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Massive renormalizable Abelian gauge theory in 2+1 dimensions
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The standard formulation of a massive Abelian vector field in 2+ 1 dimensions involves a Maxwell
kinetic term plus a Chem-Simons mass term; in its place we consider a Chem-Simons kinetic term
plus a Stueckelberg mass term. In this latter model, we still have a massive vector field, but now the
interaction with a charged spinor field is renormalizable (as opposed to superrenormalizable). By
choosing an appropriate gauge-fixing term, the Stueckelberg auxiliary scalar field decouples from the
vector field. The one-loop spinor self-energy is computed using operator regularization, a technique
which respects the three-dimensional character of the antisymmetric tensor e p~. This method is
used to evaluate the divergent part of the vector self-energy to two-loop order; it is found to vanish
showing that the P function is zero to two-loop order. The canonical structure of the model is
examined using the Dirac constraint formalism.

PACS number(s): 11.10.Kk, 11.10.Gh, 11.15.Bt

I. INTR.ODUCTION

It has been pointed out [1,2] that a suitable gauge-invariant action for a massive vector field in three dimensions is

ds~ — (B„g—„—g„~„) — e" "—A„B„Ap + g (i P —e g —m) g

The gauge coupling e has dimension [mass] ~ indicating that the theory is super renormalizable; this is borne out
by the structure of the vector propagator in a covariant gauge:

pppv . p . pppv
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gpv-
p2 p2 +

Ct- CX

Zepvn —Z . —26pvn Xa 4 )p' (2b)

where a is a gauge parameter.
The Chem-Simons action on its own,

d x~"" A„t9 Ap,

S= d x — ~" AO A +p A„+0„

+@ p+es —m @I,

0 ip) g~~ (+ + ) ) e012 lr
~
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'7p, Yv = gpv + &&pvA'7

(4)

has itself been suggested as a suitable action for three-
dimensional vector field [3]; the non-Abelian extension
has been extensively examined [4].

In this paper, we consider a model defined by the action

The kinetic part of the action for the vector field is now
the Chem-Simons action (3); the part proportional to
p is a Stueckelberg mass terin [5]. This interaction has
been considered before in [6] where it was generated by
considering a Chem-Simons plus Higgs action in the limit
where the radial component of the Higgs field decoupled.

In the next section we will discuss the quantization of
this model. The renormalization of the model will be dis-
cussed in Sec. III and it will be shown by explicit calcu-
lation that to two-loop order, there is no renorrnalization
of either the wave function A„or the mass parameter p.
This entails using operator regularization [7], a technique
which circumvents the necessity of trying to define the
tensor e p~ outside of three dimensions. The method is
first illustrated by computing the spinor two-point func-
tion to one-loop order. In Sec. IV the canonical structure
of (4) is analyzed. A short discussion of the non-Abelian
generalization of (4) is in a concluding section.
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II. QUANTIZATION OF THE MODEL
The model defined by (4) possesses the U(1) gauge

invariance
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A„m A„+ B„A,
Pm/ —A,

—xeAq
(5)

In order to quantize this model, we add to the action the
gauge-fixing term

we restrict ourselves to the case eq ——0.
The Faddeev-Popov ghost associated with the gauge

fixing of (6) leads to a ghost propagator proportional to
1/( —8 + ap, ); however, the ghost decouples from the
remaining fields as the gauge condition is linear in the
fields and the gauge transformation (5) is Abelian.

We now consider the renormalization of our model.
2

5GF = d X 8 A+Gp
2Gp

(6)

where a is an arbitrary gauge parameter. With this
choice, the fields A„and P decouple and the free action
for the vector field A„ is just

S~= de — c" A„B A +@A + (8 A)

d x —A„M""A .
1

P (7)

It is easy to show that the inverse of the operator M~
defined in (7) is

(8)

p, (1 —a)
(g2 p2) (g2 ap2)

From (8) it is apparent that the propagator for the field
A„has a pole when its momentum p satisfies the equation
p +p = 0, indicating that the vector field has a mass p.
In contrast with the propagator of (2b) there is no long-
range interaction in (8). Furthermore, the propagator
behaves in leading order like 1/p for large momentum, as
is expected since the Chem-Simons action contains but
one derivative. This is consistent with the model being
renormalizable since we are in three dimensions. (We
note in this context that the gauge coupling e is now di-
mensionless. ) If the field P is set equal to zero in (4), then
gauge invariance is lost and the propagator is the a ~ oo
limit of (8), which renders the theory unrenormalizable.
This P -+ 0 limit of (4) and the action of (1) have been
considered in Refs. [8] and [9]; indeed it was shown in
[9] that the dynamical content of these two models is the
same when the vector fields are free fields. Once the vec-
tor fields are coupled then the interactions of (4) and (1)
are distinct in the P = 0 gauge; the former interaction is
nonrenormalizable while the latter is renormalizable.

