
PHYSICAL REVIEW D VOLUME 52, NUMBER 8 15 OCTOBER 1995

Dynamical chiral symmetry breaking, Goldstone's theorem, and the consistency
of the Schwinger-Dyson and Bethe-Salpeter equations
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A proof of Goldstone's theorem is given that highlights the necessary consistency between the
exact Schwinger-Dyson equation for the fermion propagator and the exact Bethe-Salpeter equation
for fermion-antifermion bound states. The approach is tailored to the case when a global chiral
symmetry is dynamically broken. Criteria are provided for maintaining the consistency when the
exact equations are modified by approximations. In particular, for gauge theories in which partial
conservation of the axial vector current (PCAC) should hold, a constraint on the approximations
to the fermion —gauge-boson vertex function is discussed, and a vertex model is given which satisfies
both the PCAC constraint and the vector Ward-Takahashi identity.

PACS number(s): 11.30.@c, 11.10.St, 11.30.Rd

I. INTRODUCTION AND MAIN RESULT

A large amount of work on dynamical chiral symme-
try breaking and its application to low-energy strong-
interaction physics [1—4] suggests a picture of the low-
mass pseudoscalar mesons as "almost" Nambu-Goldstone
(NG) bosons. The NG bosons would arise due to
the spontaneous breaking of the flavor chiral symmetry
present in the usual quark model when the weak and
electromagnetic interactions are absent. For light quarks
the small masses induced by the Higgs mechanism have
been included in the formalism quite successfully by par-
tially conserved axial vector current (PCAC) algebra,
operator product, and renormalization-group techniques,
which further support the above picture [2].

An alternative to these methods is to calculate the
properties of the mesons as quark-antiquark bound states
through the use of the Bethe-Salpeter (BS) equation,
which can be derived rigorously &om the underlying Geld
theory and therefore preserves its symmetries. In this
context another equation that plays an essential role is
the Schwinger-Dyson (SD) equation for the fermion prop-
agator, a quantity that appears explicitly in the BS equa-
tion. Spontaneous chiral symmetry breaking is signaled
by the appearance of an otherwise absent scalar term
in the quark propagator. Consequently this change in
the propagator should be reflected in the BS equation
through the appearance of a massless pseudoscalar solu-
tion. Since the early work of Nambu and Jona-Lasinio
[1], this has been found to happen explicitly in a variety
of chiral invariant models when use is made of the ladder
approximation both for the SD and BS equations [1,5].
Also, in the ladder approximation it has been found nu-
merically [6] that when a small quark mass term is added
to the SD and BS equations, the successful results of
current algebra and other general techniques mentioned
above are preserved.

It is obvious that the ladder approximation to the SD
equation for a fermion is not entirely satisfactory. The SD
equation has been the subject of extensive research, par-

ticularly of studies directed to incorporate an improved
structure for the vertex function, in order for it to satisfy
the vector Ward-Takahashi (WT) identity and to exhibit
correct in&ared and ultraviolet behaviors. These stud-
ies include the use of the gauge technique [7] as well as
the use of algebraic combinations of fermion propagators
[8]. In this context, a natural consistency requirement,
which is addressed here, is the following: given changes
in the SD equation, which takes it beyond the ladder
approximation, the BS equation should change in a way
that preserves the appearance of NG bosons and other
dynamically broken chiral symmetry features.

A procedure to guarantee this consistency requirement
is given in what follows with the help of the effective
action formalism for composite operators as developed
by Cornwall, Jackiw, and Tomboulis (CJT), who showed
that it can be applied to the analysis of the SD equa-
tion and of dynamical symmetry breakdown [9]. The
CJT method was further extended to include a varia-
tional principle yielding SD equations for vertices as well
as for propagators [10]. It has also been shown that the
CJT formalism is a convenient framework for the exact
treatment of the S matrix for bound states and of the
Bethe-Salpeter equation [11]. Variational methods for
composite operators, including the CJT method, have
been used extensively before [12] to generate the ladder
approximation SD and BS equations and to discuss their
chiral properties. Extending those results beyond the
ladder approximation, the variational formalism will be
applied here to give a proof of Goldstone's theorem for
the specific case of dynamical chiral symmetry breaking
in a theory with fermions and to discuss several appli-
cations. As in any other formalism, Goldstone's theo-
rem is implicitly given by the symmetry properties of
the system. The advantage of the explicit proof given
here is that it emphasizes the common origin of the ex-
act SD and BS equations and thus provides prescriptions
to maintain the validity of the theorem and associated
chiral symmetry features such as PCAC, when subject-
ing the exact equations and related Green's function to

