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An efFective potential that is real
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In theories with spontaneous symmetry breaking, the exact effective potential V(P„T) is real,
but its loop expansion can be complex. A generalization of the effective potential is developed
that is real and that can be computed perturbatively. For the theory with the classical potential
V(P) = (A/4)(P —o ), this real effective potential closely tracks the usual efFective potential where
the latter is real, ~P, ~

) o/~3, and at finite temperatures displays at P, = 0 a local minimum,
which may have astrophysical implications. The critical temperature at the one-loop level runs from
T~ —1.81o for A = 0.1 to T~ 1.74a for A = 1.
PACS number(s): 11.30.@c, 03.70.+h, 11.15.Ex, 14.80.Bn

I. INTRODUCTION

The effective potential was introduced by Heisenberg
and Euler [1] and by Schwinger [2]. Goldstone, Salam,
and Weinberg [3] and Jona-Lasinio [4] developecl the ef-
fective potential and applied it to the problem of symme-
try breaking [5]. Coleman and Weinberg used it to show
that radiative corrections could break syinmetries [6].
Linde [7] and Weinberg [8] later used it to obtain a lower
bound on the mass of the Higgs boson. West and others
have used it to study the breaking of supersymmetry [9].

The possibility that broken symmetries might be re-
stored at high temperatures was raised by Kirzhnits and
Linde [10] and confirmed by them [ll], by Dolan and
Jackiw [12],and by Weinberg [13],who with Bernard [14]
introduced and developed the finite-temperature effective
potential. Much current work on the early universe is
based upon the finite-temperature efFective potential [15].

Although the effective potential has had a long his-
tory of successful applications to particle physics, it
does not seem to be well suited to theories that ex-
hibit spontaneous symmetry breaking. In such theo-
ries the exact effective potential is real [16], but its per-
turbative series can be complex [17]. In the example
provided by the symmetry-breaking classical potential
V(P) = (A/4) (P —o' ), the loop expansion of the finite-
temperature effective potential is complex at all temper-
atures T for ~P, ~

( /vo3. In such theories the accuracy
of the one-loop effective potential does not extend down
to the small values of ~P, ~

that are of interest in studies
of the early universe. And where the effective potential is
complex, it is ambiguous as an approximation to a free-
energy density —although it may be interpreted as a
decay rate [18].

Because of this limitation of the perturbative effec-
tive potential, some physicists have turned to nonper-
turbative techniques. Chang [19] has invented a vari-

*Electronic address: kevincahill. phys. unm. edu
t Permanent address.

ational method called the gaussian efFective potential,
which Barnes and Ghandour [20] and Stevenson [21] have
developed. Fukuda and Kyriakopoulos [22] have intro-
duced a version of the efFective potential that is well
suited to lattice computations; 0 Raifeartaigh, Wipf, and
Yoneyama [23] have analyzed this potential. Ringwald
and Wetterich [24] have suggested the use of block-spin
techniques.

The goal of the present paper is to generalize the ef-
fective potential so that it can be applied simply and
perturbatively to theories with spontaneous symmetry
breaking. The usual effective potential is the Legendre
transform of the Helmholtz &ee-energy density for the
modified Hamiltonian II + I jPd z, in which j is an
external source. For theories in which V"(P) takes on
negative values, as it must when V(P) has two minima,
the linear probe jP should be generalized to a quadratic
polynomial jP(P). This advice has been given in the
past with varying degrees of obliqueness by Cornwall,
Jackiw, and Tomboulis [25], by Hawking and Moss [26],
and by Lawrie [27], but it has not been followed. When
discussing theories with spontaneous symmetry breaking,
most physicists either ignore the complexity of the usual
efFective potential [15] or work in a region of parameter
space in which scalar loops can be ignored [28].

In what follows I shall discuss the case of a single
scalar field P interacting with an arbitrary renormal-
izable potential V(P). If the curvature V"(P) of the
potential is positive, then the usual effective potential
with a linear probe jP is optimal. But if the curva-
ture V"(P) of the potential is negative for some values
of the field P, then a quadratic polynomial jP($) should
be used. If the potential V(P) of indefinite curvature
has a single minimum at Pi, then a suitable probe is
P(p) = (p —

qadi) /2. If the potential V(p) of indefinite
curvature has two minima separated by a local maximum
at Po, then P(P) = (P —Po) /2 is an appropriate probe.
Such quadratic probes jP(P) lead to efFective potentials
that possess real loop expansions.

For the classical potential V(P) = (A/4)(gP —cr )
which has a local maximum at Po ——0, the right probe
is P(P) = P2/2. The resulting real efFective potential
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closely tracks the usual effective potential where the lat-
ter is real and naturally extends down to P, = 0, where
it has a local minimum. The reflection symmetry of the
action is restored to the vacuum at a critical tempera-
ture T~, which runs from T~ 1.81' for A = 0.1 to
T~ 1.740 for A = 1, a range of values that may be
compared with Weinberg's [13] result Tc = 2o. The
Grst few terms of the high-temperature expansion of the
one-loop, real effective potential Vi(P„T;P) with probe
P(P) = P2/2 are

II. THE PARTITION FUNCTION
OF A FREE FIELD

One of the clearest descriptions of the finite-
temperature eBective potential is Weinberg's operator
formulation [13]. Stripped of fermions and gauge fields
and reduced to a single scalar Geld, it will serve as the
basis for the introductory sections of this paper.

The basic quantity of statistical physics is the partition
function Z of the inverse temperature P = 1/T, which for
a system described by the Hamiltonian H is the trace

Z(P) = T"-~". (3)
All the quantities of this paper will be expressed in terms
of the partition function Z(P) for a &ee, real scalar field
P of mass m with the hamiltonian

1 ~2+ ~ 2+ ~2 2 d3~

= ) (ui, [at(k)a(k) + 2I (4)

Vi(P„T;P) = — T—+ —(3$, —o. ) T
90 24

(
' I~. l

— I&.l') . ( )

The corresponding terms of the usual effective potential
are

7r2
Vi(Q„T) = T+———(3$, —o ) T

90 24
p3 /2

(3y.' —o') (2)12'
These two expansions possess the same two leading
terms, but they di6'er in the third term, which is imag-
inary for Ig, l

( cr/~3 in the case of the usual effective
potential. In the expansion of the real effective potential
Vi(P„T;P), the term As~ o2IP, IT occurs with a posi-
tive coefficient and creates a local minimum at P, = 0
for T & 0. This dip may have astrophysical implica-
tions [29]: it may trap the classical field at P, = 0 long
enough for cosmic inflation to ensue.