The bilinear part of the action for the scalar field P has
an inverse

M
1 1

—B~+ ay~ p
(9)

S

with the gauge transformation @ -+ e '~"+"l+g, then
P does interact. The derivative coupling of P with g in
(10) renders this interaction unrenormalizable and hence

This scalar field, however, is not coupled to the spinor @.
If instead of (4) we consider the interaction

III. R,ENOR. MALIZATION

In order to compute radiative corrections in the model
defined by (4), we must regulate ultraviolet divergences
which arise in a way that is consistent with the three-
dimensional character of the tensor e p~. A variety of
techniques, including dimensional regularization, a form
of Pauli-Villars, and the addition of a regulating Maxwell
term to the action [2, 10—13] have been employed. Per-
haps the most straightforward approach is to use opera-
tor regularization [7], a symmetry preserving procedure
in which no divergences ever appear explicitly and no
regulating parameter is inserted into the original action,
thereby leaving e p~ unambiguously defined. It has been
employed in non-Abelian Chem-Simons theory [14—16] to
one- and two-loop order.

It is evident from naive power-counting arguments that
ultraviolet divergences in the theory arise in two- and
three-point Green's functions. The photon two-point
Green's function in principal can generate divergences
proportional to A"e„~„t9 A and pA"A„; the former can
be removed by renormalizing the photon wave function
while the latter actually cannot arise because gauge in-
variance can be easily shown to imply that, as in four-
dimensional quantum electrodynamics (QED), radiative
corrections to the two-point function must be transverse.
The spinor two-point function is responsible for infinities
proportional to @Pg and mug; a spinor wave function
and mass renormalization, respectively, can be used to
eliminate these divergences. The only other divergent
Green's function that can occur is the vertex function
gpss; a renormalization of the coupling constant e elim-
inates this infinity. Since the form of the gauge transfor-
mations of (5) are identical to those in QED, the same
arguments based on Ward identities [17] can be used to
show that the wave function renormalization of the pho-
ton is in fact entirely responsible for the coupling con-
stant renormalization. We consequently compute the di-
vergent contribution to the photon two-point function.

Normally dimension regularization is the most conve-
nient tool for handling divergences in gauge theories.
However, in the model of (4), the intrinsically three-
dimensional tensor e p~ occurs explicitly making it dif-
ficult to implement this technique. Operator regulariza-
tion [7] is more suited to this theory since no regulat-
ing parameter is ever inserted into the initial Lagrangian
leaving e p~ well defined at every stage of the calculation.

Background field quantization [18] is used in conjunc-
tion with operator regs. larization. The generating func-
tional to a given order in the loop expansion is then
written in closed form, and the logarithm of operators
(at one-loop order) and the inverse of operators (beyond
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one-loop order) are then regulated; the initial Lagrangian
is never altered such as by inserting a regulating Pauli-
Villars mass or by analytically continuing the number of
space-time dimensions. We illustrate this technique by
Grst using it to compute the spinor self-energy to one-

loop order.
In order to compute this contribution to the effective

action, we first provide Q with a background piece y.
The one-loop generating functional is then given by the
sup erdeterminant

, ('e,-p +Vg~-+ „'p,p-- —e(~~~)' e(»~))
r~ l(y, y) = sdet e(p X) 0 P' —m

—e(»~)~ —gF + m 0

in the gauge in which a = 1.
We now want to extract the (gy) contribution to I ~il(y, y). To do that, we first multiply (11) by the constant

matrix

( ~egspvp + pggv
X = sdet 0

0
0

—yf —m

0
yF+m

0 )
(12)

so that

( (p +p )gpv
r'"(»&) = sdet ' e(~"X)(—ie-~.p" + pg..)

(-e(».) (-'e. p" + pg..)

—e(»„)(P+m)
J'+ m'

0

—e(~~&) (P + m) )
0

I +m

In operator regularization [7], we first write

sdet H = exp (str ln H) (14)

and then regulate ln H,

ln H = ——H
d8 0

so that

I' = exp[2t,"(0)],

where [19]

1 OO

((s) = str dit(it)' exp[ —(iHt)] .
I'(s) (17)

To extract the contribution to ((s) which is bilinear in (yy) we employ either the Schwinger expansion [20, 7] or
employ the quantum-mechanical path integral [21]. Upon identifying H with the operator appearing in (13), we find
that

4x(s) = zc 2 3r(. —
—,')d'p «x(p)

(4ir) 2 r(.) o [u(1 —u)p2 + up + (1 —u)m2]'

r(s + z)(/[up + 2(1 —u)m] + 3@m —2u(1 —u)p2)+ x(-p) .
[u(1 —u) p2 + up2 + (1 —u)m2]'+-'

As is expected, since this is a three-dimensional theory, no dependence on logarithms of p or the masses arises
in (— (0); such logarithms can appear only beyond one-loop order. Similarly, divergences appear in renormalizable
three-dimensional scalar models only beyond one-loop order [22] when using dimensional regularization.

