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Dynamical chiral symmetry breaking by a magnetic field in +ED
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It is shown that chiral symmetry is spontaneously broken by a constant magnetic 6eld
in QED. The dynamical mass of fermions (energy gap in the fermion spectrum) is md„„
CgeB exp —(m/cr) l, where B is the magnetic field, the constant C is of order one, and n = e /47(
is the renormalized coupling constant. Possible applications of this e8'ect are discussed.
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The dynamics of fermions in an external constant mag-
netic field in QED was considered by Schwinger long
ago [1]. In those classical works, while the interaction
with the external field was considered in all orders in the
coupling constant, the quantum dynamics was treated
perturbatively. There is no dynamical chiral symmetry
breaking in QED in this approximation [2]. In this paper
we reconsider this problem, treating the QED dynamics
nonperturbatively. We will show that a constant mag-
netic Geld B leads to dynamical chiral symmetry break-
ing in massless QED. The dynamical inass of fermions
(energy gap in the fermion spectrum) is

X/2
ms„„CVeB exp

where the constant C is of order one and o. = e2/4m is
the renormalized coupling constant relating to the scale
p = may~.

The essence of this e8'ect is the dimensional reduction
D -+ D —2 (3 + 1 ~ 1 + 1 in this case) in the dy-
namics of fermion pairing in a magnetic Geld, pointed
out recently in Refs. [3,4]. Actually, we will show that,
in Euclidean space, the equation describing the Nambu-
Goldstone (NG) bosons in QED in a magnetic field has
the form of a two-dimensional Schrodinger equation:

[—E+ ~i„+V( )]4( ) = 0. (2)

Here 4(r) is expressed through the Bethe-Salpeter (BS)
function of NG bosons, A = (9 /82:s2 + 82/Dx4 (the mag-
netic field is in the +xs direction; x4 ——it), and the
potential V(r) is

V(r) = exp
~

~Ei
~

— ~, r = xs+ x4, (3)(2l ) ( 2l2) '

where Ei(x) = —j dt exp( —t)/t is the integral expo-
nential function [5] and l = ~eB~ / is the magnetic
length.

We emphasize that we work in the conventional, weak
coupling, phase of QED. That is, the bare coupling alai,
relating to the scale p = A, where A is an ultraviolet
cutofF, is assumed to be small, 0.( ) (( 1. Then, because
of in&ared freedom in QED, interactions in the theory
are weak at all scales and, as a result, the treatment of
the nonperturbative dynamics is reliable.

We will consider possible applications of this eKect at
the end of the paper.

The Lagrangian density of massless QED in a magnetic
Geld is

F""F„„——+ — vP, (ip"D„)g

where the covariant derivative D„ is

D„=(9„—ie(A'„"' + A„),

,„t ( B B
2 2 )

In addition to the Dirac index (n), the fermion field car-
ries an additional Bavor index a = 1, 2, . . . , ¹ Then, at
N ) 2, the Lagrangian density (4) is invariant under the
chiral SUL, (N) x SUtt(N) x UL, +~(1) transformations (we
will not discuss the dynamics related to the anomalous,
singlet current js„ in this paper). Since we consider the
weak coupling phase of QED, there is no spontaneous
chiral symmetry breaking at B = 0 [6]. We will show
that the magnetic field changes the situation dramati-
cally: at B g 0 the chiral symmetry SUI, (N) xSUtt(Ã)
breaks down to the SUv (N) =SUtt+L, (N) and, as a re-
sult, there appear N —1 gapless NG bosons composed
of fermions and antifermions. As we will see, the BS
equation for the NG bosons defines the dynamical mass
(energy gap) for fermions.

The homogeneous BS equation for N —1 NG bound
states takes the form (for a review, see Ref. [7])

XA22(, .; ~) = */ l( *,'„2(*."-222RlA (A +2)+A 22;A 22 (A12ll 22V2)XA 22 (A2 ll2 +)+22 22 (2h 2I)

where the BS wave function y&&(z, y; P) = (O~TQ~(x)@~(y) ~P; P), P = 1, 2, . . . , N —1, and the fermion propagator
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G~~(z, y) = {O~T@~(z)@~(y)~0);the indices A = (na) and B = (mb) include both Dirac (n, m) and flavor (a, b)
indices. Note that though the external field A'"i (5) breaks the conventional translation invariance, the total momen-
tum P is a good, conserved, quantum number for neutral channels [8], in particular, for these NG bosons. Since, as
will be shown below, the NG bosons are formed in the infrared region, where the QED coupling is weak, one can use
the BS kernel in leading order in n [7]:

