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It is shown that in 2 + 1 dimensions a constant magnetic Geld is a strong catalyst of dynamical
Havor symmetry breaking, leading to generating a fermion dynamical mass even at the weakest
attractive interaction between fermions. The essence of this effect is that in a magnetic field, in
2 + 1 dimensions, the dynamics of fermion pairing is essentially one dimensional. The effect is
illustrated in the Nambu- Jona-I asinio model in a magnetic field. The low-energy effective action in
this model is derived and the thermodynamic properties of the model are considered. The relevance
of this efFect for planar condensed matter systems and for (3 + 1)-dimensional theories at high
temperature is pointed out.
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I. INTRODUCTION

Recently there has been considerable interest in rela-
tivistic field models in 2+ 1 dimensions. In addition to
the fact that the sophisticated dynamics of these models
is interesting in itself, the models also serve as effective
theories for the description of long wavelength excitations
in planar condensed matter systems [1,2]. Also, their
dynamics imitates the dynamics of (3 + 1)-dimensional
theories at high temperature.

In this paper, we will show that a constant magnetic
field acts as a strong catalyst of dynamical flavor symme-
try breaking (generating fermion masses) in 2+ 1 dimen-
sions. We will in particular show that there is a striking
similarity between the role of the magnetic field in (2+1)-
dimensional models and the role of the Fermi surface in
the Bardeen-Cooper-SchriefFer (BCS) theory of supercon-
ductivity [3]: both of thein enhance the interactions of
fermions in the infrared region (at small momenta) thus
leading to generating a fermion dynamical mass (energy
gap in the fermion spectrum) even at the weakest attrac-
tive interaction between fermions.

We note that necessity of a supercritical dynamics
(with an efFective coupling constant g being larger than
a critical value g, ) 0) for generating fermion dynamical
masses is a common feature of the dynamics in 3+ 1 and
2 + 1 dimensions [4]. As will be shown in this paper,
in 2 + 1 dimensions, a magnetic field reduces the value
of the critical coupling to zero. We note that the fact
that a constant magnetic field enhances fermion dynam-
ical masses in the Nambu —Jona-Lasinio (NJL) model [5]
has already been pointed out in Ref. [6]. However, what
we will show is not just that the magnetic field enhances
the dynamical mass created by the strong (supercritical)

N JL interaction but that in 2+ 1 dimensions, it catalyzes
generating the mass even at the weakest attractive inter-
action. The essence of this effect is that in a magnetic
field, in 2+ 1 dimensions, the dynamics of fermion pair-
ing (relating essentially to fermions at the lowest Landau
level) is one dimensional (see Sec. II).

We stress that this effect is universal, i.e. , model in-
dependent, in 2+ 1 dimensions. This point may be im-
portant in connection with consideration of this effect
in such condensed matter phenomena as the quantum
Hall effect [1] and high temperature superconductivity
[2]. Another, potentially interesting, application for this
effect may be in (3+1)-dimensional theories at high tem-
perature (quark-gluon plasma in a magnetic field, for ex-
ample); indeed, at high teinperature, their dynamics ef-
fectively reduces to the dynamics of (2 + 1)-dimensional
theories.

As a soluble example we shall consider the NJL model
in a magnetic field, in the leading order in 1/N expan-
sion. We shall derive the low-energy effective action in
the model and also study its thermodynamic properties.

The paper is organized as follows. In Secs. II and III
we consider the problem of a relativistic fermion in a
magnetic field in 2+1 dimensions. We show that the roots
of the fact that a magnetic field is a strong catalyst of
dynamical flavor symmetry breaking in 2+ 1 dimensions
are actually in this problem. In Secs. IV—VII we study
the NJL model in a magnetic field in 2 + 1 dimensions.
We derive the low-energy effective action and determine
the spectrum of long wavelength collective excitations in
this model. In Sec. VIII we study the thermodynamic
properties of the NJL model in a magnetic Geld. We
show that there is a symmetry restoring phase transition
at high temperature. In Sec. IX we conclude the main
results of the paper. In Appendices A and 8, some useful
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formulas and relations are derived. In Appendix C the
reliability of the 1/N expansion in this model is discussed.

In 2+ 1 dimensions, there are two inequivalent represen-
tations of the Dirac algebra:

II. DY'NAMICAL FLAVOR SYMMETRY
BREAKING IN THE PROBLEM OF

FERMIONS IN A CONSTANT
MAGNETIC FIELD

and

-0
'7 = ~3)

«0
'Y = 03)

-1 = ZOy)

-1 = —XO] )

= XCT2)

—XO2) (4)

In this section we will discuss the problem of relativistic
fermions in a magnetic field in 2+ 1 dimensions. We will
show that the roots of the fact that a magnetic Geld is a
strong catalyst of Bavor symmetry breaking are actually
in this dynamics, which plays here the role similar to that
of the dynamics of the ideal Bose gas for an almost ideal
Bose gas in the theory of superfluidity [4].

The Lagrangian density in the problem of a relativistic
fermion in a constant magnetic Geld B takes the following
form in 2 + 1 dimensions:

18 = — 4, (ip"D„—m)4, p = 0, 1, 2,

where 0; are Pauli matrices.
Let us begin by considering the representation (3). The

energy spectrum in the problem (1) depends on the sign
of eB; let us first assume that eB ) 0. Then, the energy
spectrum takes the form (to be concrete, we assume that
m &0) [7]

Eo ——(do ——m)

E = k~„= +gm2+ 2~eB~n, n = 1, 2, . . .

(the Landau levels).
The general solution is

where the covariant derivative is
~(x) = ):a-~u-. (*) + ).b.',v- .(x)- (6)

(2) where

A jp fL jp

1
(lLi)'t2

1

(lLi) ~t2

1

(lL ) it2

exp( —i~ot + ikxi) ~o(&)

1 g(u„+

mdiv„(()

exp( —i(u„t + ikxi) . , " "
g~)—j~uf —mto i ((

1 vt~ —mdiv (() ) 1exp(iu t + ikxi) .+ +n

(7)

Here jv (() = (jrit22 n!) it2e ~ t H (('), H ($) are
Hermite polynomials, l—:~eB

~

' tis the m-agnetic
length, k = 2vrp/Lq (p = 0, +1,+2, . . .), Li is the size
in the xi direction, and $—:xq/l + kl. As Li —j oo, the
density of the states at each level n is ~eB!/2jr [7].

Thus the lowest Landau level with n = 0 is special:
while at n & 1, there are solutions corresponding to both
fermion (E = u„) and antifermion (E„=—u ) states,
the solution with n = 0 describes only fermion states.

As eB —+ —eB ( 0, the solution becomes

@(x) = ) a„„v„„(x)+ ) bt„u„„(x), (8)
A jp np

where the charge conjugate spinors v' and u are v

p26, u = p2u . Therefore at eB ( 0, the lowest Lan-
dau level with n = 0 describes antifermion states.

If we used the representation (4) for Dirac's
matrices, the general solution would be given by
Eq. (6) with u „(x), v „(x) being substituted by

(—1)~v„„(—x), (—1)"u (—x) [the factor (—1) is in-

troduced here for convenience]:

C(x) = ) c„„(—1)"v„„(—x)+) d„„(—1)"u j( x).
fL jp fib jp

I': e(x', x', x') -+ o.,@(x',—x', x'). (10)

However, if one uses the four-component fermions [8],
connected with a four-dimensional (reducible) represen-
tation of Dirac's matrices,
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We note that the mass term in the Lagrangian density
(1) violates parity defined by
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the mass term in the Lagrangian density

1--8 = — 4, (ip"D„—m) 4 (12)

The propagator S is calculated [following the Schwinger
(proper time) approach [17]] in Appendix A. It is

preserves parity de6ned now as

3 10 i 2) ~ 3 i@( 0 i 2)
Z

where the Dirac matrix p is

. (0 Ii
I (i4)

The important point is that the Lagrangian density (12)
with m = 0 is invariant under the U(2) (Havor) transfor-
mations with the generators

S(x, y) = exp
~

ie A&" dz
~

S(x —y),
ry

x exp ——(x„C "x„)
4s

( 1 „„e+ —v C„. "—~"F„"„'
2s " 2 "" )

es
x esBcot eBs ——p"p E„'"'

(18)

3 3 5TP = I, Ty = P5, T2 = —P ) T3 = P P )
Z

where

. o, , , (0 I)
I 0) '— (16)

(0~4@~0) = —lim trS(x, y).z~y (17)

The mass term breaks this symmetry down to the
U(1) xU(1) with the generators T() and Ts.