0556-2821/95/52(8)/4736(5)/$06. 00 52 1995 The American Physical Society



DYNAMICAL CHIRAL SYMMETRY BREAKING, GOLDSTONE'S. . . 4737

truncations and other approximations.
I start by considering a situation in which there is a set

of fermions vP (x) in interaction with some other fields,
such that one can construct a CJT action I'[B],which is a
functional of a "classical" bilocal, bispinor, field Bs(xy),
with each of the labels a, 6 indicating spinor as well as
internal symmetry indices. In what follows, the indices
will occasionally be left implicit. Repeated variables and
indices are assumed to be integrated or summed over.
The CJT action yields [9] the exact SD equation for the
ferinion propagator S~(x, y):

bI'

hB(xy)

where

&SI (»y) = (ol&4(x)4(y)lo) (la)

One can also see [11,13] that the exact BS equation for
a bound state of mass M described by a wave function

&.'(»&) =x'.(*-y p) '"' +""

where 0 & ~ ( 1) and p M ) has the form

ish if the SD equation (1) holds. We see then that if the
vacuum is not chiral invariant, that is, if

', S~(x, y)) = (olh, ~', T@(x)@(y))lo) W o, (s)

then thp BS equation has a pseudoscalar solution of van-
ishing four-momentum, a Nambu-Goldstone boson, since
Eq. (8) becomes

h2I'[B] S (*' y')). =o (1o)
B=Sz

The results described above are true for the exact SD and
BS equations. It is clear that any approximate treatment
of either equation has to be accompanied by a treatment
of the other equation, which maintains the validity of
Goldstone's theorem [14]. From the derivation above we
see that this will happen if both the approximated SD
and BS equations are derived through Eqs. (1) and (3)
&om the same approximated, but chiral invariant, bilocal
efFective action satisfying Eq. (5). As an alternative,
the situation in which an explicit form for the e8'ective
action is not available is discussed in Sec. IIC, where
the chirally compatible BS equation is obtained directly
&om the SD equation.

h2I'[B]
hBs(* )hBh'( I I) @~ ( 'y 'P)

B=Sp
(3) II. FORMALISM AND APPLICATIONS

The action is now assumed to be obtained from a formally
global chiral invariant Lagrangian field theory in which
the fermions transform as

@ (x) = e'""@(x) 0 (y) = W(y)e'"' (4)

The parameter 8 is real, and the 7~ are Hermitian ma-
trix representations of the generators of the Qavor group.
I also assume that there are no anomalies in the axial
vector currents associated with the indices I in Eq. (4).
Under these circumstances, inspection of the CJT action
shows that

Froin Eq. (6) we also obtain

[hsr[B]]hBs xy

r[B'] = 1 [B], B'(x, y) = e'~' B(x,y)e'~'s . (5)

Under an infinitesimal transformation with 8 = ~, we
then have

A. Basic de6nitions and chiral properties

I now consider the specific case of the fermions inter-
acting with vector gauge fields A„. The action for such
a system can be written as

Z(A„) is the Lagrangian for the gauge fields and includes
gauge-fixing terms and ghost fields, when present. The
A& field. s do not change under global or local chiral trans-
formations. The fermions transform as given by Eq. (4),
and the interaction Lagrangian Zl(vP, @,A„) is assumed
to be invariant under those transformations.

The CJT action I'[B] can be obtained as follows: Z[J],
the generating functional for fermion Green's functions,
is given by

z(zj = —' f ayay az„

or, in more detail,

h'r [B]
hB, ( )hBs (, ,

)
(» (* y )).

+hB$ ( )
(7& )u' + hBy( )

('Y& )s (8)
W[J] = —i lnZ[J] . (13)

where Z[0] = 1. Then, W[J], the generating func-
tional for connected fermion Green's functions, can be
expressed. by

Setting B(xy) = Sz(x, y) in (8), the last two terms van- The classical bilocal field B(x,y) is defined as
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B(x,y)—: ib—W[J]/h J(yx), (14)

with

Finally, the effective action is constructed as

I'[B] = W[J] —iB(xy) J(yx) .