K~,~, ,~,~, {xiyi, x2y2) = 4~io—4h, ,sg, g, y„",„,P", ,17„„{y2—x2)8{xi —x2)b'(yi —y2)
+4irici 4'b '4 p 'Y +i4 (xi z2)b(zl yl)b(z2 y2)

where the photon propagator

D„„(x)= d ke*"
~

g„„—A
—i 4;i, ( kk l 1

(8)

(A is a gauge parameter). The first term on the right-hand side of Eq. (7) corresponds to the ladder approximation.
The second (annihilation) term does not contribute to the BS equation for massless NG bosons (this follows from the
fact that, due to the Ward identities for axial currents, the BS equation for the NG bosons can be reduced to the
Schwinger-Dyson equation for the fermion propagator where there is no contribution of the annihilation term [7]).
Therefore we shall omit this term in the following. Then the BS equation takes the form

(9)

where, since we are working to lowest order in n, the full fermion propagator G~~(x, y) is replaced by the propagator
S of a free ferinion (with the mass m = my~„) in a magnetic field [1]:

(ie
S~~ (x, y) = h g exp

~

—(x —y) "A'"'(x + y) ~
S„(x—y),)4

where the Fourier transform of S is

S(k) = ds exp is
~

ko —ks —kz —m&„„~
( 2 2 2 tan(eBs) 2

x {(k p —k p + m~„„)[1 + p p tan(eBs)] —k~pz [1 + tan (eBs)]f

[here k~ ——(ki, k2), p& ——{pi,p2)]. Using the new variables, the center-of-mass coordinate, R = (x + y)/2 and the
relative coordinate r = x —y, Eq. (9) can be rewritten as

(R, r;P) = 47rcx —d Rid riS„„,
~

R —Bi+.
~
p„",„,y„,~, (Bi,ri, P)p",4(rrll

l(r —rix S .~ l

—R + Bi
I D) ~ (—"i) '"p —"("+ r i)"&&"'(R—Bi) .

2 ) (12)

Here the function y„(R,r; P) is defined &om the equation

y~&&(z, y;P) = (O~TQ~(z)g~(y)~P;P) = A &exp[ier"A'„" (B)]y (R, r;P),

where A~ are N —1 flavor matrices [tr(A~A~) = 2bp~, P,p = 1, 2, . . . , K —1]. The important fact is that the effect
of translation symmetry breaking by the external field is factorized in the phase factor in Eq. (13), and Eq. (12)
admits a translation invariant solution, y (R, r; P) = exp( —iPB)y (r; P). Henceforth we will consider the case
with P —+ 0. Then, transforming this equation into momentum space, we get

d2q~d2R~d k~d k~) e~ty„~(p) = —4~n exp( —iq~R)S„„, p((, p~ + eA'"'(R) +2~ s 2

xp„",„,i„, , (k)p S, (p~~, p~ + eA'"'(R) —
)

x17„(k[~ —p((, k L
—px —2eA'" (B)), (14)

The crucial point for further analysis will be the assumption that mg„„« g~eB~ and that the region mostly
responsible for generating the mass is the infrared region with k md~„&& g~eB~. As we shall see below, this
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assumption is self-consistent [see Eq. (1)]. The assumption allows us to replace the propagator S„ in Eq. (14) by
the pole contribution of the lowest Landau level (LLL). In order to show this, we recall that the energy spectrum of
fermions with m = my~„ in a magnetic field is [9]

E (p3„) = +/rnid„+ 2tes~n+ p~„ n =0, 1, 2, . . .