The traditional effective potential is discussed in Secs.
II—V in a pedagogical manner inspired by Weinberg [13].
The real effective potential is introduced in Sec. VI. The
meaning of effective potentials is discussed in Sec. VII. In
Sec. VIII the computation of the real e8'ective potential
is discussed for the case of an arbitrary renormalizable
classical potential V(P). This computation is carried out
in detail for the potential V(P) = (A/4)(P —o ) in
Sec. IX.

where uri, = Qk2 + m2. By inserting a complete set of en-
ergy eigenstates, one may find for the partition function
Z(P) the expression

Z(&) = —@WE @JAN

2

.... (1 e P~a)—
It..

which is simpler as a logarithm:

—lnZ(P) =)
I

+ln(1 —e ~ ")~P~i

I dk + ln (1 —e ~ ") , (6)
(2~)s 2

where L is the volume of quantization.

III. THE EFFECTIVE POTENTIAL

For a scalar field P described by a hamiltonian H
perturbed by an external current j, the Helmholtz &ee-
energy density A(j, T) is defined as

for the system described by the perturbed hamiltonian
H+ j f p(x)d'x

The mean value of the field P is a function of the cur-
rent j,

Tr p(x) exp —p (H + j f'p(x)dsx)
-

P(H+ fP()d )-

(9)

and is a derivative of the Helmholtz potential

BA(j, T)
Oj

(10)

The finite-temperature effective potential V(P„T) is de-
fined [10—12] as a Legendre transform of the Helmholtz
potential

V(P„T) = A(j, T) —j .
' = A(j, T) —jP,

. OA(j, T)
Oj

expressed as a function of the "classical field" P:
V(&. T) = A(&(&. T) T) —&(&. T)&. (12)

rather than of the current j. The e8'ective potential may
be thought of as a Gibbs &ee-energy density. It is obvi-
ously real.

The free energy A(j, T) is therefore proportional to the
logarithm of the partition function Z(P, j),

lnZ(P, j)
2) Ls 'I
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BV(P, T) Bj t'OA( j, T)
8$, Bp, ( Bj

(13)

Thus the current j must vanish at the stationary points
of V(P„T):

BV(Q„T)0=
8 (14)

At zero temperature, the minimum value of the effective
potential is the energy density of the ground state of the
system.

Since it is through the factor exp[ —Pj J P(x)dsx] that
the current j influences the mean value p„ the relation-
ship between the current j and the mean value P, is in-
verse. By differentiating Eq. (9) with respect to the
source j, one finds explicitly

The utility of the e8'ective potential derives from its
ability at its minima to represent the unperturbed sys-
tem. For from Eqs. (10) and (11), it follows that the
derivative of the effective potential with respect to the
classical field P, is proportional to the external current
j:

exp P—L
~

A+
2m2 )

L3 '2l
= Tr exp —P ~

H+ jQd x+
2m )

= T Ute-~~U
= z(p) (20)

is related to the logarithm (6) of the partition function
of the unperturbed system by the equation

lnZ(P)
PL3 2m2 (21)

The eff'ect of the linear perturbation j f P(x)d x is to
displace the field by j /m, as shown by Eq. (18). So the
mean value P, is

BA(j, T)
Oj

j
m2 (22)

One may also evaluate P, directly. Since the mean value

(P) for the unperturbed theory is P, (0, T) = 0, that of
the perturbed theory is simply

= -~(~& —&.(j T)]')

So by difFerentiating the formula (13) with respect to P„
one sees that the effective potential has a non-negative
second derivative:

r y(x)Ute-~"U
~Ut.—.U

V Uy(x)Ute-~H
Tr e —PH

j
m2 (23)

8 V(P„T) Bj
0/2 BP,

(16)

It follows now from the definition (11), from Eqs. (21)—
(23), and &om the formula (6) for the partition function
Z(P) that the exact finite-temperature eff'ective potential
for the free scalar field of mass m is

The eff'ective potential is therefore formally convex [16]
as a function of the field P, .

IV. THE EFFECTIVE POTENTIAL
FOK A FREE FIELD

V(P„T) = A(j, T) —j(j.
lnZ(P)

2 & PL3

k=-m P. + —+
(2~)3 2

ln(1 —e —~ ')

(24)
In the case of a free scalar field, one may implement

these definitions exactly. The unitary transformation with wi, = gk2+ m2. The effective potential V(P„T)
is real and convex. At its absolute minimum P, = 0,
the external current j = —m2$, vanishes. In the limit
P -+ oo, the potential V(P„T) becomes the exact zero-
temperature efFective potential

displaces the field P(x),

U'4( )U = 0( )+ (18)

jd k
(25)

and so relates the perturbed hamiltonian to the unper-
turbed one:

L'j'
U"HU = H + jP(x) d x+

2m2
'

Thus since traces are invariant under unitary transforma-
tions, the Helmholtz potential A(j, T) for the free field V (4) = V(4) + j4. (26)

V. THE ONE-LOOP EFFECTIVE POTENTIAL

For a scalar Geld interacting with itself through a po-
tential V(P), the effect of the perturbing current j is to
replace V(P) by
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The absolute minimum P of this altered potential is a
root of the equation

To zeroth order in 5, the minimum &P is the mean value (t)

of the scalar field P as defined by Eq. (9). The truncated
series (28),

t9V~(g ) Bv(g )
0$ BP

(27) V, (P) = V(P) + &P + —,
' V"(P) (P —&t') (29)

c)2V. (
(28)

To obtain the one-loop approximation to the Helmholtz
potential, we replace the altered potential V~(P) in the
definition (7) of A(j, T) by the first terms of its Taylor-
series expansion about the absolute minimum P:

describes a &ee scalar Geld of mass

m= v g). (3o)

The quantity V"(((')) is positive because P is a minimum
of V~(P).