B(zy) ~
J—Q

——i (0
~
T@(z)@(y) 10) = ~~ (zy) (14a)

In this expression tr indicates trace over discrete in-
dices, and there is no integration over x. Equation (19)
expresses, in the framework of the effective action, the
contents of the partially conserved axial vector current
(PCAC) relationships among Green's functions. For in-
stance, taking the functional derivative of (19) with' re-
spect to Bb(z'y'), setting B = Sy, and applying the
resulting operator to a pseudoscalar solution of the BS
equation results in the exact relationship

From (15) we see that
t ['8 (o )]=t H ') (o )1 (2o)

ihI'(B]/bB(xy) = J(yx), (15a)

and, because of (14a), the SD equation (1) follows.
For the system of Gelds analyzed here, the effective

action has the form [9]

I'[B] = —i T ((iP —m)B) + I'[B], (i6)

b&B(zy) = ipse e(z)B(zy) + B(zy)ipse e(y),

where I'[B] is invariant under local as well as global chiral
transformations. If we perform an infinitesimal transfor-
mation

where use has been made of Eqs. (1), (2), and (3).
Equation (20) can also be obtained through the use

of field operator methods and gives [2], to first order in
m, the PCAC formula of Gell-Mann, Oakes, and Renner
for pseudoscalar masses [15]. Since the ladder approxi-
mation SD and BS equations can be obtained &om an
approximated CJT effective action of the form of Eq.
(16) with r[B] locally chiral invariant, these equations
should give solutions satisfying PCAC conditions such as
that of Eq. (20). As discussed in Sec. I, this is the case
both qualitatively and quantitatively [6].

Eq. (16) yields the basic expression

sr
Tr bsB = i Tr((iP —m—)bsB) .

This equation can also be obtained directly &om expres-
sion (12) by performing an infinitesimal chiral change in
the integration variables and by use of the definitions
(ia)-(15).

If the chiral transformation is global and if the mass
matrix m is zero, the right-hand side in Eq. (18) van-
ishes. Then Goldstone's theorem follows in the manner
discussed in Sec. I.

If the chiral transformation is local, and because the
infinitesimal e(z) is otherwise an arbitrary function of x,
an integration by parts in (18) yields

B. SD equation and
fermion-antifermion —gauge-boson vertex

I'[B] = i Tr ln B + I'2[B] . (21)

We then have, with implicit discrete indices,

br/bB(y*) = —is(*,y)

+iB '(*y) + br2/bB(yz), (22)

In Eq. (16) I'[B] can be written as the sum of free and
interacting parts, each one locally chiral invariant, in the
form [9]

tr ~'p5p. 0 B xy b x —y So '(x, y) = i P„b(z —y) —mb(z——y), (22a)

+i (m, ~' )p, B(xy) b(x —y) ]dy

hI'—tr r psB(zy)

bI'
+ B(yz)ps~' dy = 0 .

where So (x, y) is the free inverse propagator. The SD
equation is, setting B = S~,

(z y) + ~o (z y) + ibr2/bB(yz) I&=& 0 . (23)

For simplicity, one can restrict the discussion to the case
in which there is only one gauge vector field. The "self-
mass" term in Eq. (23) can be written in the sym-
metrized form

br,
Z(z, y) =i

B=Sg

= —i2g d zd z' p„G„„z,z Sp x) x' I'p z; z', y + I'„z;x,z' Sp x', y G„z,y p (24)
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where both the vector boson propagator G„„and the
vertex function I'„are functionals of SF. Since I'2[B] is
invariant under a local chiral transformation, Eq. (24)
shows that the self-mass Z(x, y) and the vertex function
I'„(z;x,y) should transform as SF (x, y), that is [16], and

I'„(z;z,y) = 1 —ip (x—z) —ip (z —y)
(2vr)

xr„(p', p) d'p'd'p

(25) S '(x —y) = 1
e '"'(* ")S '(p)d p, (32)

r„(z;x,y) M e '~" ( )I' (z;x, y)e '~' (") (25a)

under the substitution

1

r„(p+ k, p) = SF'(p+ ok)da+ rT,
Ip 0

(33)

the form (28) with the choice (30) translates into [17]

ipz~ 8(z)S
( )

ipz~'s(z) (26)

This requirement is compatible with the vector Ward-
Takahashi (WT) identity

which, with k„I' = 0, satisfies the WT identity

k„I'„(p+k, p) = SF'(p+ k) —SF'(p) . (34)

