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A strongly first order electrovveak phase transition
from strong symmetry-breaking interactions
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We argue that a strongly 6rst order electroweak phase transition is natural in the presence of
strong symmetry-breaking interactions, such as technicolor. We demonstrate this using an e8'ective
linear scalar theory of the symmetry-breaking sector.
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I. INTRODUCTION

The nature of the finite temperature electroweak phase
transition remains an important and elusive problem in
particle physics. The possibility of electroweak scale
baryogenesis, which has helped generate new interest in
this subject [1], requires the transition to be strongly
first order; only then does the universe depart &om ther-
mal equilibrium, satisfying the third of Sakharov s re-
quirements for baryogenesis and avoiding the washing
out of any generated baryon asymmetry. This paper
investigates the electroweak phase transition when the
symmetry-breaking sector involves strong interactions,
such as technicolor. We use an efFective scalar theory to
describe these interactions, and find that the transition is
first order if this sector exhibits a U(N) I, x U(N)R global'
symmetry. When the interactions are relatively strong,
the transition is strongly first order: the discontinuity in
the order parameter at the critical temperature is of the
order of the zero temperature expectation value v.

To set the stage, we briefly review what is known about
the electroweak phase transition in the minimal stan-
dard model. A variety of studies of the finite temper-
ature efFective potential have addressed this problem, us-

ing methods including the e expansion, Wilson-e8'ective-
action and "average-action" renormalization group tech-
niques, or graphical summation schemes with names such
as daisy and superdaisy [2,3]. They allow improved treat-
ments of the infrared problems [4] that can arise near
phase transitions. The transition appears to be first or-
der when the Higgs boson is lighter than the lV and Z,
but at most rather weakly so for an experimentally ac-
ceptable Higgs boson mass. As that mass increases, cor-
responding to stronger scalar coupling, the strength of
the transition decreases [5]. When the Higgs boson is
much heavier than the TV and Z, it is reasonable to ne-
glect the gauge and Yukawa interactions when studying

the transition. In that approximation the minimal stan-
dard model is the O(4) linear o. model, and the chiral
transition in O(N) models seems to be second order or
at most weakly first order [6—8].

Beyond the minimal standard model, less is known
about the nature of the electroweak phase transition, es-
pecially if the symmetry-breaking sector is strongly in-
teracting, as in a technicolor theory. Lattice studies [9]
of QCD-like gauge theories indicate that with two light
fermions, corresponding to an SU(2)L, x SU(2)~ —O(4)
global symmetry, the transition is second order, whereas
with more light fermions and a larger global symmetry,
the transition is first order. This suggests that techni-
color theories, which often do have more than two tech-
nifermions, might lead to a first order transition. To com-
plement the lattice results, we analyze the strongly cou-
pled symmetry-breaking problem using an efFective scalar
theory, which is partly amenable to analytic treatment
and avoids some of the uncertainties associated with lat-
tice techniques.

II. THE LINEAR cr MODEL

The properties of the phase transition depend on the
dynamics of the electroweak order parameter. We assign
it to transform under a global U(N)l, x U(N)R chiral
symmetry„motivated by technicolor theories, in which
the order parameter is a condensate of fermion bilinears.
A one family technicolor model for example corresponds
to N = 8 flavors, large enough to suggest utility of the
large N expansion in the analysis. The most economi-
cal efFective scalar theory of electroweak interactions is of
course the nonlinear chiral Lagrangian. To allow for the
existence of a phase transition above which the order pa-
rameter vanishes, however, we must go beyond the non-
linear theory [10]. Accordingly, we will use an efFective
linear cr model to describe the symmetry-breaking sector
[11,12]. Neglecting standard model gauge and ferinion
interactions in comparison to this sector s strong inter-
actions, we take the Lagrangian to be
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Here we have defined the traceless operator 02 = ZtE—
(X/N) Tr (ZtZ), where

Z = (~. + i~.) T (u = O, 1, . . . , N' —1), (2)

with generator matrix norinalization 2 Tr (T T~) = b ~

and T = X/v'2¹ Higher-dimensional (nonrenormaliz-
able) interactions could also be included in the efFective
theory, but we argue in Sec. IV that their omission does
not qualitatively affect our conclusions.