One may now express the Helmholtz potential A(j, T)
in terms of the kinetic energy K = J (1/2)vr(x) d x as

exp[ —PL A(j, T)] = Tr exp —P
~

II+ j P(x)d x
~

= Tr exp —P ~

K+ V~(x)d x
~

(

=exp( —))I V(P) + jP )Tr exp —))
~

Ie'+ f(1/2)m )P(x) —4) d x
~

So by using the unitary operator

U = exp
~

i Per(2:)d x
~

(.
(32)

rithm of Z, which itself is of order h. Now by performing
the Legendre transform (11), we find that the efFective
potential is

which displaces the field P(x) to Utg(2:)U = P(x) —P,
one may write A(j, T) approximately as

e PL'&(i, &) e
—PL' [&(4')+i 4—'] T [Ute P~o U]—

e
—W'[v(4)+j 4] T [e PIIo]—

e PI.' [v (y—)+,~] Z(P)

V, (P., T) = V(P, ) ——1nZ(P)

k= V(&.) +
(2 ),

with

ln(l —e P ")

(38)

where Z()9) is the exact partition function (6) for the free
scalar Geld of mass m. Thus at the one-loop level, the
Helmholtz potential is

A, (j,T) = V(P)+jP—lnZ(P)
(34)

v(p) + jp = v(y. ) + jp. + o(n'). (36)

We may therefore write the Helmholtz potential to Grst
order in 5 in terms of the mean value P, of the field P,

Ai(j, T) = V(P, ) + jP, —lnZ(P)
(37)

in which we have also freely replaced P by P, in the loga-

The mean value P, and the incan P difFer only by terms
of order h, which are due to the quantum fluctuations
induced by the kinetic energy K. Specifically it follows
from Eqs. (10) and (27) that this difFerence is

c) lnZ(P)
o)j PLs

Thus by the extremal condition (27), the altered poten-
tial changes only by quantities that are of second order
in I)i as P is replaced by P:

(ug = Qk2+ V"(Q, ),
which is the usual result.

Classical potentials that induce spontaneous symme-
try breaking have second derivatives that are negative
between their inflection points. When the second deriva-
tive V"(P,) is negative, the Frequency ui, becomes coin-
plex for small enough k, and the loop expansion for the
effective potential fails.

The preceding integral of uA, over momentum k di-
verges. We may renormalize the eR'ective potential by
interpreting the classical potential V(P) as containing
counterterms V,t(g) of order 5 that are the same form
as the terms of V(P), apart from a constant term. By
introducing a cuto8' A and performing the integration,
we find for the Helmholtz potential the expression

Ai(j T)=v(P, )+jP, + ' ln ' +-v"(&.)' v" (&.)

A A V"(p, ) V"(p, ) )M

+16 2+ 16 2 +
64 2 ln4A2

rp4 oo

+V.,(g4)+, x'ln(1 —e e~ ~) dx,
0

(40)

in which the renormalization point p is arbitrary and
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p(x) = ~i,/T is the square root

p(*) = V'x'+ V"(&.)/T'. (41)

pression one may add arbitrary, finite counterterms of
the form

Thus, if we choose the counterterms minimally so that at
P, they are

A A V"(P ) V"(P ) 4A+ ln, 42
16vr2 16vr2 64vr~ p2 '

then we obtain for the renormalized Helmholtz potential
the formula

Vt(&.) =—

Ai(j, T) = V(P, ) + jP, + ' ln +—V"(&.)',„V"(&-)
64 p,

xln 1 —e «~ dx,

in which because of Eq. (36) we may use either P, or P
throughout. The efFective potential is then given by the
I egendre transform (ll):

Vi(&. T) = AiU T) (44)

ct2V(P)
rlg2

(45)

It follows now &om this formula and from Eqs. (10),
(35), and (43) that the mean value P is, to order 5,

It will be useful in our discussion of the real efFective
potential to develop further the relation (35) between the
mean value P, and the minimum P of the altered poten-
tial V~ (P). By differentiating the extremal condition (27)
with respect to j, we may find for the derivative of P the
formula

A'(AP.'+ Brt.'+ C) (49)

&om the renormalization of the hamiltonian H. Because
of the first logarithm in[A(3$, —o2)/p, ], the eff'ective

potential Vi (P„T) is complex for ~P,
~

& 0'/~3, where
it is not possible to quantize the approximate, altered
theory.

The effective potential is the sum of a function of $2—
cr and a function of 3$, —o, and so cannot be convex.
Its real part is concave, that is 8 RVi(Q„T)/8$, & 0,
for most of the interval —o'/~3 & P, & o/~3 for small
A, low temperatures T, and reasonable renormalization.

For this example, the relation (46) between the incan
value P and the minimum P is

3AQ A(3$2 —0 2)
ln +1

16vr2 p2

x dx
2~2(3$2 —cr2) 0 p(x) (e~( ) —1)

(50)

q7 = o' —j /(AP) & cr2. (51)

where p(x) is given by Eq. (48).
The efFective potential is complex in the region

—0/i/3 & P, & 0/~3 because the absolute minimum
p of the altered potential V~(p) = A($2 —cr2) 2/4+ jp al-
ways lies in the outer region ~P, ~

& 0. To verify this fact,
we first note that the current j and the global minimum p
of the altered potential V~(P) have opposite signs. Thus
we may cast the extremal condition (27) for the absolute
miiumum P in the form

V"'(&),„V"(&)
32'ir p

T'V'" (P) x2dx

4-'V-(~) . .(-) ("l*l —1)
' (46)

A similar problem occurs for the generic symmetry-
breaking potential.

Vi (P„T) = —(Q, —o. )

A'(3/2 —0') ' (A(3$' —o') 5 1
ln ' ~+-

64vr2 l p2 )
~4 oo

+ x'ln 1 —e-«*~ dx,2~2 (47)

where now p(x) is

p(x) = Qx2+ A(3/2 —o2)/T2 (48)

and p, is an arbitrary renormalization mass. To this ex-

in which either P, or P may be used in the correction
terms.