(the Landau levels). The propagator S(p) can be decomposed over the Landau level poles [4,10]:

OO

S(p) =i exp
~

—
~ ) (—1)

)eB( ) po —ps —md„„—2(eB)n
(16)

with

2 2

D„(eB,p) = (p p —p p + may„) (1 —ip'p')L„~ 2
~

—(1+ ip'p')L„ i ~

2

+4(p'~' + p'~') I.'
where L„(x) are the generalized Laguerre polynomials [I = Lo and I i(x) = 0 by defiiution]. Equation (16) implies

that at m~„„&& g~eB~, the LLL with n = 0 dominates in the infrared region with p md„„.
The LLL pole dominance essentially simplifies the analysis. Now

S(p) = i exp( —I'pi), ™,""(1 —i&'&')
dyn

where p~~
= p p —p p and

p~~
——(p ) —(p ), and Eq. (14) transforms into

p(p~~pg)= ' d A dk 4k' ' (1 —

ipse)p"

dyn

x p(k((, kL), 2""p" (1 —ip'p )17„„(k)(—p)), kg —A L),
k))

—
mdyn

where

m&i'~) &(p) (pll ™i'~).
Equation (18) implies that p(p~~, p~) = exp( —I p&)rp(p~~), where y(p~~) satisfies the equation

dyn /J
dyn

(20)

17„„(k~~ —
p~~)

= d k~ exp
/

—
/

27„„(k~~ —
p~~, k~).

2 )
(21)

Thus the BS equation has been reduced to a two-
dimensional integral equation. Of course, this fact re-
Qects the two-dimensional character of the dynamics of
the LLL in the in&ared region, which can be explicitly
read from Eq. (17).

We emphasize that the dimensional reduction in a
magnetic Geld does not acct the dynamics of the cen-
ter of mass of neutral bound states [in particular, these
(N —1) NG bosons]. Indeed, the reduction 3+1 ~ 1+1
in the fermion propagator, in the in&ared region, re8ects
the fact that the motion of charged particles is restricted

in directions perpendicular to the magnetic Geld. Since
there is no such restriction for the motion of the center-
of-mass of neutral particles, their propagator must have
a (3 + 1)-dimensi nal form [ll]. This fact was explic-
itly shown for ne tralIbound states in the Nambu —Jona-
Lasinio model in'a magnetic field, in 1/N, expansion
[4] and for neutral excitations in nonrelativistic systems
[12]. Since, in addition to that, the propagator of massive
fermions is nonsingular at small momenta, we conclude
that the in&ared dynamics of the NG modes is soft in
the present model. In particular, this implies that the
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dx exp( —l x/2)
(k )2+

and, substituting expansion (22) into Eq. (20), we find
that B = —A, C = D = 0, i.e. , y(p~~) = Aps(l —ipip2),
and the function A satisfies the equation

e
f dekA(kj f de exp( —et'/2j

A p
2vr2 k2+ m2 (k —p)'+ x (23)

(henceforth we will omit the symbol ll
from p and k).

Introducing the function

d2k A(k)
(2.) k +,„„''"'

we get [from Eq. (23)] the two-dimensional Schrodinger
equation (2) with the potential

n . . . dx exp( —x/2)
0 l2s 2+0 pc

ml2 0
dee 'Ke —~e)l

.l
-p l(21 )l 'l, -2l )l

V(r) =—

(24)

(K(j is the Bessel function). Since —m~&„„plays the role
of energy E in this equation and V(r) is a negative, i.e. ,
attractive potential, the problem is reduced to finding
the spectrum of bound states (with E = —m& „(0)
of the two-dimensional Schrodinger equation with the
potential (24). For this purpose, we can use some re-
sults proved in the literature. First, the energy of the
lowest level E(n) for the two-dimensional Schrodinger
equation is a nonanalytic function of the coupling con-
stant n at n = 0 [14]. Second, if the potential V(r) were
short range, then m2& „(n) = —E(n) would take the form

m& „~exp[ —1/(an)] where a is a positive constant [14].
However, the potential is long range in our case. Indeed,

phenomenon of spontaneous chiral symmetry breaking
in this model does not contradict the Mermin-Wagner-
Coleman theorem [13] forbidding the spontaneous break-
down of continuous symmetries at D = 1+ 1.