We note that the four-component fermions appear in
low-energy effective actions describing planar condensed
rnatter systems with two sublattices [2]. Actually, usu-
ally they appear in the actions without the mass term,
and the important problem is to establish a criterion of
dynamical Qavor symmetry breaking which may occur as
a result of interaction between fermions [4,9—16]. As was
already indicated in Sec. I, dynamical Havor symmetry
breaking in 2 + 1 dimensions usually takes place only at
a rather strong effective coupling between fermions.

Let us now show that at m = 0 and B g 0, the dynam-
ical breakdown of the U(2) flavor symmetry takes place
already in the theory (12), even without any additional
interaction between fermions. In order to prove this, we
will show that in the limit m —+ 0, the Havor condensate
(0]4@~0) is nonzero: (0~4@~0) = ~eB~/27r.

The condensate (0~@@~0) is expressed through the
fermion propagator S(2:,y) = (O~T@(x)%'(y)~0):

2 tan(eBs)S(k) = ds exp —ism + isko —isk
0 eBs

x([k+ m+ (k'p' —k'p') tan(eBs)]
x [1 + p'p tan(eB s) ]) . (20)

Transferring this expression into Euclidean space (k
iks, s m —is), we find

2 tanh eBsS~(k) = i ds exp ——s m + ks + k
0

l(x
~

k„p„+ m+——(k27i —k, p2) tanh(eBs)
~i

(
x

~

1+ —.pip2 tanh(eBs)
~1

(21)

(+3 ——i7, pi = p, p2 = p are anti-Herinitian inatri-
ces).

From Eqs. (17), (18), and (21) we find the expression
for the condensate:

where C~" = g~" + ((E' ) )" [1 —eBs cot(eBs)]/B,F'" = 8~A'„" —B„A'„" with A'" given in Eq. (2). The
integral in Eq. (18) is calculated along the straight line.

The Fourier transform S(k) = I dsxe'" S(2:) is

(olio'ello) = — ', fotoe~(o)'
4m

lim lim d kA~~ ~-+o (2~)

?n= —lim lim dse ' (s ) )(eB)coth(eBs)

2 tanh eBs ~
dsexp —s m + ks+ Ic

m
lim lim ~ ~ ~eB~ —+O~ —

iA~~~-+o 2~ & m (A)
/eB/
27t-

' (22)
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where A is an ultraviolet cutofF.
Thus in a constant magnetic field, spontaneous break-

down of the Havor U(2) symmetry takes place even
though fermions do not acquire mass (m = 0). Note
that in 3+ 1 dimensions the result would be (0]4@~0)
mlnm —+ 0 as m —+ 0. Therefore, this is a specific (2+1)-
dimensional phenomenon.

What is the physical basis of this phenomenon? In
order to answer this question, we note that a singular
1/m behavior of the integral in Eq. (22) is formed at
large, s ~ oo, distances (s is the proper time coordi-
nate). Actually one can see from Eq. (22) that the mag-
netic field efFectively removes the two space dimensions
in the in&ared region thus reducing the dynamics to a
one-dimensional dynamics which has much more severe
infrared singularities. From this viewpoint, the action of
the magnetic field in the present problem is similar to
that of the Fermi surface in the BCS theory [3].

This point is intimately connected with the form of
the energy spectrum of fermions in a constant magnetic
field. Equations (5), (11), and (12) imply that for the
four-component fermions, the energy spectrum is

( k2~ lD„(eB,k) = (m —ksps) [1 —ipip2sgn(eB)]L~
~

2

k2~ l—[1+i~i~»gn(eB)]L--i
l

2 eB r

+4(kipi + k2p2)I „ i ~
2 Br ' (26)

0) = — dsk p (—~/I I) IeBI
(27)

27r3 k2+ m2 2'
We would like to note that in 3+ 1 dimensions, the dy-
namics at the lowest Landau level, described by two con-
tinuous variables k3 and k4, is two dimensional. Actu-
ally, the lowest Landau level pole in Sa(k) is in 3 + 1
dimensions:

(28)

where L = Lo and L i(x) = 0 by definition. Then
Eq. (25) implies that as m -+ 0, the condensate appears
due to the lowest Landau level:

Ep = +(dp = +m&

E„=gw„= +gm2+ 2]eB~n, n & 1.

(1 —z) & +'l exp
~

~

= ) L„(z)z",
gz —lr (24)

where L (x) are the generalized Laguerre polynomials,
the propagator Sa(k) can be decomposed over the Lan-
dau level poles [19]:

The density of the states with the energy +up ——+m
is ]eB~/2vr, and it is ~eB]/vr at n & 1. As m —+ 0, the
energy Ep goes to zero and therefore there is the infi-

nite vacuum degeneracy in this case. The value of the
condensate (22) is equal to the density of the states at
the lowest Landau level. This implies that spontaneous
flavor symmetry breaking is intimately connected with
the dynamics of fermions at this level. In particular,
since this dynamics, described by one continuous variable
k3 ——i k, is one dimensional, we get a simple explana-
tion of the one-dimensional character of the dynamics
of flavor symmetry breaking in this problem. More pre-
cisely, the situation is the following. Using the identity
tanh(x) = 1—2 exp( —2x)/[1+exp( —2x)] and the relation

The contribution of this level to the condensate is now

A2
(0~4@~0) —~eB~

~

ln + O(m ) ~

™m 0; (29)4~' q
m'

i.e., there is no spontaneous flavor symmetry breaking in
a magnetic field in 3+ 1 dimensions.

In the next section, we will discuss aspects of sponta-
neous Havor symmetry breaking for (2 + 1)-dimensional
fermions in a magnetic Geld in more detail.

III. MORE ABOUT DYNAMICAL FLAVOR
SYMMETRY BREAKING FOR FERMIONS

IN A MAGNETIC FIELD

As was shown in the preceding section, the flavor con-
densate (0~44~0) is nonzero as the fermion mass m. goes
to zero. Although usually this fact is considered as a
firm signature of spontaneous Havor (or chiral) syinme-
try breaking, the following questions may arise in this
case.

(a) Unlike the conventional spontaneous Havor (chi-
ral) symmetry breaking, the dynamical mass of fermions
equals zero in this problem. Is spontaneous flavor sym-
metry breaking "real" in this case'?

(b) The vacuum ~0) was defined as lim ~o ~0) of the
vacuum ~0) in the theory with m g 0. The vacuum

with

( k' ~ . , „D„(.B,k)
]eB/r k'+ m'+ 2/eB/n

'

(25) The fact that a magnetic field reduces the effective dimen-
sion of the dynamics of the fermion pairing by two units was
observed earlier in the theory of superconductivity [20].
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~0) corresponds to a particular filling of the lowest Lan-
dau level. Indeed, at m g 0, in the vacuum ~0), the
states with Eo ——m ) 0 are empty and the states with
EQ — m are filled, i.e., the vacuum ~0) = lim ~0 ~0) is
annihilated by all the operators aop, dop and a p, 6 p c p,
d„„(n & 1). On the other hand, at m = 0, there is the
infinite degeneracy of the vacuum in this problem, con-
nected with diferent fillings of the lowest Landau level.
Why should one choose the filling leading to the vacuum
~0)? And is there a filling of the lowest Landau level
leading to the ground state which is invariant under the
flavor U(2)? One might think that the latter possibility
would imply that spontaneous Bavor symmetry breaking

can be avoided.
In this section we will show that there is a genuine

realization of the spontaneous breakdown of the Havor

symmetry in the present problem. More precisely, we
shall show that this phenomenon satisfies all the crite-
ria of the spontaneous symmetry breaking phenomenon
established by Haag long ago [21]. We will also discuss
such related questions as the status of Nambu-Goldstone
(NG) modes and induced quantum numbers [22,23] in
this problem.