The archetypal example of a classical potential that
exhibits spontaneous symmetry breaking is V(P)
(A/4) (P —o2) . This potential has a positive second
derivative V"(P) = A (3$ —o ) only for fields ~P~ that
are greater than 0/i/3. For smaller ~P, ~, the one-loop ef-
fective potential Vi(P„T) is complex. According to Eqs.
(43) and (44), it is given by

VI. A REAL EFFECTIVE POTENTIAL

The reason for the complexity of the efFective potential
in models exhibiting spontaneous symmetry breaking is
that the potential of the perturbed theory has the same
second derivative V"(P) as the original potential V(P).
Somewhat in the spirit of the composite-operator tech-
nique [25, 26], we may change the curvature of V(P) by
defining a more general Helmholtz potential A(j, T;P)
in which the linear probe jP is replaced by a quadratic
polynomial j P(P):

exp[ PL A(j, T; P—)] = Tr exp —P ~

H + jP(P)d x
~

(52)

On the one hand, it is clear that by this device we have
not introduced any new divergences into the theory. On
the other hand, it is also clear that the polynomial P(P)
is itself singular and requires regularization.

Now the derivative of the Helmholtz potential
A(j, T;P) with respect to the external current j is the
mean value P„
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DA(j, T; P)
Bj c (53)

exp[ —PL A(j', j,T; P)j

defined as the mean value (P(P)) of the quadratic form
P(P):

= Trexp —Pl H+
W

(j'p+qp) d'x
l

. (59)

p, (j,T) = Tr P ($(x)) exp —P (H + fj P(P) dsx)

Tr exp —p (H+ fjP(p)dsx)

Clearly when j' vanishes, the potential A(j', j,T; P) re-
duces to the generalized Helmholtz potential:

(54) A(0, j, T; P) = A(j, T; P). (60)

The classical field P, is still the mean value (P)~ of the
quantum field P:

p.(j,T; p) = Tr P(x) exp —P (H + fj P(P)dsx)
Tr exp —P (H+ fjP(g)dsx)

(55)

We may now define a real effective potential
V(P„T;P) as the Legendre transform of the Helmholtz
potential A(j,T; P):

V(P„T;P) =A(j, T;P) —j
Oj

= A(j, T; p) —jp.. (56)

The variable that is conjugate to j is P; so strictly speak-
ing we probably should write V(P„T;P) rather than
V(P„T;P). But all the potentials considered in this pa-
per are actually and primarily functions of the external
source j. And for a given perturbative ground state, the
relationship between the source j and the mean value P,
is one to one. Thus one may regard these potentials as
functions of P„which is the physically more significant
variable.

Like the conventional effective potential V(P„T), the
real effective potential at its minima describes the un-
perturbed system. For where the effective potential
V(P„T;P) is stationary, the external current j vanishes,

BV(Q„T;P)
BP,

t9j (DA(j T P) ) .OP,
Bp, ( Bj ) Bp,

.OPj )
c

(57)

unless P, exceptionally should be independent of P, .
This effective potential V(P, T; P) is real but not nec-

essarily convex. Its second derivative contains two terms

8 V2(Q„T; P) t9j OP, .02P,
8/2 Bp, 8$, 8/2 (58)

and has no definite sign because the Erst term is typically
positive, while the second is typically negative. The real
effective potential V(P„T;P) is, however, formally con-
vex as a function of the mean value P .

We shall need the relation between the mean value P,
and the external source j. To that end we introduce
the further-generalized Helmholtz potential A(j', j, T; P)
defined by the relation

The mean value P, for the real efFective potential is thus
the partial derivative

BA(j', j, T; P)
j' (61)

evaluated at j' = 0. On the other hand, the potential
A(j ', j, T; P) is the usual Helmholtz potential A(j ', T) for
a theory in which the classical potential V(P) has been
shifted to V(P) +jP(P):

A(j', j,T; P) = A(j, T)v+gp. (62)

Thus, by differentiating that potential A(j, T)v+zp in-
stead of A(j', j,T; P) and by using Eq. (10), we find that
for the real efFective potential the mean value P, (j, T; P)
is equal to the mean value P, (j', T)v+~ p associated with
the usual effective potential at j' = 0 for a theory with a
shifted potential V + jP:

BA(j', j, T; P)
j'

OA(j', T)v+, p
jl

j'=0

= 4"(0 T) +. . (63)

By combining Eqs. (60) and (62), we find that the
generalized Helinholtz potential A(j, T; P) is the usual
Helmholtz potential A(j', T)v+~p for the shifted poten-
tial at vanishing j':

A(j, T;P) = A(O, T)v+,p. (64)

In supersymmetric theories it may be appropriate to
further generalize the perturbation P to a polynomial in
both Fermi and Bose fields.

VII. THE MEANING OF
EFFECTIVE POTENTIALS

The meaning of an effective potential is clearest at
zero temperature. Since the perturbed hamiltonian
H + fjP(P)d z is hermitian, it has eigenstates lj) with
energy E~:

l
H+ ~P(4)d'*

l l~) = E, l~).
( (65)

V($., 0; P) = A(j, 0; P) —jP (66)

Thus, in the limit P ~ oo, the Helmholtz potential
A(j, T; P) by its definition (52) becomes the energy den-
sity A(j, 0; P) = Ez/L of the eigenstate

l j) of the altered
hamiltonian H + fjP(g)d z with minimum energy E~.
And so by Eq. (56), the efFective potential
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is the mean value of the hamiltonian density in this state

V($„0;P) = &jlHlj)
(67)

And &om Eq. (57), it follows that the efFective potential
V($„0;P) at its absolute minimum is the energy density
of the ground state l0) of the unperturbed theory, i.e. , the
energy density of the physical vacuum.

At finite temperatures the potential A(j, T; P) is the
Helmholtz &ee-energy density of the mixture

exp —p (H + fjP(r/i)ds~)
~(j) =

Tr exp —p (H+ fjP(p)dsx) (68)

V(P„T;P) = A(j, T; P) —j j

associated with the altered hamiltonian density
[H + fjP(r/i)d xj/L . The finite-temperature, real ef-
fective potential V(P„T;P),

P(rt)—:Pz(P) =
2 (P —Pz)'. (72)

If the classical potential V(P) has tvro minima, which
we may call Pz and P2, then V(P) also has one local
znaxiznum $0 between them. In this case vre may take
the probe P(P) to be half the square of the distance from
the local maximum Po..