In order that the tree level potential be bounded be-
low we must have Ai ) 0, and either A2 ) 0, or A2 ( 0
with Ai ) (N —1)iA2i. Spontaneous symmetry break-
ing then occurs for negative p . We do not consider
the A2 ( 0 case, in which U(N)L, x U(N)~ breaks to
[U(N —1) x U(1)]1.x [U(N —1) x U(l)]R. For A2 ) 0, the
breaking pattern is U(N)1, x U(N)R -+ U(N)v and the
tree level potential at zero temperature is minimized by
a vacuum expectation value (OiZ[A) that can be taken,
after a U(N)1. x U(N)~ transformation, to be real and
proportional to the identity matrix:

4%2
(fll~olfl)' =

'=0 '= A' ' '=A'+
) ~p (4)

scale as 1/N relative to v = 250 GeV.
Among the N Nambu-Goldstone scalars, three be-

come the longitudinal TV+ and Z, the pro gains mass
via anomalous breaking of the axial U(1), and the re-
maining (Nz —4) are pseudo Nambu-Goldstone bosons,
all of which gain small masses &om neglected standard
model and other (extended technicolor) interactions. We
neglect these pseudo Nambu-Goldstone masses. The
anomaly-generated. pro mass could also be implemented
in our effective Lagrangian, by adding a nonrenormaliz-
able (for N ) 4) determinantal interaction [11—13], but
omission of this term affects the masslessness of only
one mode and will not change our conclusions. In the
limit A2 ——0, the symmetry of the theory increases &om
U(N) x U(N) to O(2N ) and the spontaneous breaking
produces (2N2 —1) Nambu-Goldstone bosons, with only
the 00 massive.

The factors of N in Eq. (1) allow a nontrivial large N
expansion holding A~ and A2 fixed. In the A2 ——0 limit,
the leading 1/N approximation is tractable, correspond-
ing to the familiar linear bubble sum. With A2 nonzero,
on the other hand, all planar diagrams involving the A2

interaction contribute at leading order. For both inter-
actions, the strong coupling limit sets in at A;/16vr 1,
when higher loops are as large as lower order contribu-

(foal~-In) = o (~ =1, . . . , N' —1),
(ni~. in) = o (a = o, . . . , N' —1) . (8)

The Aq independence of (Biasing) follows from the defi-
nition of 02. The W mass is given by zg(oo), so that
(OicroiO) = v—:250 GeV. The 2N degrees of free-
dom described by the Z fields correspond to N Nambu-
Goldstone scalars vr, and N2 scalars (O, o.o) that de-
scribe the massive Huctuations of the order parameter.
Their masses

tions. In this limit the scalar masses of Eq. (4) saturate
the bound 4mv/N [14].

Symmetry-breaking aspects of the U(N) x U(N) lin-
ear 0. model at zero temperature in various spatial di-
mensions have previously been examined using the e ex-
pansion [11] combined with the effective potential [15],
and with lattice methods [16]. These investigations
found Coleman-Weinberg [17] behavior: broken symme-
try when p is tuned to zero. The e expansion analysis,
using renormalization group How in d = 4 —e spatial di-
mensions, shows that a second order transition is not self-
consistent for N ) 2 [ll]. However, studying the transi-
tion as a function of Lagrangian parameters at T = 0 is
not the same as studying it as a function of temperature.
Since effective three-dimensional theories apply to finite
temperature only by assuming decoupling of nonstatic
modes (discussed below), they are limited to the second
order or very weakly first order cases. The same is true of
analyses of the transition strength using renormalization
group fiow "time" [18]. Furthermore, the e expansion
may break down before e = 1 or miss IR fixed points.
Nevertheless, the above work does hint that a full finite
temperature calculation might find a first order phase
transition.

III. COMPUTING THE EFFECTIVE
POTENTIAL

l: -+ 2+
i y —p — Tr (ZtZ)

i

4N' (
Ai i 4¹ (5)

Before presenting results for the full theory, it is use-

We analyze the phase transition with the finite tem-
perature effective potential defined in Euclidean periodic
time, which describes the system in thermal equilibrium
[19]. Matsubara frequencies ko = (2m.nT), where n =
0, kl, +2, . . ., then appear in propagators. If the relevant
momentum scales were much smaller than 2~ T (e.g. , the
high temperature limit), all but the n = 0 modes would
decouple, leaving an effective three-dimensional theory.
This is not true at the strongly first order phase transi-
tion considered here, where we shall see that scales are
of order 2vr T. [The transition temperature will be of or-
der v/N, while in the strongly coupled case the masses
in Eq. (4) approach 4mv/N. ] We will therefore retain
the full four-dimensional dynamics; we will also avoid
the relative simplicity of the high temperature expan-
sion, relying below on numerical integration for explicit
results.