Let us begin by constructing the charge operators Q; =
1/2 f d x[@t(x),T,4'(x)] of the flavor U(2) group. By
using Eqs. (6), (7), and (9), we find

Qo=) (ao aoo —do do o)+) 5 (ae a o —bt b pc~ c„o —d~ d„o),
p n=1 p

Qo = i) (ao do —d„oaoo) b ))c(a„c„o—ct a„-bbt d„—dt b ), „
p n=l p

(30)

Qo: ) (at do +do —oooo) + ) ) (at co+et a„a+bt d„o+dt b„)
p n=l p

Qs= S+) ao„ao„+do do „+) ) (a „a z
—b „b „—c „c z+d d ),

p n=l p

where a z, c ~, (b z, d z) are annihilation operators of
fermions (antifermions) from the nth Landau level and
8 = IlL2 is the two-dimensional volume. Now we can
construct a set of the degenerate vacua

~ei, 82) = exp(iQi&i + iQ282) ~0),

where, we recall, the vacuum ~0) = lim ~o ~0) is anni-
hilated by all the operators a „,b„p, c„p, and d „.As one
can see from Eq. (30), the crucial point for the existence
of the continuum set of the degenerate vacua is the first
sum, over the states at the lowest Landau level, in the
charges Qi and Q2.

The presence of such a set of the degenerate vacua is a
signal of the spontaneous breakdown, U(2) ~ U(1) xU(l).
Note that the vacua ~ei, 02) can also be constructed by
replacing the mass term m%4 by mug, g, 4g, g, , where
bIdg, g, = exp(iQ&8i + iQ202)4, and then performing the
limit m —+ 0. Again, this is a standard way of construct-
ing degenerate vacua in the case of spontaneous break-
down of a symmetry.

One can check that different vacua ~ei, 02) become or-
thogonal as size Il in the xl direction goes to inFinity.
For example,

= exp(1, jdbln
~

coed~~), 0 =0', —bo,

and at 0 g 0 or vr, it goes to zero as Li -+ oo ( the vacuum
~0, 02 + vr) = —~0, 82)). It also goes to zero as the maxi-
mum momentum ~k „~ = A ( A is an ultraviolet cutofF)
goes to infinity. As usual, this point reQects the fact that
spontaneous symmetry breaking occurs only in a system
with an infinite number of degrees of freedom. One can
check that in this case all states (and not just vacua)
from di6'erent Fock spaces Egg, g, ~, defined by difFerent
vacua ~gi, 82), are orthogonal. That is, different vacua
~8i, 02) define nonequivalent representations of canonical
commutation relations.

On the other hand, taking the ground state

~A) = C dy, (0i, 02, Os) ~0i, 82), (32)

where dbM is the invariant measure of SU(2) and C is a
normalization constant, we are led to the vacuum ~O)
which is a singlet with respect to the flavor U(2). In
fact, the set of the vacua (~ei, 02)) can be decomposed



52 DYNAMICAL FLAVOR SYMMETRY BREAKING BY A MAGNETIC. . . 4723

+(n+Ic) A;(x;) (34)

where A;(x;), B~(y~) are some local operators. The clus-
terization property implies that when r, -+ oo .[r,.

(x; —y~) ] for all i and j, the Green's function then fac-
torizes as follows:

a("+") -+ 0 r A(*;) o 0T B,(y, ) O . (35)
j=1

The physical meaning of this property is clear: cluster-
ization implies the absence of instantaneous long-range
correlations in the system, so that the dynamics in two
distant spatially separated regions are independent.

The clusterization property takes place for all the
vacua l0i, 02). The simplest way to show this is to note
that the vacuum l0i, 02) appears in the limit m ~ 0
from the vacuum in the system with the mass term
miIIs, e, ilfs, e, . Since at m, g 0, the vacuum in this sys-
tem is unique, the clusterization is valid at every value
of m P 0. Therefore, it is also valid in the limit m ~ 0,
as far as the Green's functions exist in this limit. In
connection with that, we would like to note that, in ther-
modynamic limit I i, I2 —+ oo, the vacuum l0i, 02) is the
only normalizable and translation invariant state in the
Fock space Eg, g, . To show this, let us introduce the op-
erators a„(k) = (Li/2~) a „, b (k) = (Li/2') 6„„,
c„(k) = (Li/2vr) c„„, and d„(k) = (Li/2vr)' d„„,
where k = 2vrp/Li They sati.sfy the commutation re-

lations [a (k), a, (k')] = b I b(k —k'), etc. There-

fore, though states of the form Q,. ao (k;) Q . do (k~ ) l0i, 02)
have zero energy, they are not normalizable and, at
P,. k, + P. k~ g 0, not translation invariant.

On the other hand, the clusterization property is not
valid for all Green's functions on the vacua lO('~). As an
ex.ample, consider the Green's function

(36)

where lO) is the vacuum singlet (32). Since the bilocal
operator i'(xi)ili(x2) is assigned to the triplet of SU(2),
the clusterization property would imply that

&'" ~ (~IT[@(»)@(*2)]l~)(f~l[@(vi)@(u2)]l&)+ 0

(37)

in irreducible representations of SU(2):

(10i 02)) = (lf~")) .

Why should we consider the vacua ]0&, 02) instead of the
vacua lOi'~)'?

To answer this question, we consider, following Haag
[21], the clusterization property of Green's functions. It
means the following. Let us consider a Green's function

where lOl )) is a state from the vacuum triplet, we see
that G( ) does not vanish as re + 00.

Thus the clusterization property does not take place
for the lAi')) vacua.

This is a common feature of the systems with sponta-
neous continuous symmetry breaking [4,21]: an orthogo-
nal set of vacua can either be labeled by the continuous
parameters (0,), connected with the generators Q; of the
broken symmetry, or it can be decomposed in irreducible
representations of the initial group. However, the latter
vacua do not satisfy the clusterization property.

All the Fock spaces E~g, g, ~
yield physically equivalent

descriptions of the dynamics: in the space E~~,g, ~, the
SU(2) spontaneously breaks down to Ufs, s, l(l), where
the Uls, s, l(1) symmetry is connected with the generator

Qs = exp(tQi0i + tQ202)Q3 exp( tQ101 tQ202).
Are there NG modes in the present system? To an-
swer this question, let us consider the thermodynamic
limit L1, L2 —+ oo. One can see that in every Fock space
Pls, s, l, with the vacuum l0i, 02), there are a lot of "ex-
citations" with nonzero momentum A: and zero energy
E created by the operators ao(k) and do(k). However,
there are no genuine (i.e. , with a nontrivial dispersion
law) NG modes: the energy E is E = 0 at the lowest
Landau level. Since the Lorentz symmetry is broken by
a magnetic field, this point does not contradict the Gold-
stone's theorem. This of course does not imply that
the existence of NG modes is incompatible with a mag-
netic field: the situation is model dependent. As will be
shown in Secs. IV—VII, even the weakest attractive in-
teraction in the problem of (2+ 1)-dimensional fermions
in a magnetic field is enough to "resurrect" the genuine
NG modes. The key point for their existence is that the
flavor condensate (ol@iIilo) and the NG modes are neu-
tral, and the translation symmetry in neutral channels is
not violated by a magnetic field (see the next section).
We shall also see that the "excitations" from the lowest
Landau level (with quantum numbers of the NG modes)
in the problem of free fermions in a magnetic field can
be interpreted as "remnants" of the genuine NG modes
in the limit when the interaction between fermions is be-
ing switched ofF. Moreover, we shall see in Sec. V that
the vacua l0i, 02) constructed above yield a very good
approximation for the vacua of systems with weakly in-
teracting fermions in a magnetic field (in fact, it appears
that the role of the vacua l0i, 02) is the same as that of
the 0 vacua of the ideal Bose gas for an almost ideal Bose
gas in the theory of super8uidity [4]).