(73)

In both cases the first step is to find the minima, P of
the altered potential Vz = V(p) +jP(rtr). These minima
P are roots of the equation

of P, then the probe P(P) should be quadratic. There
are then two cases, according to whether the classical
potential has one or two minima.

If the potential V(P) has a single minimum which we
may call Pz, then we may take the probe P(P) to be half
the square of the distance from Pz'.

= A(j, T; P) —jP. , (69)
0 = V'(~) + jP'(~) (74)

is the analogue of the Gibbs &ee-energy density of this
mixture. By differentiating the definition (52) of the
Helmholtz &ee-energy density A(j, T; P) with respect to
the temperature T, one may relate it to the perturbed
energy density u(j) = Tr (p(j) H+ fjP(P)d ~ ) /L
and the entropy density s = —Tr p(j )lnp(j)/L of the
znixture (68) by the equation

A(j, T; P) = u(j) —Ts. (7o)

It follows then &om the relation (69) that the real efFec-
tive potential or Gibbs &ee-energy density V(P„T;P) is
related to the energy density u = Tr p(j)H/L and en-
tropy density s of the mixture p(j) by the simpler equa-
tion

V(P„T;P) = u —Ts. (71)

vrrr. THE oNE-x, aop,
REAL EFFECTIVE POTENTIAL

This section is concerned with the calculation of the
one-loop, real effective potential V(P„T;P) for an arbi-
trary renormalizable classical potential V(P). The com-
putation will closely follow that of the usual efFective po-
tential.

If the curvature V"(P) of the classical potential V(P)
is positive, then one may take P(P) = P, and the two
efFective potentials are identical. If the curvature V"(P)
of the classical potential V(P) is negative for some range

Unfortunately the mixture p(j) given by Eq. (68) co-
incides with the unperturbed physical mixture p
e Z ~/Tr e Z ~ only at the minima of V(P, T; P), where
the source j vanishes.

Prom this discussion it is clear that the choice of the
polynomial P(P) inffuences the real efFective potential
V(P, T; P) except at its various mizuma. In particular,
if one uses a quadratic polynomial P rather than a linear
one, then one can avoid spurious complexities.

= -X (y —z) (y —.*) & 0.
V'(&)
P (g)

(77)

We choose to compute the real efFective potential about
the root P that is the absolute mirumum of the altered
potential Vz (P).

When the potential V(P) has tvro zninima, Pz and P2,
its derivative V'(P) is the product of three factors,

V'(4) = & (4 —&o) (& —&z) (& —&2) .

So, since the derivative of the probe Pq(P) is

P2(&) = (& —&o)

(78)

the minima P of the altered potential V~(P) = V(P) +jP2(P) are given by the quadratic equation

(80)

The current j is positive for pz & p & p2. We choose to
compute the real effective potential about the root P that
is the absolute minimum of the altered potential V(P).

By its definition (52), the Helmoltz potential
Ao(j, T; P) in both cases and to lowest order in h is

Ao(j, T; P) = V(P) +jP(P). (81)

Without any loss of generality, we may let the leading
term of the potential V(P) be AP /4.

In the case of a unique minimum Pz, the derivative
V'(P) then will be the product of the three factors,

V'(@) = & (& —@z) (+ —z) (+ —z*) .

So, since the derivative of the probe Pz(g) is

Pz(g ) = (P —Pz),

the minima P of the altered potential Vz(P) are given by
the quadratic equation
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To find the order-h correction to this result, we replace
the altered potential V+jP in the definition (52) of the
real Helmoltz potential A(j, T; P) by its truncated Taylor
series m2 = V"(y)+&P"(y) = V"(y)+& & 0 (84)

mean value P. The squared mass in Z(P) is positive and
writable simply as

V(&)+ P(&) =V(&)+ P(&)+ -F"(&)
P"(P) ](P —P)', (82)

because P is a minimum of V~(P) and because P"(&P) =
1 by construction [(72) and (73)]. Thus the Helmholtz
potential is

and thereby reduce the problem to one that we have al-
ready solved (34). Thus, including counterterms, we find

A (ij, T;P) = V(P) + Vt(P)

+j P(&)+P~(&) — ~, (83)
lnZ(P)

A i(~ »P) = V(&)+ V.t(&)+ j P(&)+P.~(&)

ask u„ ln(1 —e ~ ')
(2~)s 2 P

where uy is now the real energy

(85)

Here V,q(P) is the quartic polynomial (42) of countert-
erms that we used to renormalize the ordinary efFective
potential; P,t(P) is a quadratic polynomial in P that we
shall use to regularize the singular polynomial P(P); and
P,t (P) is that polynomial with the field P replaced by its

k2 + V"(P) + j. (86)

If we again introduce a cutofF A and perform the inte-
gration, then we find

IV (~)+j] V (~)+j 1 A A
I.
V (~)+jl

+ ln +V~/)+jP, ~(P)+ T ln(1 —e~~ ~) Ch,
IV"(&) + j]'

(87)

in which p is the renormalization point and p(x) is the square root

~(&) = &'+ V"(0)+j IT'.

Using the same counterterms V,t(P) as the ones (42) that we used for the usual effective potential, we obtain

(88)

A, (q, T; P) = V(P) +j P(P)+, ln
64vr2 p2

(89)

All the terms on the right-hand side of this equation
for Ai(j, T; P) are functions of j, T, and the parameters
of the theory. The same is true of P. In particular the
minimal choice of probe counterterms P,t(P) evaluated
at /is

A' 2V"(Q) + j 4A'

167r2 64~2 p2
(90)

when expressed as a mixed function of j, P, and the pa-
rameters of the theory. We shall now use the relations
(77) and (80) that link j and P to write the probe coun-
terterms P,t(P) as functions of P and the parameters of
the theory without j. The probe counterterms P,i (P)
will then be apparent.

In the case in which the classical potential V(P) pos-
sesses a unique minimum Pi, we may identify the coun-
terterms Pi,q(g) associated with the quadratic probe
Pi (P) by using the relation (77) between j and P to write
the coefBcient j of the logarithmically divergent term in

(90) as j = —A P —z . The minimal choice of probe
counterterms Pi,t(P) then is

A2 2V" (P) —A ~P
—z~ 4A+ ln . t'91

16m2 64vr2 2

These probe counterterms Pi,q(P) are of the same form
as the probe Pi(P), to wit, a quadratic polynomial in the
variable P.