I'„(z;x,y) = i(h(y —z) —h(x —z))SF (x, y) . (27)
Ziz

The vertex function r&(z;x, y) satisfies its own SD
equation, which couples it to a four-particle vertex func-
tion. Then the extended composite field action [10]
should permit an analysis of the properties of the four-
particle vertex similar to the one above for I'„(z;x, y). In
a simplified approach, a large number of models [3,7,8]
have been discussed for I'„(z;T, y) with the requireinent
that it satisfy the WT identity (27) as well as appropriate
symmetry properties and renormalization requirements.
Many of the models, usually presented in momentum
space, are linear in SF (p) and SF (p + k), which ap-
pear multiplied by functions of p and p+ k, the momenta
of the fermions at the vertex. In configuration space this
involves derivatives of SF (x, y) with respect to z and y,
and therefore those models generally fail to satisfy con-
dition (25a) for I'„(z;x, y) as well as the PCAC equation
(19), since these models imply an additional explicit local
chiral symmetry breaking in the effective action.

A vertex model linear in SF and satisfying Eqs. (23)
and (25a) can be constructed as

[rp(z * y)].' = [F'p(y z*—z)l.".[S—F'(* y)lb (28)

C. BS equation

h'r2 [B] hZ(x, y)
b'B(xiyi)bB(xy) hSF(xi, yi)

(35)

If an explicit form is not readily available for I'2[B], the
chiral properties can be probed "on shell, " that is, for
B = SF, by using the SD equation (23), which can be
written as hr/hSF(x, y) = 0. We then have, for m = 0,
the identity

As shown in Sec. I, taking a further derivative with
respect to B in Eq. (22) and then setting B = SF allows
one to write the BS equation (3). Approximations to the
exact action I'[B], which maintain the chiral symmetry
properties of the system can be obtained &om the loop
expansion [9] of the CJT action or, alternatively, by ap-
proximating the self-mass and vertex functionals in such
a way that (25) and (25a) hold. If we make the assump-
tion that their functional dependence on B' is the same
as their dependence on S~, we can de6ne, for use in the
BS equation,

where the matrix structure of F„ is such that it preserves
condition (25a). F„should also satisfy

As an example, a simple choice for E~ is

hb'hb
[

iq (z—y) iq (z —z)] (+p yp)
q (z —y)

(2'�)4

where OF„ /Oz~ = 0. In momentum space, with

(29)

(30)

Using (22), (25), (26), and (35), we see that (36) is equiv-
alent to

bS~ x, y

hzr[SF]= ie (ps7. , SF(xiyi)),

which demonstrates Goldstone's theorem. If instead of
(36) we consider the identity

0 = ip57'e(y) + ip57- e(x), (38)
hr[SF] hr[SF] .

hSF z, y bSF z, y
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we obtain

ipse [e(y) —e(x)] P b(x —y) + b(x —y)s(x)(ps', m)

bzl'[Sp]+ bsS~(xi, yi) = 0 . (39)

Applying this expression to a pseudoscalar solution
g(x —y, p)e'"[ +"( )~ of the BS equation, the last term
vanishes, and we have again, as in Eq. (20), the PCAC
relationship

tr[v Pp5y(o, p) —p~ iv, m)y(0p)]/~42m(z)e'~ = 0 .

(4o)

III. CONCLUSIONS

The results discussed in Sec. IIA have shown that,
beyond the usual ladder approximation, the variational
formalism for composite fields is a very convenient tool
for the study of exact bound-state fermion-antifermion
equations and their chiral symmetries, both global and
local. As shown there, the very close connection between
the exact SD and BS equations allows a straightforward
proof of Goldstone's theorem and the study of the eÃects
of the explicit breaking of chiral symmetry (PCAC). In
addition, the discussion provides constructive procedures

to maintain the chiral consistency of approximated SD
and BS equations.

The discussion in Sec. IIB leads to the PCAC con-
straint Eq. (25) on the local chiral properties of the ver-
tex function, namely, that it transforms as the inverse
fermion propagator. It is also shown how the constraint
can be implemented, along with the WT identity, when
modeling the vertex function. The constraint is present
in quantum electrodynamics and chromodynamics when
studying spontaneous chiral symmetry breaking and its
dependence on the coupling constant. The use, in this
context, of vertex models that do not satisfy the PCAC
constraint is therefore open to question.

Finally, it was shown in Sec. II C that, even in the ab-
sence of an explicit expression for I'[H], if a satisfactory
model is given for the vertex function and therefore for
the self-mass function, then on-shell approximated func-
tionals SI'/bS and bzl'/hSbS can be defined. The func-
tionals can then be used to give SD and BS equations,
which are chirally compatible, yielding Goldstone's the-
orem as well as the consequences of PCAC discussed in
Sec. IIA.
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