In conclusion, let us discuss the phenomenon of in-

duced quantum numbers [22,23] in this problem. As it
follows from Eq. (30), the vacuum l0i, 02) is an eigenstate

of the density operator ps
' 'I ——limp~ Qs

' ' /S with
a nonzero value:

as r2. = (x; —y~)2 ~ oo. However, since

Tle(, )e(*.)]In~'&) y o,

(38)

As to a nonrelativistic analogue of the Goldstone's theorem,
it has been proved only for translation invariant systems with
finite range interactions [24]. Systems in a magnetic field do
not satisfy this condition.
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Thus, there is the induced quantum number of the op-
erator ps'

' ' in the ~8ioq) vacuum. This fact is inti-
mately connected with the phenomenon of spontaneous
flavor symmetry breaking in this problem. Indeed, since
Qsl

' 'l is one of the generators of the non-Abelian SU(2)(1~)

symmetry, its vacuum eigenvalue would be equal to zero
if the symmetry were exact and the vacuum were assigned
to the singlet (trivial) representation of SU(2). This is in
contrast with the case of Abelian U(l) symmetry: since
U(1) has an infinite nuinber of one-dimensional represen-
tations, the vacuum can be an eigenstate of the charge
density p = limp~ Q/8 with an arbitrary eigenvalue in
that case.

Note that, since the SU(2) is spontaneously broken
here, it is appropriate to redefine the generator of the ex-
act U&e, s,&(1) symmetry as Qs

' ' =Qs ' ' —~eB]S/2vr.

IV. THE NAMBU —JONA-LASINIO MODEL
IN A MAGNETIC FIELD:

GENERAL CONSIDERATION

In this and the following four sections, we shall consider
the NJL inodel in (2+ 1) dimensions. This model gives
a clear illustration of the general fact that a constant
magnetic Geld is a strong catalyst of generating a fermion
dynamical mass in 2+ 1 dimensions.

Let us consider the (2 + 1)-dimensional NJL model
invariant under the U(2) fiavor transformations:

18 = — C, ip"D„C

(4'0)'+ (4i7,%)'+ (4»@)', (40)

8 = — 4, ip"D„4 —@ (o+ ~'~+i~'~) @

1
2G

(o'+ 7r'+ ~') . (41)

The Euler-Lagrange equations for the auxiliary fields o., w,
and vr take the form of constraints:

o. = —G(@@), ~ = —G(@p'il), ~ = G(%i~'4)—

The Lagrangian density (41) reproduces Eq. (40) upon

Note that this fact agrees with the consideration in
Ref. [23].

where D~ is the covariant derivative (2) and fermion
Gelds carry an additional "color," index n = 1, 2, . . . , %.
This theory is equivalent to a theory with the Lagrangian
density

application of the constraints (42).
The efFective action for the composite fields is ex-

pressed through the path integral over fermions:

I'(o, 7., vr) = — d x(0' + ~' + ~') + I'(0, ~, 7r), (43)2G

exp(iT) = f [dO][dC'] exp — d x[C, (ip"D„
2

= exp( Trln[ip" D„(0+—psw+ip5vr))),

(44)

i.e.)

I'(cr, v, vr) = —iTrln ip"D„—(o +p w+ip 7r) . (45)

As N ~ oo, the path integral over the composite (aux-
iliary) fields is dominated by stationary points of the ac-
tion: bI'/bo = bI'/br = bl'/bvr = 0. We will analyze
the dynamics in this limit by using the expansion of the
action I' in powers of derivatives of the composite Gelds.

Is the 1/N expansion reliable in this problem? This
question appears naturally since, as was emphasized in
Sec. II, a magnetic Geld reduces the dimension of the dy-
namics of the fermion pairing by two units. If such a
reduction took place for the whole dynamics (and not
just for that of the fermion pairing), the 1/W perturba-
tive expansion would be unreliable. In particular, the
contribution of the NG modes in the gap equation, in
next-to-leading order in 1/N, would lead to infrared di-
vergences. Just such a situation takes place in the (1+1)-
dimensional Gross-Neveu model with a continuous chiral
symmetry [25]. This phenomenon refiects the Mermin-
Wagner-Coleman theorem [26] forbidding spontaneous
breakdown of continuous symmetries in space dimensions
lower than two.

Fortunately, as will be shown in Appendix C, this is
not the case in the present problem. The central point is
that condensate (0~4'4~0) and the NG inodes are neutral
in this problem. As we shall see in Sec. VI and Appendix
C, this is reflected in the structure of the propagator of
the NG modes: unlike the fermion propagator, it has a
genuine (2 + 1)-dimensional structure. As a result, their
contribution to the dynamics does not lead to in&ared
divergences, and the 1/N expansion is reliable in this
problem. This point is intimately connected with the
status of the space-translation symmetry in a constant
magnetic field. In the gauge (2), the translation sym-
metry along the xq direction is broken (though it can
be restored by applying a certain gauge transformation).
Therefore, the momentum k~ is a bad quantum number
for fermions and all other charged states [see Eqs. (6)
and (7)]. However, for neutral states, both the momenta
k» and kq of their center of mass are conserved quantum
numbers (this property is gauge invariant) [27]. In order
to show this fact in the gauge (2), let us introduce the
following operators describing space translations in first
quantized theory:
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1 0
X1

2 ClXy

1 8P, = —. + QBxi,
z Bx2

(46)

where Q is the charge operator. One can easily check
that these operators commute with the Hamiltonian of
the Dirac equation in a constant magnetic field. Also,
the commutator [P, , P, ] is

(*le "' ''ly) =e " (xle " " "Iy)
x [cos(eBs) + p'p sin(eBs)]

e 4 —i(Sa —S I)2

8(mrs) ~2

x [eBscot(eBs) + y p eBs], (53)

where
[P, , P, ] = —iQB. (47)

Therefore, the commutator equals zero for neutral states,
and both the momenta kq and kq can be used to describe
the dynamics of the center of mass of neutral states. As
we shall see, this point is important for providing the
(2 + 1)-dimensional character of this dynamics.

S,i = e A'„"'dz" ——(x —y)„g""+ '
4s

I
B2

x [1 —eBs cot(eBs)] (x —y)~. (54)

V. THE NJL MODEL IN A MAGNETIC FIELD:
THE EFFECTIVE POTENTIAL

Here the integral j A&" dz" is taken along the straight
line.

Substituting Eq. (53) in Eq. (51), we find

I'(cr) = —iTrln(iD —cr) = —ilnDet(iD —0), (48)

where D = p"D~. Since

Det(iD —o) = Det[p (iD —o')p ] = Det( —iD —0'),

We begin the calculation of I' by calculating the effec-
tive potential V. Since V depends only on the SU(2)-
invariant p = cr + v + vr, it is sufficient to consider a
configuration with v = vr = 0 and o independent of x.
So now I'(o') is

I'(c7) =
&

d x
&

e " eBs cot(eBs).
p 8

(55)

Therefore the effective potential is

2

+ V(&)

+ e '~ eBs coth(eBs), (56)2G 4~3)'2,&» 85)"

we find that

(49)
where p = 0 +w +m', and now we introduced explicitly
the ultraviolet cutoff A.

By using the integral representation for the generalized
Riemann zeta function ( [18],

I'(0.) = ——Tr[ln(iD —0) + ln( —iD —cr)]
2

= ——Trln(D + 0 ).
2

(5o)

OD

dss" e ~' coth s = I'(p) 2 "g
I p, —

I

—P
o

(57)

Therefore, I'(cr) can be expressed through the following
integral over the proper time s:

which is valid at p ) 1, and analytically continuing this
representation to p, = —2, we can rewrite Eq. (56) as

I'(cT) = ——Trln(D' + 0')
2

OO —t (*I "' ' 'I*),
2 p 8

where

DP P, VgeXt
P 2 P,v

= D„D"+ icy p B.