In the case in which the classical potential V(P) pos-
sesses two minima, Pi and P2, we exploit the relation-
ship (80) between j and P to write the same coefB-
cient j of the logarithmically divergent term in (90) as
j = —A (P —Pi) (P —P2). The miinmal choice of probe
counterterms P2,q(P) then is

P. ,,(4) =-

A 2V"(p) —A (p —pi) (p —p2) 4A
16vr2 64vr2 p2

(92)
Like the probe P2(P), these counterterms P2,t(P) form
a quadratic polynomial in the field P.

We have seen that for an arbitrary renormalizable po-
tential V(P) with the same counterterms V,t(P) as in the
case of the usual efFective potential, we may choose a
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polynomial P(c/l) and probe counterterms P,q(P) of the
same form as P(c/l) so as to renorrnalize the real efFec-
tive potential Vr(P„T; P) I. f the potential V(P) is of
strictly non-negative curvature V"(ltl) & 0, then we may
take P(c/l) = P and P, t(P) = 0, in which case the real
effective potential V(P„T;P) and the usual effective po-
tential V(P„T) coincide. If the potential V(P) has a
single minimum at P = Pr with V"(P) & 0 for some P,
then we may take P(c/l) = (P —Pr) /2 as in Eq. (72). If
the potential V(P) has two minima separated by a local
maximum at Pp with V"(P) & 0 for some P, then we
may take P(cd) = (p —pp) /2 as in Eq. (73). For these
specific choices (72) and (73) of the probe polynomials
Pr(P) and P2(P), the probe counterterms Pr, t, ($) and
P2, t, (P) are of the same form as the probe polynomials
themselves. For other choices of the probe polynomial,
it may not be possible to transform the probe countert-
errns (90) so that they are of the same form as the probe
polynomial; for such arbitrary choices of the probe poly-
nomial, the real efFective potential Vi(P„T;P) may not
be renormalizable.

With the counterterms P, (tt)l,lthe Helmholtz potential
Is now

Pr ———cr and Pz ——o; (96)

they are separated by a local maximum at P = Pp = 0.
So the probe is

P(&) = 2&'. (97)

The minima P of the altered potential

&~(&) = V(&)+ 2&'

are the roots of the quadratic equation

j = -A(P' —o')

(98)

(99)

mial P(ctl) = P, then the resulting effective potential is
complex for ~P, ~

& cr/~3. We shall find that by following
Itzykson and DroufFe [28] and using the quadratic form
P(ctl) = P /2, we may explore the whole region ~P, ~

& cr

with an efFective potential V(P„T;P) that remains real.
Since the potential (95) has indefinite curvature and

two minima, the computation will follow the second of
the two cases discussed in Sec. VIII. The minima are

Ar(»T P) = V(~) +&P(~)
[V"(P) + j]' V"(P) + j 1

64~2 ~2
T4 oo

+
2ir2 (93)

or

ct = o. —j/A.

Let us choose to quantize about the positive root

0 = 0+ =+V'o' —(j/A).

(100)

(1o1)

V"'(&) „V"(&) + j
327r p
T2Vlll(P) oo

4m2 V"(c/l) + j p p(x) (e&~ l —1)
, (94)

in which either P, or P may be used in the correction
terms and p(x) is the square root (88). By again using
the relationship (77) or (80) between P and j, one finally
may perform the I egendre transform (56) and compute
the real efFective potential Vi(ltl, T;P). We shall carry
out this procedure explicitly for the classical potential
V(~) = (A/4)(4' —-')'

IX. AN EXAMPLE

This formula and its counterpart (43) with P, replaced
by ct are an example of the relation (64) between the
generalized Helmholtz potential A(j, T; P) and the usual
Helrnholtz potential A(j,T) i +~I for the theory with
shifted potential V+ jP.

To compute the real efFective potential Vi(P„T;P),
one must exploit the relationship (77) or (80) between
P and j and use Eqs. (46) and (63) to relate the mean
value P, to the minimum P:

The mass associated with P is given by

m = V."(P) = 2AQ & 0. (1o2)

Since the current j is related to the minimum P by (99),
we may write this squared mass also as

m = 2Ao —2j. (103)

To lowest order in 6, the Helmholtz potential
Ap(j, T; P) is

Ap (j,T; P) = V(Q) + j—, (104)

in which P and j are related by j = A(cr —P2). To this
order the mean value P, and the minimum P are equal,
and so the real efFective potential Vp(P„T; P) is just the
classical potential V(P,):

V.(P., T, P) = A.(,, T, P) j
=4(&. —~) . (105)

At the one-loop level, one finds by using Eqs. (96) and
(102) that the regularizing counterterms (92) evaluated
at are

This section contains a detailed computation of the real
effective potential for the case of the classical potential

A2 A(5gP —o.2) 4A2

16rr2 64a2 p2
(1o6)

V(~) = —(~' - -')' (95)

We have seen in Sec. V that if we use the linear polyno-

As a function of the external source j, the generalized
Helmholtz potential Ai (j,T; P) is then given by Eq. (93)
as
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Ai(j, T; P) = j~ j
4A

(2Ao' —2j)2

64+2
Zv4 oo

where now p(z) is the square root

2Ao2 —2j 1
ln

P

Vi (P„T;P) = A(j,T; P) —j.BA(j, T; P)
t9j

(109)

The generalized effective potential is defined (56) as
the Legendre transform

p(~) = /~2 / (2Ag 2 —2j )/T2 = ~2 + 2A$2/T2

(108)
l

By performing the indicated difFerentiation with respect
to j and by then expressing j as A(o —P ), we may write
V (iP„T;P) as

Vi(P„T;P) = —(P —o ) + (4cr —2P )ln + 40. —3(P
4 32m~ p~T4, A o' —P2'', T' p(x) {e~(*l—1)

(110)

In the correction terms, which are of order h, we may write indifFerently P or P, . But in the first term V(P) we must
use Eq. (94) to distinguish P, from P:

3AQ ('2AP ~

16a2 ( p2 )
3T x dx

4vr2$
&& p(2;) {e~( l —1)

'

Since P, and P differ by terms of order h, we need keep only the leading term

and may switch now to the variable P, throughout in the resulting formula for the one-loop, finite-temperature, real
e8'ective potential:

A2$2 2AP2
Vi(P„T;P) = —(P —a ) + (4P —2cr )ln +3/2 —202

327r p
T4 oo A($2 2)

2 l 1
—P()

2vr2 o 2T2p(&) {eP(~) ] )

in which p(x) is the square root

p(~) = Qx + 2AP2/T2.