We can obtain the finite temperature effective poten-
tial as the sum of one-particle-irreducible vacuum graphs
in a background field [20]. For the linear 0 model of in-
terest here, the calculation is conveniently implemented
using the auxiliary field method [21,22] to eliminate the
Aq interaction in favor of a nonpropagating dimension-
two field y. The auxiliary field facilitates resummation
to all orders in Ai, at each order in 1/N. It consists of
adding to the Lagrangian a perfect square, which yields
an irrelevant constant factor upon path integration over
the auxiliary field:
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ful to review the nature of the phase transition in the
A2 ——0 theory [O(2N ) symmetry]. Analyses using the
1/N expansion show that the high temperature phase
transition here is second order [7,22,23]. The leading or-
der computation of the effective potential corresponds
to the "superdaisy" approximation [19,24,25], which can
therefore be justified in the context of the 1/N expan-
sion. Without superdaisy resummation, on the other
hand, a one-loop computation using the Lagrangian of
Eq. (1) with A2 ——0 gives a first order result [3,26]. This
is unreliable, since the theory s in&ared behavior is con-
trolled by the effective loop expansion parameter, of or-
der (Ai/16' ) T/m(0). Here m2(cr) = p2 + (Ai/4)02
is the effective mass of the lightest excitations, in the
quantum state ~@) with amplitude peaked at the classi-
cal background field (@~ao~@)—:No. This mass vanishes
for Nambu-Goldstone bosons at a symmetry-breaking
minimum of the effective potential, so the perturbative
expansion breaks down due to in&ared divergences, in
some 0 neighborhood of the minimum. The 1/N expan-
sion avoids this perturbative problem by a sumxnation of
graphs at each order in 1/N.

To leading order in 1/N, the O(2N ) computation in-
volves only a single loop of the 2N —1 Nambu-Goldstone
bosons in the presence of background y and o fields, us-
ing the Lagrangian of Eq. (5). Because the y field is
nondynamical, it can be eliminated in favor of 0 using
the saddle-point equation of motion. This procedure re-
veals the second order behavior. It is equivalent to us-
ing the Lagrangian of Eq. (1) and solving a momentum-
independent Schwinger-Dyson equation for the Nambu-
Goldstone boson effective mass, whose solution is in-
serted into the single loop of Nambu-Goldstone bosons.

The effective potential computed in this way becomes
complex for o between the symmetry-breaking minimum
(where the Nambu-Goldstone boson mass vanishes) and
the origin. This occurs for A2 g 0 as well; in either case,
the imaginary part may be interpreted [27] as the tran-
sition amplitude for leaving an unstable configuration,
into which a classical external source cannot force the
system. One may define a real quantity by a Maxwell
construction: the "convex efFective potential" (the con-
vex envelope of the real part of the above effective po-
tential) [28]. Although the convex effective potential ap-
proximately describes the lowest energy quantum state
for a given o, if a local minimum remains at the origin
then the system is likely to supercool, remaining in the
quantum state peaked at cr = 0 even below the temper-
ature T where the symmetry-breaking minimum falls to
a lower energy than the symmetric one [29]. The phase
transition is thus controlled by the appearance and loca-
tion of minima in the nonconvex potential as computed
here.

I
l

I +
/

(a, z )

+ ~ ~ ~ + ~ + ~

FIG. 2. Some neglected graphs. One-loop graphs sublead-
ing in 1/N; and higher order graphs suppressed by powers
of 1/N or A2 or both. Dashed lines are diagonalized y field
propagators, solid lines are diagonalized cr and m fields.

V(o, y) = —yo + 2 ——+ — ln(k + y)
1 2 p X X 1 2

2 Ag Ag 2 T

ln~k +y+ —0(,
2 r 2 )

—(T = 0 counterterms), (6)

'I'urning now to the general case with A2 g 0, the com-
putation is complicated by the fact that planar graphs
to all orders in A2 contribute at leading order in the 1/N
expansion. Auxiliary fields could also be introduced to
replace the A2 interaction, but not very usefully since an
infinite class of graphs would still contribute at each or-
der in 1/N. We instead use the Lagrangian with only the
auxiliary y field, Eq. (5), and compute the effective po-
tential as we did in the A2 ——0 case: one loop of (2N —1)
quanta in background y and 0 fields (Fig. 1), after which
the auxiliary y field is eliminated using its equation of
motion. This approximation sums all orders in A~ to
leading order in 1/N. It also includes the (tree-level)
contribution of the A~ interaction to the effective masses
of the (2N2 —1) quanta in the loop, lifting the degener-
acy between the N Nambu-Goldstone vr modes and the
(N2 —1) 0 modes which are Nambu-Goldstone bosons
only in the A2 —+ 0 limit. This approximation to the
U(N) x U(N) theory should provide a reliable qualitative
guide to the nature of the phase transition, even without
contributions like those of Fig. 2.