(51)

(52)

~2 ( 1 (pl)'
l'

q
2' 2

+ O(1/A), (58)

(59)

We recall that g(p, ~z) is defined as

where the magnetic leiigth l is l = IeBI i~2 and here we
introduce the dimensionless coupling constant

The matrix element (xle "~ + &Iy) can be calculated
by using the Schwinger approach [17]. It is

p)
2)I =).(,)„ (6o)



V. P. GUSYNIN, V. A. MIRANSKY, AND I. A. SHOVKOVY

at p & 1 [18].
Let us now analyze the gap equation dV/dp = 0. It is

e '~ eBs coth(eBs),
7i g 27K 1/r ~2 8

(61)

which can be rewritten as

2Al
I

——
I p = —+ v 2p( I

—,1+
I
+ O(1/A).

p'l'i
(g ~m) l i2 2 )

(62)

Thus in the scaling region, with g —g ( QIeBI/A, the
cutoff disappears fmm the observable mdy~ This agrees
with the well-known fact that the critical value g, = v vr

is an ultraviolet stable fixed point at leading order in 1/N
[14]. The relation (66) can be considered as a scaling law
in the scaling region.

In the supercritical region, at g & g„ the analytic ex-
pression for mg„„can be obtained at weak IeBI, satisfying
the condition QIeBI/md „«1, where m&„„ is the solu-
tion of the gap equation (63) with B = 0. Then, using
the asymptotic formula [18]

As B -+ 0, we recover the known gap equation [14]:

p'=pAI ~ —— I. (63)

I

g(z, q) q —Zoo 1+
z —1 q~-i 2q

we find, &om Eq. (62),

(67)

I
eBIg~vr

2A(g, —g)
' (64)

Since Eq. (64) implies that the condition IolI « 1 fulfills
1/2

at all g satisfying (g, —g) )) ' &, the relation (64) is
actually valid in that whole region.

Note the following interesting point. Equation (42)
implies that m„„= (Ol'710) = —erg/NA(OI@@IO).
here and Eq. (64) we find that the condensate (OIiliiIJIO)
is (OIili@I0) = NIeBI/27r in —leading order in g; i.e.,
it coincides with the value of the condensate calculated
in the problem of &ee fermions in a magnetic field [see
Eq. (22)]. This point implies that at small g (weakly
interacting ferinions) the Ioi, Hq) vacua constructed in
Sec. III are good trial states for the vacua of the problem
with interacting fermions. This point also explains why
the dynamical mass may~ in this problem is an analytic
function of g at g = 0: indeed, the condensate already
exists at g = 0.

At g, —g - QIeBI/A, introducing the scale m'
A(1/g —1/g, ), we get the equation

It admits a nontrivial solution only if the coupling con-
stant g is supercritical, g & g, = ~or [as Eq. (41) implies,
a solution to the gap equation, cr = o. , coincides with the
fermion dynamical mass, 0 = mg„„]. We will show that
the magnetic Geld changes the situation dramatically: at
B g 0, a nontrivial solution exists at all g & 0. The
reason for this is that the magnetic field enhances the
interaction in the in&ared region (large s): at B g 0,
the integral in Eq. (61) becomes proportional to 1/p as
p —+ 0.

We shall Grst consider the case of subcritical g, g (
g = ~m, which in turn can be divided into two subcases:
(a) g « g, and (b) g ~ g, —0 (near critical g). Assuming
that IolI « 1 at g « g„we find, &om Eq. (62),

~Jy 0 —may ~ +(o) (eB)2

12(md l„)4
(68)

dV — IeBI
I-=o = (ol@@lo)Is=0 = —N (69)

[see Eq. (22)]. Thus, despite the spontaneous character
of the U(2) symmetry breakdown, there is no trivial so-
lution (stable or unstable) in the magnetic field at all
values of g.

VI. THE NJL MODEL IN A MAC NETIC FIELD:
THE KINETIC TERM

IN THE EFFECTIVE ACTION

Let us now consider the kinetic term Z~ in the effective
action (43).

The U(2) symmetry implies that the general form of
Zg 1S

EPD EPK
(&~p~~ p~)+N ', (p~&~p. )(p'~-p') (»)

i.e., may„ increases with B. The numerical study of
Eq. (62) shows that m~„„ increases with B at all values
of g and B.

A striking fact is that, unlike the gap equation (63)
with B = 0, the gap equation with B g 0 does not
have the trivial solution 0 = 0. Indeed, Eq. (56) implies
that dV/do I~—0 ——dV/do

I 0, and then we find from
Eqs. (41) and (44) that

2m'l = +~2(I —, +1
I

1 t'1 (o l)

)
(65)

may„——o - IeBI'~'. (66)

which implies that in the near critical region, m.Qy~ is

where p = (o', v, vr) and E~"", Ez"" are functions of p2 =
0 +w +m . To And the functions Ei"",and E2"",one can
use different methods. We used the method of Ref. [28].
The derivation of Zy is considered in Appendix A. Here
we shall present the 6nal results.

The functions E1" and E2 take the form Ei"
g""E"",E""= g""E " ~h~re
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M ='~(' g)Ai.Bii
gg-(,'(-,') (74)

11 22 l

4vr p

+1 + (~l)(2&2 2' 2

(p )
~

2 (p ) ~,)8z ~2 2 2

1 l 2

+ j2(pl) ((—, + 1) + 2pl —(pl)

(71)

at g, —g )) g]eBi/A. As g ~ 0, the o mode decouples
(M -+ oo).

Thus the dynamics in the problem of a relativistic
fermion in an external magnetic field emerges from this
model in the limit when the interaction between fermions
is switched off. The attractive (g ) 0) interaction "resur-
rects" the NG modes and they acquire a velocity v g.

Let us now consider the near critical region with g
g - gieBi/A. From Eqs. (70) and (71), we find that

E, = f(ol)(Is')'i,
where

—1/2
(we recall that the magnetic length l = ieBi ) ).

We would like to emphasize that, as follows from Eq.
(71), the propagator of the NG modes in leading order in
1/N has a genuine (2+ 1)-dimensional form. We shall see
in Appendix C that this fact is crucial for providing the
reliability of the 1/N expansion in this problem (physi-
cal reasons for the (2 + 1)-dimensional character of the
dynamics of the neutral NG bosons are considered in the
next section).

Now, knowing the eB'ective potential and the kinetic
term, we can define the energy spectrum (dispersion law)
of the collective excitations 0 and 7, 7l.

VII. THE NJL MODEL IN A MAGNETIC
FIELD: THE SPECTRUM OF THE

COLLECTIVE EXCITATIONS

(76)

Since in this near critical (scaling) region the parameter
o is o. ieB]ii2 = l, we conclude that the cutofF A
disappears from the observables E and E in the scaling
region.

In the same way, we find from Eqs. (70), (71), and (73)
that

M ieBi

in the scaling region.
Let us turn to the supercritical region with g & g . The

analytic expressions for E and M can be obtained for
small ieBi = l, satisfying the condition io l

i
)) 1. Then,

using the asymptotic formula (67) for zeta functions, we
find, from Eqs. (70), (71), and (73),

We begin by considering the spectrum of the collective
excitations in the subcritical, g (g, region.

At g, —g )) gieBi/A [where icrli (( 1, see Eq. (64)],
we find f'rom Eqs. (70) and (71) the dispersion law for
the w and. vr NG (gapless) modes:

8 crl 4)

, (M =6o.
i

1 ——

(78)

(79)

E = ~2(-l)(l2)'i'= "' (I')'i'
~2A(g, —g)

(72)

d V
d(7

OO

= N ds~s exp[—(o l) s] coth s

[see Eq. (56)]. Then we find from Eqs. (70), (71), and
(73) that

[see Eq. (64)]. As the interaction is switched ofF, g ~
0,. their velocity, v = gg, (g —g) gieBi/2A2, becomes
zero, and we return to the dynamics with spontaneous
Qavor symmetry breaking but without genuine NG modes
discussed in Sec. III.