(113)

(114)

One may adopt a specific set of renormalization conditions by adding Rnite counterterms to the preceding formula.
A sensible set of conditions is Vi(0, 0; P) = 0, V~'(cr, 0; P) = 0, and Vi" (0, 0; P) = m2 = 2Ao.2. ~e may satisfy these
conditions by adding the quartic polynomial

A2
4{—8$ +10o P —3o )

to the real efFective potential (113) and setting p2 = 2AO . The resulting expression is

(115)

Vi (Q„T;P) = —(P, —0)+ . (4P, —2o. $,)ln —' —5P, ~ 8o P, —3o.
~4

27r2

oK) A($2 —o.2)
] e p~~~ + d~

2T2p(x) {e~( l —1)
(116)

with p(z) given by Eq. (114). If we set p = 2Acr in the usual eR'ective potential (47) and add to it these same
counterterms, then it becomes

Vi(P„T) = —(P, —o. ) + (3$, —0 ) ln~
~

——P, +17o P, ——o.2 2 2 2 2 2 ( 34e 23 4 2 2 11 4
4 64vr2 202 ) 2 C

T4 oo

2K 0
(117)
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where now p(z) is

p(x) = Qx'+ A(3/2 —o')/T'.

Weinberg [13] found for the critical temperature Tc of
this theory the approximate value T~ 2 cr in the limit of
weak coupling and high temperature. A numerical anal-
ysis of the formula (116) shows that the critical temper-
ature runs from T~ = 1.81 o for A = 0.1 to T~ = 1.740.
for A = 1. At higher temperatures, the absolute mini-
mum of Vj (P„T;P) is at P, = 0; at lower temperatures
the absolute minimum lies in the region P, & 0.62 cr for
A = 0.1 and in the region P, ) 0.69o for A = 1. The
transition is weakly first order because at T = T~ the
barrier separating the two minima is slight. This barrier
disappears at the ban'ier temperature T~, which eases
&om T~ —1.87o f~ A = 0.1 to T~ = 1.865 o for A = 1.
For T & T&, the field P, can roll classically from P = cr

to the absolute minimum at P, = 0. The numbers quoted
for A = 1 may be unreliable, since two-loop effects can
be significant at such strong coupling.

By difFerentiating Eq. (116) with respect to P, at P, =
0, one may show that at all positive temperatures, the
derivative of the real effective potential at P, = 0 + e is
positive:

0—

—7
0

T = 1.5

0.5

4,/0

The EfFective Potentials

1.4

(119)

Thus the point P, = 0 is a local minimum at all T )
0. The temperature at which this minimum disappears,
which has been called T2 in the literature [15], is 'therefore
zero. In models of the early universe, inQation can occur
if the field P, dawdles in this local minimum.

Figures 1—3 display in solid lines the real effective po-
tential V (Pi„T;P) Rom formula (116) at various tem-
peratures. These figures also plot the real part of the
usual effective potential Vj (P„T) f'rom formula (117) as
dashes where its imaginary part vanishes (P, & o./~3)
and as dots otherwise. The classical potential V(P) =
(A/4) (P2 —cr2)2 is plotted as short dashes in Fig. 1. The
vertical axes are in units of V(0) = A04/4. The value
A = 1 was used in order to separate the curves. Figure 2
is an enlargement of Fig. 1 for T = 0 and 0. Figure 3
is an enlargement of Fig. 1 for the critical temperature
T~ = 1.74@ and the barrier temperature T~ —1.865o..

I

FIG. 1. For the classical potential V(P) = (A/4)(P
o ) with A = 1 (short dashes), the one-loop, real effective
potential Vj (P„T;P) (solid lines) and the real part of the
one-loop effective potential Vj (P„T) [dashes for g, ) a/v 3,
where Vi(P, , T) is real; dots otherwise] plotted in units of
V(0) = Ao /4 at various temperatures including the critical
temperature T~ 1.74o and the barrier temperature T~
1.865 cr.

The real effective potential tracks the real part of the ef-
fective potential fairly closely at low temperatures and
where the latter is real (P, ) 0'/~3). The local mini-
mum of the real effective potential Vi(P„T;P) at P, = 0
is clearly visible at T & 0 in Figs. 2 and 3.

By using the Haber-%'eldon expansions of Bose-
Einstein integrals [31], Weiler and I derived [30] as the
high-temperature expansion of the real effective potential
(116) the formula

Vi(y. , T P) = T+ —(3y—, ——~ )T + (3~ ly I

—7ly I )T+ (2y, —~ y'. )ln

A2 2

+—(y.' —0')' + [—Spy.'+ (4/+ 6)0'y.'—30-'] + 0
~4 32vr2 0T') (120)

in which p 0.57721566. The derivation of this expansion is presented in the Appendix. The Dolan-Jackiw high-
temperature expansion of the usual effective potential is [12]

A2 T2
Vj(Q„T) = — T+ —(3$, —o—) T — (3$, —o ) T+ 2 (3$, —o ) ln 2 +O(1). (121)90 24 ' 12~ ' 64~' ' P2 (3y2

Although the third and fourth terms of this formula for
the usual effective potential Vi(P„T) are imaginary for

~P, ~

( o/~3, the first two terms, which are of order T
and T, do agree with the first two terms of the high-

I

temperature expansion (120) of the real efFective poten-
tial V (P„iT;P). Thus the seemingly outrageous approx-
imation, often made in work on the early universe, of
keeping only these two real terms of the high-temperature
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The EfFective Potentials at T = 0 and T = o
1 I 1 1 1 !