Henceforth we will use Euclidean space with k4
—ik, where the total momentum P of NG bosons equals
zero. In order to define the matrix structure of the wave
function y(p~~) of the NG bosons, note that, in a magnetic
field, there is the symmetry SO(2) xSO(2) x 'P, where
the SO(2) xSO(2) is connected with rotations in xi—x2
and z3—x4 planes and 7 is the inversion transformation
xs ~ —xs (under which a fermion field transforms as
@ ~ ipsps@). This symmetry implies that the function
p(p~~) takes the form

(p(p(~) = ps(A+ipip2B + p(~C+ ipipgp~~D)

where pI~
——p3p3+ @4' and A, B, C, and D are functions

of
p~~ (p„are anti-Hermitian in Euclidean space).
We begin the analysis of Eq. (20) by choosing the

Feynman gauge (the general covariant gauge will be con-
sidered below). Then,

using the asymptotic relations for Ei(x) [5], we get

V(r) =—2&I 1
K P2'

n ( 2l2)
l, I

w+»~12 q
r2 rm0, (25)

where p 0.577 is the Euler constant. To find m2&„„(a),
we shall use the integral equation (23) at p = 0. Then,
as a ~ 0, the dominant contribution in the integral on
the right-hand side of Eq. (23) is formed in the infrared

ion with soft k + md

n d2k dx exp( —y/2)
2~2 k2 + m2 l2k2 + y

I'm', „„1')—A(0) ln
4vr ( 2 )

(26)

I.e. ,

CV'leB (27)

where the constant C = O(o. ) remains undefined in this
approximation. Note that this result agrees with the
analysis of Ref. [15) where the analytic properties of E(o()
were considered for the Schrodinger equations with po-
tentials having the asymptotics V(r) -+ 1/r2 as r ~ oo.

Let us now turn to considering the general covariant
gauge (8). As is known, the ladder approximation is not
gauge invariant. However, let us show that, because the
present effect is due to the infrared dynamics in QED,
where the coupling constant is small, the leading term
in ln(mg„„), ln(m~„„) —(vr/n), is the same in all
covariant gauges.

Acting in the same way as before, we find that in the
general covariant gauge the wave function (22) takes the
form rp(p) = ps(1 —ipip2)(A+ pC) where the functions
A and C satisfy the equations

A(p) =

C(p) =

a d2kA(k)
2~2 k2 + md2

dx(1 —Axl2/4) exp( —xl2/2)

0 (k —p)2+ x

nA d2kC(k) 2 k2(kp)
4~' k' + m' p'dyn

f dx exp( —xl /2)
X

(j [(k —p) + x]

(28)

(29)

One can see that the dominant contribution on the right-
hand side of Eq. (28) (proportional to [lnm2&„„12]2 and
formed at small k2) is independent of the gauge param-
eter A. Therefore the leading singularity in 1n(mq~„),
ln(mg„„) = —(n./n) ~, is indeed gauge invariant.

This concludes the derivation of Eqs. (1) and (2) de-
scribing spontaneous chiral symmetry breaking by a mag-
netic field in QED.

In conclusion, let us discuss possible applications of
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this effect. One potential application is the interpreta-
tion of the results of the GSI heavy-ion scattering exper-
iments [16] in which narrow peaks are seen in the energy
spectra of emitted e+e pairs. One proposed explanation
[17] is that a very strong electromagnetic field, created by
the heavy ions, induces a phase transition in QED to a
phase with spontaneous chiral symmetry breaking. The
observed peaks are due to the decay of positroniumlike
states in this phase. The catalysis of chiral symmetry
breaking by a magnetic field in QED, studied in this pa-
per, can serve as a toy example of such a phenomenon.
In order to get a more realistic model, it would be inter-
esting to extend this analysis to nonconstant background
fields [18].

Another potentially interesting application can be con-
nected with the possibility of the existence of very strong
magnetic fields (B 1024 G) during the electroweak
phase transition in the early Universe [19]. As the present
results suggest, such fields might essentially change the
character of the electroweak phase transition.

Yet another application of the effect can be connected
with the role of isomagnetic and chromomagnetic back-

grounds as models for the QCD vacuum (the Copenhagen
vacuum [20]). Also, as has been suggested recently [21],
isomagnetic fields in the vacuum of electroweak left-right
models can induce the parity breakdown. Our work sug-
gests that such field configurations may play the impor-
tant role in triggering chiral syminetry breaking in QCD
and those left-right models.

Ãote added in proof. We have just finished a com-
plete (both analytical and numerical) analysis of integral
equation (23). The result for mg„„agrees quite well with
estimate (27) and is

m&y~ Cv IeBI exp
2 2'

where C is of O(o.o). Notice that the ratio of the powers
of this exponent and that in Eq. (27) is vr/2~2 1.1.
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