In order to define the "mass" (energy gap) M of the
cr mode, we note that

where o is given in Eq. (68). These relations show that
the magnetic field leads to decreasing both the velocity
of the NG modes (it becomes less than 1) and the mass
(energy gap) of the o mode.

Let us indicate the following interesting point inti-
mately connected with the (2 + 1)-dimensional charac-
ter of the dynamics of the neutral NG modes. The
(2+ 1)-dimensional character is reflected in that the ve-
locity v = OE /Ok is not zero. As follows from
Eqs. (72), (75), and (78), the velocity v decreases
with mg„„= o and becomes zero [i.e., the dynamics be-
comes 0+ 1 dimensional] when my~„-+ 0, i.e., when the
interaction is switched off (g -+ 0). The reason for this
is clear: since at g = 0 the energy of the neutral sys-
tem made up of a fermion and an antifermion from the
lowest Landau level is identically zero, its velocity is also
zero. This fact in turn reHects the point that the motion
of charged fermions in the xi-x2 plane is restricted by a
magnetic field. On the other hand, at g & 0, there are
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genuine neutral NG bound states (with the bound energy
AE = 2mgz„—E~ ]), o

——2mgz„). Since the motion
of the center of the mass of neutral bound states is not
restricted by a magnetic field, their dynamics is 2 + 1
dimensional.

Let us now discuss the continuum limit A ~ oo in more
detail. As is known, at B = 0, in this model, an interact-
ing continuum theory appears only at the critical value
g = g, = ~m (the continuum theory is trivial at g ( g, )
[4,14—16]. Therefore, since at g ( g„ in the continuum
limit, there is no attractive interaction between fermions,
it is not surprising that at g & g, the dynamical mass
m~~„gleB]/A disappears as A ~ oo.

At B = 0, the continuum theory is in the symmetric
phase at g + g —0 and in the broken phase at g ~ g +0.
On the other hand, as follows &om our analysis, in a
magnetic field, it is in the broken phase both at g ~
g, —0 and g ~ g, + 0 (though the dispersion relations
for fermions and collective excitations p are difFerent at
g -+ g, —0 and at g ~ g, + 0 ).

Up to now we have considered four-component
fermions. In the case of two-component fermions, the
effective potential Vz is Vq(o) = V((7)/2, where V(0) is
defined in Eqs. (56) and (58). However, the essential new
point is that there is no continuous [U(2)] symmetry (and
therefore NG modes) in this case. As in the case of four-
component fermions, in an external magnetic field, the
dynamical fermion mass (now breaking parity) is gener-
ated at any positive value of the coupling constant g.

The NJL model illustrates the general phenomenon
in 2 + 1 dimensions: in the in&ared region, a mag-
netic field reduces the dynamics of fermion pairing to
one-dimensional dynamics (at the lowest Landau level),
thus catalyzing the generation of a dynamical mass for
fermions. A concrete sample of dynamical symmetry
breaking is of course difFerent in difFerent models.

VIII. THERMODYNAMIC PROPERTIES OF
THE NJL MODEL IN A MAGNETIC FIELD

In this section, we will study the thermodynamic prop-
erties of the N JL model in a magnetic field. In particular,
we will show that there is a symmetry restoring phase
transition at high temperature.

Our goal is to determine the thermodynamic (efFective)
potential in the NJL model in a magnetic field. Although
we are mostly interested in studying the system at finite
temperature T and zero chemical potential )(j, (i.e. , at
equal densities of fermions and antifermions), we shall
derive the efFective potential Vp „(o) (at the leading order
in 1/N) at arbitrary values of P = 1/T and p.

Since in the leading order in 1/K, the effective poten-
tial V((T) = Vp „(cr)lp is given by a sum of one-

@=0
(fermion) loop diagrams, the thermodynamic potential
is, in this approximation,

Vp „(~) = V(~) + Vp „(~)
1 (~l)'

2vvr ( g ) ts 2' 2 2lz

p( / g+~I.
12 In(1+—e 2'I "I)+2) In(1+e ~" +' ")) I (Iem —Ie)2~P

(so)

[see Eq. (58)]. Here the sum is taken over all the ferrnion
and antifermion (with p ~ —p) Landau levels; the factor
leBl/2~ describes the degeneracy of each level. The re-
lation (80) is derived (in the framework of the imaginary
time formalism [29]) in Appendix B. We also show there
that it can be rewritten as

')
K2

(
I (c I)e

2l2

O. N dt (,)2~2)
2Q 4~3/2l3 t3/2

i i p)'
XO4 —

Vpl2 4~t l ) (s1)

ln(l+ e ~ )
leBl

+2) In(1+e V
+

)
A:=1

(82)

where 84 is the fourth Jacobian theta function [18].
Henceforth we will consider the case of zero chemical

potential corresponding to equal densities of fermions and
antifermions in the system. In this case, the thermody-
namic potential V)s = Vp „l„ois

We solved numerically the gap equation

0Vp ((7)
do
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The main result is that at T = T mg„„(actually at
T = T, m~„„/2), there is a symmetry restoring (second
order) phase transition (see Figs. 1 and 2). The phase
diagram in the B —T plane is shown in Figs. 3 and 4.

We recall that there cannot be spontaneous breakdown
of a continuous symmetry at finite (T ) 0) tempera-
ture in 2 + 1 dimensions [the Mermin-Wagner-Coleman
(MWC) theorem [26]]. This happens because at nonzero
temperature the dynamics of a zero mode in (2 + 1)-
dixnensional field theories is two dimensional. As a re-
sult, strong Quctuations of would-be NG modes lead to
vanishing order parameter connected with a spontaneous
breakdown of a continuous symmetry. In the NJL model
with a finite temperature (both at B = 0 and in a mag-
netic field), the MWC theorexn manifests itself only be-
yond the leading order in 1/N. One plausible possibility
of what happens at T g 0 beyond the leading order in
1/N is the following. The dynamics of the zero mode in
this model is essentially equivalent to that of the SU(2) o
model in two-dimensional Euclidean space. As is known,
the SU(2) symmetry is exact in the latter model and, as
a result, the would-be NG bosons become massive excita-
tions [30]. Therefore it seems plausible that in the (2+1)-
dimensional NJL model in a magnetic field, the SU(2)
symmetry will be restored at any finite temperature, and
the dynamically generated mass m~~„of fermions will
disappear.

The question whether this, or another, scenario is real-
ized at finite temperature in this model deserves further
study.

IX. CONCLUSION

The main result of this paper is that a magnetic field
is a strong catalyst, generating a fermion mass (energy

0 8-

g/g, =1 O

G B=O. 1

T=O. 0

T=O. 5

—0.
T=O. 6

T=O. 7

T=O. 8

T~-1.
0 0 0 5 1

', o=1.005 0
0 1. 5 Z. 0 2. 5

FIG. 2. The thermodynamic potential Vp as a function of cr

at difFerent temperatures at supercritical g: g/g, = 10 . All
quantities are measured in p = A/g, units: Vs —+ sVp/y, ,
eB -+ eB/p', o. m o./p.

gap), in 2 + 1 dimensions. It would be worth considering
the present effect in (2 + 1)-dimensional effective theo-
ries describing high temperature superconductivity and
the quantum Hall eKect where a magnetic field is an im-
portant ingredient of the dynamics. In connection with
this, we note that in some models of high temperature
superconductivity of Ref. [2], the energy gap in the elec-
tron spectrum results from electron hole (i.e. , fermion-
antifermion rather than fermion-fermion) pairing. Also,
using the four-component spinors in these models reBects
the presence of two sublattices in high temperature su-

0. 010

0 009-

/g, =O. 9

8 B=O. I

0. 12

0. 1 0- g/g, =O. 9
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FIG. 1. The thermodynamic potential Vp as a function of
o at difFerent temperatures at subcritical g: g/g = 0.9. All
quantities are measured in p = A/g units: Vs m vrVp/y, ,
eB + eB/y, , o -+ o/p.