The EfFective Potentials at T = Tc and T = T~

T=Tc

0.5

—4.5—

—0.4
0 0.5 1.4

—5
0

I I I I I I I I 1 I I

0.5

FIG. 2. For the classical potential V(P) = (A/4)(P —o )
with A = 1, the one-loop, real effective potential V (QT„T;P)
(solid lines) and the real part of the one-loop efFective poten-
tial VT(Q, T) [dashes for p ) o/~3, where V (Q2„T) is real;
dots otherwise] plotted in units of V(0) = Ao /4 at tempera-
tures T = 0 and T = a.

expansion (121) turns out to be a reasonable one after all.
The third term in these expansions is real for

Vi(P„T;P) but imaginary for Vi(P„T) when

cr/~3. In the expansion of the real effective potential
Vi(P„T;P), the term A / cr ]P ]T occurs with a posi-
tive coefficient and may have an astrophysical applica-
tion [30]: it may trap the classical field P, at P, = 0 long
enough for cosmic infIation to ensue. This local minimum
of the real effective potential Vi(P„T;P) at P, = 0 is far
&om the absolute T = 0 minimum at g, = cr and may
be an artifact of the present method or of the one-loop
approximation. But the contributions of fermions and
gauge bosons to the one-loop efFective potential have no
terms linear in the product ]P,]T; they therefore cannot
efface the local minimum of V (P„iT;P) at P, = 0.
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APPENDIX

This appendix contains a derivation of the high-
temperature expansion of the real efFective potential
(113) for the case of the classical potential V(111)

(A/4) (P —0' ) . This derivation was originally suggested
to me by Weiler and was carried out by him and me at
Aspen.

The finite-temperature integral in the expression (113)
is

g4 oo

I(Ty) = e ln,(1 —e V. +"
)2K 0

in which

+ A($2 —O2)
dx

2T 1 +yee V(eeV
e+e —1)

y = 2AQ, /T . (A2)

This integral is finite for all temperatures T and vanishes
atT=O.

We may split the integral I(T, y) into two parts:

FIG. 3. For the classical potential V(111) = (A/4)(gP —o )
with A = 1, the one-loop, real efFective potential Vl (p„T;P)
(solid lines) and the real part of the one-loop efFective poten-
tial Vl(Q„T) [dashes for p ) o'/~3, where VT(111,T) is real;
dots otherwise] plotted in units of V(0) = Acr /4 for the crit-
ical temperature To = 1.74 Tr at which the minima at P, = 0
and P = 0.7o are equally deep and for the barrier tempera-
ture T~ 1.865 o, at which the barrier between these minima
disappears.
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I(T, y) = Ji(T, y) + Jz(T, y),
in which

4 ooj (| Ty) = T ln (1 —e + +"
)2Ã 0

and

(A3)

(A4)

We keep only terms of order y or greater, so we may
ignore the complicated suxn. Thus, since @(2) = 1 —p
and g(2) = ~ /6, we find for hs(y, o) the expansion

7r vry y y 1
h, (y, 0) = —— ——ln —+ p —— + 0(y ).

12 4 8 4m 2

4T4
Jx (T, y) = — hs (y, 0) (A6)

and

Tz A(gz —o') xz 1
Jz(»y) =

4vr2 0 QT&~p ( g '+„' i)
(A5)

Integrals of these forms have been analyzed by Haber and
Weldon [30]. By using Eqs. (2) and (3) of their paper,
we see that the integrals Ji and J2 are given by

(A9)

The case l = 2 and r = 0 gives hs(y, o). Because
3Fz(1, 1, —1; z, 2;0) and zFx( —k, 2 —k; z,'0) for k = 0, 1

and zFi( —k, —2 —k; z,
.0) for k ) 0 are all equal to unity,

we may write their formula (Dl) for Ixs(y, o) as

ta, (yo) = "
, + "

(ln( —")+ —
I&

—@(3)l)

((4) u*((2) +
~' ) -& ,).p)

"
"k=1

J( .)=""' ""(.o)
27r2

(A7)
I'(2k + 1)((2k + 1)
I'(k+ 1)I'(k+ 2)

(A1o)

hs(y, o) =—
4 8 4' 2

ln — + —p — 2

+, ——, ) (-i)'( —, )
C(2)

I'(2k + 1)((2k + 1)
I'(k + 1)I'(k + 2)

(AS)

Froxn Eq. (12) of their paper, we see that h (y, o) =
h'(y, o). We may therefore use their high-temperature
or small-y expansion (Dl) of hei+i(y, r) for the cases
l = 1and2andr = 0. Thecase/ = 1andr = 0
gives hz(y, 0). Since sFz(1, 1, 0; z, 2; 0), zFx(0, 1; z, 0),
and zEi( —k, —1 —k; z; 0) for k ) 0 are all equal to unity,
we may write their expansion (Dl) as

We keep only terms of order y or greater, and so we may
ignore the complicated sum. Thus, since g(3) =
and ((4) = w4/90, we find for hs(y, o) the expansion

sr 4 m'y' vry'"'("' ) =
36O 96

+
4S

+ ln —+p —— +0 y
y4 y 3
128 4' (A11)

Since the integral I(T, y) is an even function of P, or
of y, it follows that we must interpret the variable y as
y = +2A]p, ]/T. Thus, by combining Eqs. (Al), (A3),
(A6), (A7), (A9), and (All), we find for the integral
I(T, y) the high-temperature expansion

I(T, y) =—vr T TzA(3(P —g ) TA2o ]P, ]
7TA&]$,

]

90
+ +

24 4' @ 2 12m~2
Azyz (2$2 g 2) t S~zrz ) 5Azy4 Azyzg z ( Pz )+»

I I

—2W + — +0
I67rz i Agz ) 32~2 16m. z iT (A12)

Here p = C 0.577215665 is the Euler-Mascheroni constant. If we substitute this forxnula for I(T, y) into Eq. (116),
then we obtain this high-temperature expansion of the real effective potential:

Vx(y„r;I)= ——T + —(3y, —g )r + (3g ]y, ]

—7]y, ] )r+ (2y, —g y, )ln

A2 2

+—(Pz —o') + [—Spg.' + (4p + 6)o zP' —3o 4] + 0
]4 32a2 &T') (A13)
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