The computation requires renormalization counter-
terms which we define conventionally at zero tempera-
ture. Diagonalizing the propagators then gives the one-
loop result for the finite temperature effective potential
as a function of o—:(@~o'o/N~@) and y —= (@~y~@):

&a

FIG. 1. Feynman graphs included in our computation of
V,ir. The vacuum loops of (N ) flavors of z and (N —1) of
o. propagate in background oo and y fields.

where k = (2vrnT) and J'& —T J'(2m) sdsk p
The first integral corresponds to the loop of vr (Nambu-
Goldstone) scalars whose effective mass is g; the second
integral corresponds to the loop of o. scalars whose effec-
tive mass is y+ (A2/2)cr . The subtracted counterterms
are
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X+,~g, Tr(ZtZ) 1 X2+ [X+ ~~, Tr(ZtZ)]2
k2 4 o (k2 + M2)2

X+~4o 1 X +(X+~20 )

where the subscript 0 on the integrals refers to zero temperature. The first term is an unobservable vacuum energy and
the second corresponds to renormalization of p . In the final term, which corresponds to p and Ai renormalization,
we have inserted a renormalization scale in the form of an infrared cutoff on the integral. Physical results are not
sensitive to details of the renormalization scheme.

The renormalization of Ai to leading order in 1/N includes all Ai-dependent corrections, and a subset of the A2-

dependent corrections. There is no A2 renormalization in our approximation (with a purely 0'o background). The
corrections to Ai lead to a Landau pole at a sufBciently high scale, reHected in a corresponding pathology in the
effective potential at a suFiciently high value of cr. We avoid this problem by taking Ai to be somewhat less than the
strong coupling limit at the scale M„,which in turn we take to lie just above the momentum scales relevant in the
effective potential. Thus the Landau pole is safely out of range at the scales of interest.

Carrying out the summation in Eq. (6) gives

N V(a, x) = xcr—+
2 Ai

x' x' & x——+
~

ln ——
~

+ x dxln 1 —exp —gx2+ X/T2
64vr2 ( M2 2) 2~2 o

(x+"; )+ x dxln 1 —exp — x2+
2) 27l o ( T )

The auxiliary field is eliminated by solving its equation
of motion

(clV(a, X) )
)

This transcendental equation, which we solve numeri-
cally, is equivalent to a single Schwinger-Dyson equation
for the scalar masses. Had we introduced another auxil-
iary Geld to resum the A2 interaction, we would have cou-
pled Schwinger-Dyson equations for the scalar masses.

U+cT 4
.38 .

. 36-

. 34-

. 32

. 28 .

FIG. 3. The effective potential N U(o) for several tem-
peratures, shifted by (vr /45) T for clarity, with all di-
mensionful quantities measured in units of v/1V Afirst.
order phase transition must occur beloved the texnperature
T~ fl i —1.93v/N where the potential maximum and min-
imum coincide. The field strength discontinuity is at least
0.7v/N here, with parameters Ai(M„=4.54v/1V) = 40 = A2.

I

Substituting the solution X(o.) into V(o', X) gives the fi-
nite temperature effective potential as a function of cr

alone: V(X(0), cr) = U(o). We have carried out nu-
merical computations of U(o) for a range of coupling
strengths and temperatures.

In Fig. 3 we present numerical results for the choice
of couplings Ai(M„)/16vr2 = A2/16m = 0.25, where we
have taken M, = 4.5v/N. This value for the loop ex-
pansion parameters is large, but still in a range that
keeps the scalar masses, Eq. (4), somewhat below 4+v/N,
and the I andau pole above the momentum range rele-
vant to the problem. For various temperatures, we plot

2U(ir)+ (a2/45) T for a o range over which U is real.
The purely temperature-dependent second term merely
shifts the curves onto the same scale, preserving their
shapes and ordering.