FIG. 3. The critical line in the eB —T plane separating
the asymmetric (A) and symmetric (S) phases at subcritical
g: g/g = 0.9. All quantities are measured in y, —:A/g units:
eB ~ eB/p, T ~ T/p. ,
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FIG. 4. The critical line in the eH —T plane separating the
asymmetric (A) and symmetric (S) phases at supercritical g:
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eB -+ eB/p, T -+ T/p.

In this appendix, we derive the expressions for the
fermion propagator and for the kinetic term ZA, in the
effective action.

In the coordinate space, the fermion propagator is

perconductors. Another, potentially interesting, applica-
tion of the present efFect may be in (3 + 1)-dimensional
6eld theories at high temperature. Since at high tem-
perature, their dynamics effectively reduces to that of
(2+ 1)-dimensional theories, it might happen that in a
magnetic field, at high temperature, fermions (quarks in
quark-gluon plasma, for exaniple) acquire a dynamical
mass and NG excitations appear.

It would be interesting to check the realization of this
efFect in (2 + 1)-dimensional theories in lattice computer
simulations. Note that the recent computer simulations
of the (2+ 1)-dimensional NJL model [16] show that the
1/N expansion is quite reliable, at least at N & 12.

The essence of the present effect is that in a constant
magnetic field, the dynamics of fermion pairing is one di-
mensional: the pairing takes place essentially for fermions
at the (degenerate) lowest Landau level. This implies the
universal character of this efFect in 2 + 1 dimensions.

In this paper, we considered. the dynamics in the pres-
ence of a constant magnetic 6eld only. It would be in-
teresting to extend this analysis to the case of inhomo-
geneous electromagnetic fields in 2 + 1 dimensions. In
connection with this we note that the present effect is in-
timately connected with the fact that in 2+1 dimensions,
the massless Dirac equation in a constant magnetic 6eld
admits an in6nite number of normalized solutions with
E = 0 (zero modes); more precisely, the density of such
solutions is 6nite. One may expect that the same effect
mill take place for any electromagnetic field con6gura-
tion in which the density of zero modes is finite. As we
have known recently, the program of the derivation of a
low energy efFective action in (2 + 1)-dimensional QED
in external electromagnetic fields has been developed in
Ref. [31].

s(x, y) = (iD+ m) (T . y)m2+ D2

= (iD + m) ds(xI exp[—is(m + D2)]Iy),
0

(Al)

where D = p D~ and D„ is the covariant derivative in
Eq. (2).

The matrix element (xIe *'& + )Iy) can be calcu-
lated by using the Schwinger (proper time) approach [17].
It is

(I "+ )I)= '["' )

8(ms) s/2

x eBscot eBs +p p eBs, A2

where

"'d "-—'(--.) '"+" '"""
Z X g ~ g B2

x 1 —eBscot eBs x —y „. (A

Here the integral is calculated along the straight line.
From Eqs. (A-1) and (A2), we find the expression (18)

for the fermion propagator.
Let us now consider the derivation of the kinetic term

(70) in the low-energy efFective action:

~gkl/ yvgkl/

( p -p)+ ', (p p)(p' p')
P

(A4)

where p = (o, r, m) and FP", F2"" depend on the U(2)-
invariant p = o +v +z . The definition I's ——f d +ED,
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= —(Fi""+ 2F2"")
cr =const
7 =m=0

B„B„b (x), (A5)

2p

her(x)b~(0)

a=const
v =x=0

B„B„b (x). (A6)

Here F), is the part of the effective action (43) containing
terms with two derivatives. Equation (43) implies that
1'i, = I'g. Therefore we find f'rom Eq. (A6) that

and Eq. (A4) imply that the form of the functions Fi"",
F2" is determined from the equations:

b lA,

h(r (2:)ho(0. )

= —itr S(x, o)iq S(o, x)iqhex ~0
= —*t (s(*,o)*o's(o *)*7')

= —i e'e tr(S(k)io S(k+q)it )
(A9)

[the functions S(x) and S(k) are given in Eqs. (18)—(20)].
Therefore,

F,""= — tr S(k) ip5 ip' . (A10)

In the same way, we Gnd that

h~(*)b~(0)

2 bar(x)h7r(0)
(A7)

(henceforth we shall not write explicitly the condition
7 = ir = 0, (7 = const). Taking into account the definition
of the fermion propagator,

i% d k (- B S(k)
4 (2m. )s

( Bk„Bk„
tr S(k)

—S(k)'p'. , B2S(k) . , )

Bk„Bk ) (A11)

iS = iD —cr,

we find &om Eq. (45) that

(A8)
Taking into account the expression for S(k) in Eq. (20)
(with m = o ), we get

BSk = 2il dtt exp((R(t))((T(1+ re p T) + 3k p (1+ rjp p T) —k'p'(1+ T )
0

+2itl (k ) o(1+ rip p T) + 2itl (k ) p (1+re p T) —2itl (k ) (k'p')(1+ T )), (A12)

B2S k
. = —2il dtT exp(R(t))(o(1+ rIp p T) —k'p'(1+ T ) —2ksps(1+ T )

+k p (1+re p T) —2iTl (ks) o.(1+re p T)
—2iTl (k~) k p (1+re p T) + 2iTl (ks) k'p'(1+ T )) (A13)

(i, j = 1, 2; there is no summation over j), where

il = sgn(eB), T = tant,
R(t) = —it(ol)'+ it(k')' —il'k'T . (A14)

l~00 d'r . e ((71) r cosh 'T
].2~3~2 sinh '2

3 7+—cosh' +
2 sinh v.

Equations (20), (A10), and (All) imply that nondiag-
onal terms Ez" and E2" are equal to zero. The diagonal
terms are determined from Eqs. (20), (A10)—(A13), after
rather long, although routine, calculations:

(A15)
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~00 y g d 3i2 —(crl) ~l ~o.l ~2

12%3/2

16m (2 2 2 2((—, + 1) + ( l)a, (A18)

(A17)
47ro-'

&(«&2
d7 7 ~ e ( ) coth r(1 —7 coth r)4~»2

1 ((al)e 2 (al)e
8

~ ~2 2' 2

-8c 2(al)e(( —, + 1) + 2al —(al) ' . (A18)
1 (ot)2
2' 2

Here [in addition to Eq. (57)] the following relations were
used [18]:

p)
d =2' "I'(p) 2(i p —1, —

i

0 Slnh 7

( p)

where p2 = o.~+w2+m2, S is the fermion propagator (18)
with m replaced by 0 +p 7+i' 7r, and while the fermion
fields satisfy the antiperiodic boundary conditions

@~~=o = —@~i=—2p, @~i=o = —@~~=—'p,

the boson fields satisfy the periodic boundary conditions.
In order to calculate the thermodynamic potential

Vp „(p), it is sufficient to consider configurations with
7 = 7r = 0 and a = const. Then the potential is defined
as

exp —Vp„d z = d@ d4

—ip
xexp i dt d x

1
x 4{iS '+ pro)@ — o'

2G
(B4)

At the leading order in 1/K, this potential defines the
thermodynamic properties of the system.

As is known [29], in the formalism of the imaginary
time, the thermodynamic potential Vp & can be obtained
Rom the representation for the effective potential V, at
T = 0 and p = 0, by replacing

f
OO —P~e

e P coth 7.d7 = P "I'(p) + 2 d~,
0 p sin h 7

p ) 2, (A20)

f
d3k i d2k

(2m) p ) (2vr)

k —i i(d„+ p; (u„= —(2n+ 1)

e ~ coth7
d7

0 SlIlh 7

d7, P) 3.