Having seen how radiative corrections cannot result in contributions to the renormalization-group functions until
at least two-loop order when one employs operator regularization in an odd number of dimensions, we will turn our
attention to the vacuum polarization at two-loop order. As has been discussed above, this will determine the two-
loop contribution to the renormalization of the coupling constant and hence will fix the P function to this order in
perturbation theory.

The two-loop generating functional in the presence of external vector Beld A„can be shown to be
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rl'l[A] =
2

d*dy(*l( ie„p.p'+ yg,.)(p'+»') 'ly)

xtr p" x +e p+eA ——~ ppF ~p
2

x~"(yl(/+ e 8) (» + eA)' —
2
e»-F"~ (19)

This follows from (4) and (6) upon setting a = 1, m = 0.
Just as (15) can be used to regulate the logarithm of an operator, the inverse of an operator can be regulated using

dn, sn
H =

,
H —' (n=1, 2, . . .). (20)

This allows us to regulate I'~ l [A] in (19) in the following way:

I' [A] = —s
l l

(it it2its)' dxdy(xl( —ie„p~+ pg„„)exp[ —i(p + y, )ti]ly)
d ( ie l — ditidit2dits p ' 2 2

ds o ( 2 ) o
I' s+1

xtr] y"(x](tt+ et()exp( —i (p+eA) ——e trxp y" tt)]y)2

xy (y](p'+ e tt) exp( —i (p+ eA) ——ert P "y te)]x) (21)

It is possible to neglect "regulated forms of zero" discussed in [23—26] in (21) since in three dimensions one-loop
subgraphs are not divergent. This also means that we can choose the parameter n in (20) to be equal to one.

Since we are interested in only the logarithmic dependent pieces of the two-point function, it is much easier to
employ the DeWitt expansion [27] rather than compute the full two-point function from the Schwinger expansion
[20]. The utility of this procedure at two-loop order has previously been illustrated [16,23, 24]. In this technique we
make use of the expansion

i(~—y) 2/4t

(~le ""'"'+"'ly) = . ) a-(* y)('t)"
(4vrit)D~2 n=o

(22)

in D dimensions. All dependence on A„and f is contained in the coefficients a„(z,y). As has been argued, in order
to determine the photon wave function renormalization, the terms in the effective action that we need to consider are
bilinear in A„and contain at most one derivative of A„; consequently the coeKcients a„(z,y) need to be determined
only to second order in A„and first order in (9qA„. This can be easily done using the techniques of [28]; we find that

eiA /4f e
(x]~exP( —i (P+ eA) —— E'

eye xt e]y) = 1 —tete A ——(tx A)
2 "" (47rit)D)" 2

+et]1 —tery A] ( ee t pe y )— (23)

so that, to the required order,

(xl(P+ e g)exp( —i[(p+ eA)' — e„„pF""p ]t)ly) —=P

i ry'/4t

(4~it) s)'

+e — + —4 A~ v&F" p + —p L)F" 4 AP(Q A)2 P „q i
4t 4 P 2 P

(24)

(Here b, = x —y and all fields are evaluated at z = +".)
Upon substitution of (24) into (21), the two-point function, to first order in derivatives of the external wave function,

ls
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IV. CANONICAI FORMALISM

We first note that the equations of motion associated
with the Lagrangian (4) are

e"" BgA + p(8"p+ A") + j"= 0 (26a)

c)„(o)"P+A") = 0 (26b)

upon varying A~ and P, respectively. The field A~ has
been coupled to a classical source j~. If we act on (26a)
with the operator e p~B~, then we obtain

—8 (8 A+ p'P)+ (0' —p')A = pj —e p~B~j~,

(27)

which upon applying the gauge condition

8 A+@ /=0
shows that A is indeed a field with mass p. Further-
more, if we combine (26a) and (26b), we see that j~ must
be conserved (viz. , 8 .j = 0).