For cr values somewhat smaller than those shown in
the curves, below where the Nambu-Goldstone propaga-
tor mass x vanishes, U(0') develops a complex part just as
in the O(2N2) case. However, with Aq g 0 the propaga-
tor masses in our approximation do not include all terms
of higher order in A2 at leading order in 1/N. Goldstone's
theorem, applied at a minimum of the

effective

potential,
refers not to such propagator masses calculated at lower
order, but instead to second derivatives in symmetry di-
rections. Thus y can vanish closer to the origin than the
symmetry-breaking minimum. With the parameters of
Fig. 3, T/~y is close to unity over the o range shown;
we thus avoid infrared divergences at the minimum.

The strongly first order character of the phase transi-
tion is apparent &om the curves, in which the symmetry-
breaking local minimum first appears at a field value
o. ;„=0.7v/N, at temperature T;„s„tjust below 2v/1V.
With decreasing temperature the minimum evolves to



52 A STRONGLY FIRST ORDER ELECTROWEAK PHASE. . . 4745

larger field values until it becomes the usual T = 0
symmetry-breaking vacuum with 0;„=v/N. We have
checked that as Az decreases, o. ;„(T;„s„t)also decreases,
with T;„g,t varying only slightly. This behavior is consis-
tent with the second order nature of the phase transition
in the A2 ——0 limit.

We can gain some qualitative insight into the origin
of first order behavior in the A2 g 0 theory by con-
trasting it with the A2 ——0 theory. There, all but one
of the degrees of freedom are Nambu-Goldstone modes,
whose mass y vanishes at the potential minimum o.

The vanishing of y leaves Eq. (9) at cr;„in the sim-
ple form o2,.„—(v/N)2 + T2/6 = 0, clearly showing
second order behavior at T = T, = ~6v/¹ The rel-
atively small masses generated by stand. ard model gauge
interactions would in fact turn these modes into pseudo
Nambu-Goldstone bosons, but such small perturbations
induce at most weakly first order behavior. Even without
those interactions, for small nonzero Az the (N2 —1) 0
modes may be thought of as pseudo Nambu-Goldstone
bosons of the O(2N2) theory, and their masses do not
vanish with the vr mass. For large A2, however, this is a
large perturbation, preventing the equation for 0;„&om
taking on the simple second order form above. The full
transcendental equation in our case leads to strongly first
order behavior.

IV. CONCLUSIONS

We have argued using an effective linear 0 model that
the high temperature electroweak phase transition, in the
presence of a strongly interacting symmetry-breaking sec-
tor, is strongly first order. With the global symmetry of
this sector taken to be U(N) x U(N), the efFective lin-
ear theory contains two dimensionless coupling constants
A» and A2, which are taken to approach the strong cou-
pling limit. The range of couplings considered avoids the
Landau pole problem, and corrections to the linear the-
ory, represented by higher-dimensional operators, should
be relatively small. Equivalently, a finite ultraviolet cut-
off on the theory can be taken to lie above the momen-
tum range of interest. When the strong coupling limit is
reached (loop expansion parameters equal unity), higher-
dimensional operators are not obviously suppressed and
the scalars described by the linear model are not obvi-

ously lighter than other new physics. Nevertheless, the
strongly first order character of the transition as the cou-
plings of the linear theory approach unit strength pro-
vides evidence that a theory such as technicolor will in-
deed give rise to a strongly first order electroweak phase
transition.

A 1/N expansion provides the framework for the com-
putation. To leading order in 1/N, all contributions from
the Ai interaction can be summed. With respect to A2,
all planar graphs contribute to leading order in 1/N, and
only a restricted set of contributions were summed. We
argued that this is adequate to determine the strongly
first order character of the phase transition. The strength
of the transition decreases with A2, consistent with a sec-
ond order transition in the O(2N ) theory.

The momentum scales in the strongly first order case
are such that there is no reason to expect that a high
temperature expansion should be reliable, or that the
phase transition should be governed by an effective three-
dimensional theory. Our results are nevertheless consis-
tent with the hints provided by analysis of such theories
[11,15].

This work may be relevant to the problem of elec-
troweak baryogenesis. More detailed calculations will be
necessary to study the dynamics of departure from ther-
mal equilibrium during the transition, but our strongly
first order transition provides at least a necessary con-
dition for baryon number generation. Furthermore, the
sphaleron mass in our model is the same as the minimal
standard model formula [30], m &h ~

= (4m K/g)(o'p),
where K 3 is a function of the scalar couplings. Since
T, is of order 2v/N, a strongly first order phase transi-
tion to a broken phase with (oo)/v 1 ensures Boltz-
mann suppression of baryon number destruction during
and after the phase transition.
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