(A21)

7p, —2e —pW

0 sinh 7
p oo 12—i e

—p2.

p slnh 7 Vp „(lr) = Cr2 N dt, i2( 2 2)—e " cotht

pt2 t
x 82 27rt 4i7rt— (B6)

[(A)„= p (2n+ 1) follows from the antiperiodic conditions

(B3)]. Then, using the representation for the effective po-
tential in Sec. IV and the expression (20) for the fermion
propagator, we get

APPENDIX B where

In this appendix we shall derive the thermodynamic
potential Vp „ in the NJL model (40); here P = 1/T is
an inverse temperature and p is a chemical potential.

As is well known [29], the partition function

Oe(cc(a) = 2) e' 1"+ 1 cce ((2a. +1)a)
n=p

(B7)

Zp „=Tr[exp( —PH')] (Bl)
is the second Jacobian theta function [18].

By using the identity [18]

is expressed through a path integral over fields of a sys-
tem (here H' = H —p f ilI7 @d x, H is the Hamiltonian
of the system). In the NJL model (40), (41), the path
integral is

( . ) 1/2

82(ul~) =
I

—
IT)

where

u
e *=-84

7 'T)
(B8)

(B2)

—ip
Zp, ~ —— d4 d4 do d7 der exp i dt d x

0
1 2x i11(iS + p8 )@— p2G

04(u[v) = 1 + 2 ) (—1) e' cos(2nu)
n=1

(B9)

is the fourth Sacobian theta function, one can rewrite the
relation (B6) as
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(B10)

N dt= V(o) +, , cotht ) (—1)"cosh(pP n) . exp —
i

to'l'+

cotht = 1+2 ) e
m=1

(B11)

the expression for V„p = V„p —V in Eq. (B10) can be
rewritten as

N & . „cosh(pPn)
~lzP ~- nn=1

r 2m i
+2 ) exp —Pon 1+

m=1 )
Here we also used the relations [18]:

(B12)

dxx exp
~

———px
~

0

K ~ (z) = K. (z) (B13)

where K (z) is a modified Bessel function.
Since

where V(0.) is the effective potential (56).
Thus we have derived the representation (81) for the

thermodynamic potential. Let us show that it is equiva-
lent to the representation (80).

By using the series

It is now easy to check that the expression for the ther-
modynamic potential Vp „——V+ Vp „coincides with that
in Eq. (80).

APPENDIX C

In this appendix we analyze the next-to-leading order
in 1/N expansion in the (2 + 1)-dimensional NJL model
at zero temperature. Our main goal is to show that the
propagator of the neutral NG bosons m' and v have a
(2 + 1)-dimensional structure in this approximation and
that [unlike the (1+ 1)-dimensional Gross-Neveu model
[25]] the 1/N expansion is reliable in this model.

A review of the 1/N expansion in (2 + 1)-dimensional
four-fermion interaction models can be found in Ref. [14].
For our purposes, it is sufIicient to know that this per-
turbative expansion is given by Feynman diagrams with
the vertices and the propagators of fermions and com-
posite particles 0., m, and 7 calculated in leading order in
1/N. In leading order, the fermion propagator is given
in Eqs. (18)—(21). As follows from Eq. (41), the Yukawa
coupling of fermions with o, w, and m is gy- ——1 in this
approximation. The inverse propagators of 0, ~, and vr

are [14,28]

we find that

+2e ~ cosh n),

Dp (&) = N
~

b (x) + itr[S(x, 0)TpS(0 x)Tp](g7I

1s p = — (le[1+ e ~ +2e ~ cosh(1sP)]
N

gP /1+ urn

+2 ) ln 1+e
m=1

P /1+ 2m

+2e & ("&' cosh(pP)

(B15)
where p = (o, r, m) and T = 1, T
its. Here S(x, 0) is the fermion propagator (18) with
the mass my~„= a defined from the gap equation (62).
For completeness, we write down the explicit expression
for the Fourier transform of the propagators of the NG
bosons:

D i(k) = D (k)
1 oo

ds~s
du . exp[ —s(crl) ]4~3/~i Slnh 8

0 0

x (1 —exp[R(s, u)])
~

(crl) cosh s+
sinh 8

x cosh s exp[R(s, u)] + 3l k exp[A(s, u)]

i

—2(lko) (1 —u )s )

2
x

~

cosh su —u sinh su coth s + z (cosh su —cosh s)
~3 sinh 8

(C2)
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where

R(s, u) = —(lkp) (1 —u )—
4

l k coshs —coshsu
2 sinh 8

(C3)
b)

Actually, for our purposes, we need to know the forxn of
these propagators at small momenta only. We find, &om
Eqs. (70), and (71):

D (k) = D (k) = — f (o.l)[kp —f (ol)k ], (C4)

where

2 1 3 ol
f(&l) =

I = [ & I

— +I
I
+ (ol) '

(ol) V2 (2 2

- —1/2

c)

(C5)

[see Eq. (76)].
The crucial point for us is that, because of the dy-

namical mass may„& the fermion propagator is soft in the
infrared region [see Eq. (25)] and that the propagators of
the v and a (C4) have a (2+ 1)-dimensional form in the
infrared region [as follows &om Eqs. (70) and (71) the
propagator of o has of course also a (2 + 1)-dimensional
form].

Let us begin by considering the next-to-leading correc-
tions in the effective potential. The diagram which con-
tributes to the effective potential in this order is shown
in Fig. 5(a). Because of the structure of the propaga-
tors pointed out above, there are no in&ared divergences
in this contribution to the potential. [Note that this is
in contrast with the Gross-Neveu model: because of a
(1+ 1)-dimensional form of the propagators of the NG
bosons, this contribution is logarithmically divergent in
the infrared region in that model, i.e., the 1/N expan-
sion is unreliable in that case. ] Therefore the diagram in
Fig. 5(a) leads to a finite, order 1, correction to the po-
tential V (we recall that the leading contribution in V is
of order N). As a result, at sufficiently large values of N,
the gap equation in next-to-leading order in 1/N in this
model admits a nontrivial solution p g 0. Since the po-
tential depends only on the radial variable p, the angular
variables 0 and p [p = (p cos 8, p sin 0 cos p, p sin 8 sin p) ],
connected with the w and vr, appear in the effective La-
grangian only through their derivatives. This in turn
implies that the w and m retain to be gapless NG modes
in the next-to-leading order in 1/N.

Let us now consider the next-to-leading corrections to
the propagators of these NG modes. First of all, note
that in a constant magnetic field, the propagator of a
neutral local field p(x), D~(x, y), is translation invariant,
i.e. , it depends on (x —y). This immediately follows from

FIG. 5. Diagrams in next-to-leading order in I/N. A solid
line denotes the fermion propagator and a dashed line denotes
the propagators of o, v, and z in leading order in 1/N.

the fact that the operators of space translations (46) take
the canonical form for neutral fields (the operator of time
translations is i 0/Ot for both neutral and charged fields in
a constant magnetic field). The diagrams contributing to
the propagators of the NG modes in this order are shown
in Fig. 5(b). Because of the dynamical mass my~„ in the
fermion propagator, this contribution is analytic at k& ——

0. Since at large N the gap equation has a nontrivial
solution in this approximation, there is no contribution
of O(ko) const in the inverse propagators of w and vr.

Therefore the first term in the momentum expansion of
this contribution has the form Ciko —C2k, where Ci
and C2 are functions of col, i.e. the propagators take the
following form in this approximation:

D (k) = D (k) = — f (ol) ]
1 ——.Ci(o.l) ~

kp

(,f (ol) O2(ol)

(C6)

[see Eq. (C4)].
Because of the same reasons, there are also no in-

frared divergences either in the fermion propagator [see
Fig. 5(c)] or in the Yukawa vertices [see Fig. 5(d)] in this
order. Therefore at sufIiciently large values of N, the
results retain essentially the same as in leading order in
1/N.

We believe that there should not be any principal ob-
stacle to extend this analysis for all orders in 1/N.
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