We now show how these results can be interpreted in
the context of the canonical formalism for constrained
systems as developed by Dirac [30]. A complete formu-
lation of the quantization of this model has already been
presented by Boyanovsky [6]. Our quantization proce-
dure difFers &om that of [6] in that we replace, in the

In (25) we can immediately discard terms with an odd
number of factors of 4„. Remarkably, the remaining
terms proportional to p A and e~p A"0 A automat-
ically cancel, eliminating the need to evaluate any inte-
grals explicitly or to compute any traces of p matrices.
(All integrals could, in fact, be determined using the tech-
niques of [23,25, 26].) The fact that we obtain a vanishing
result even prior to having to compute potentially diver-
gent integrals indicates that the use of operator regular-
ization is superfluous; Pauli-Villars regularization could
also have been used to obtain this result (although it
would have been computationally more difficult).

We consequently see that no renormalization of either
the vector wave function A„or the mass parameter p oc-
curs to two-loop order, so that the P function and anoma-
lous mass dimension vanish to this order. The vanishing
of the two-loop P function is in accordance with the re-
sults of [29].

BZ f 1
vry= =p~ Op/+ —Ap ~,OBP

q 2 )' (29a)

BC p,

0(BPAP) 2

1
(29c)

from which we derive the Hamiltonian

P 2 1 p 2
'R = —A ——vrp ——Ap + Ape 0 A.

P 2 22 'L 2

——(0;/+A;) —j,A;+ jpAp. (30)

It is evident that (29b) and (29c) are primary con-
straint equations. By computing the Poisson bracket
(7rp ——P, 'R) we find the secondary constraint

(29b)

7cy + 6'& |9'A& + gp + —Ap = 0.P
2

(31)

[If the p = 0 component of (26a) is satisfied, then (29a)
and (31) are compatible. ]

Unlike the corresponding constraint of Ref. [6], Eq.
(31) cannot be identified with the generator of gauge
transformations in our approach, as it does not commute
with the constraint of (29c). The first class constraints
in our model, then, are (29b) and a linear combination
of (31) and (29c):

harp + i~i + —~iq z Aq + gp + —Ap ——0 . (32)

It is easily shown that the Poisson brackets of (32) with
'R is zero and hence there are no tertiary constraints;
no other linear combination of constraints (29c) and (31)
has this property. The Gauss law constraint 8;E; = 0
in ordinary electrodynamics is analogous to (32), as (32)
generates the gauge transformation

Lagrangian, 2A~o)" P by the equivalent symmetrized ex-
pression A"B~P —QB~A". This leads to different expres-
sions for 7rp and sr~. Furthurmore, in [6] the constraints
associated with the momenta m, are immediately clas-
sified as being second class; the first class constraints
are discussed only after the two second class constraints
are used to define the appropriate Dirac brackets (i.e.,
after the corresponding variables A,. are identified as a
canonical pair). In contrast, we determine the class of
the constraints in the system by considering all four con-
straints simultaneously. The physical content of the two
approaches is identical.

We begin by determining the canonical momenta
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P m P+ A,

A; mA, —8A.
(33a)
(33b)

+—e" ~A~X p(A)), (35)

upon applying the equation of motion to the field P„.
The quantization of the action in (35) is treated in [32]
using the Batalin-Fradkin-Vilkovisky procedure [33].

V. DISCUSSION

We have demonstrated that a renormalizable massive
Abelian vector theory exists in three dimensions. Regret-

Gauge conditions compatible with (29a) and (32) are

Ap ——0, (34a)
BA;+p, /=0; (34b)

these are analogous to the usual Coulomb gauge condi-
tions in electrodynamics.

The remaining two linear combinations of constraints
in (29c) and (31) constitute a pair of second class con-
straints. We thus see that in our model there are two
second class constraints, two first class constraints and
two gauge conditions, thereby reducing the number of
degrees of freedom from eight to two: the (single) trans-
verse polarization of the vector and its canonical conju-
gate.

We note that the action of (4) is equivalent to a
Freedman-Townsend [31] type of action,

2

S = d'~ —.~-~ „F.& A + V + —V„V&

tably, it does not appear possible to extend the model
of (4) to a non-Abelian gauge theory. The replacement
of the Abelian kinetic term with a non-Abelian Chern-
Simons action [4]

g3 PVA Aa g Aa abcAa Ab Ac1
X

2 p V p v (36)

and the Stueckelberg mass term with a Kunimasa-Goto
action [34]

SK~ = d xp, A„—i(U 'B„U) (37)

results in a gauge-invariant action. However, decoupling
the field U from A„ through a judicious choice of gauge
condition [i.e. , finding the non-Abelian generalization of
(6)] does not appear to be feasible. Consequently it is
apparently not possible to find a renormalizable model
of a massive non-Abelian gauge field in three dimensions
without invoking the Higgs mechanism.

The model of (4) is quite similar to one considered in
Ref. [35]. The authors of [35] have looked at the infrared
limit of a vector theory in 2 + 1 dimensions defined by
a Chem-Simons and Proca mass term with a view of
applying the model to anyon physics.
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