
description is also obtained for the radiated photons in
the angular range 50' & e~ & 90' [Fig. 4(d)], which is

especially sensitive to the effects of experimental resolu-
tions. However, the calculation with Bethe-Heitler con-
tributions only shows a deficiency in the description for
radiation in the angular range —60 & 8~ & —20' [Fig.
4(a)], which corresponds to radiation along the proton di-
rection. The solid curves represent the prediction in the
soft-photon limit for both Bethe-Heitler and VC contri-
butions. The good agreement between data and predic-
tion of the number of counts when proton radiation is
included clearly demonstrates the experimental viability
of the technique even with the 2 x10 duty factor avail-
able at the SLAC end station. The number of counts in
this regime is too low to allow for a meaningful study of
the nucleon structure. However, with the advent of the
high-luminosity beam at CEBAF and the projected high-
resolution spectrometers, high statistics virtual Compton
scattering experiments should be possible [12,14].

In summary, we have presented the first data on the
virtual Compton scattering process &om the proton. We
have shown that these experiments are possible, and that
one can select a region where the virtual Compton contri-
butions dominate. The results give important impetus to
future measurements of the virtual Compton scattering
cross section in the reaction eN —+ eNp which will allow
for a clean test of our understanding of the nucleon.
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