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Cubic scattering amplitudes for all massless representations of the Poincare group
in any space-time dimension
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Using the language of highest weight representations and the light cone formalism we construct
a full list of cubic amplitudes of scattering for all bosonic massless representations of the Poincare
group in any even space-time dimension.

PACS number(s): 11.10.Kk, 11.30.Cp, 11.30.Ly, 11.80.—m

The theory of massless higher spin fields is one of the
promising branches of modern quantum field theory (see
[1,2]). At present because of Refs. [3—6], a wide class of
cubic interaction vertices for massless higher spin fields
in flat space is known. These vertices turn out to be non-
minimal for the case of interactions of higher spin fields
with gravity. Cubic vertices for massless higher spin fields
living in anti —de Sitter space-time were constructed in [7].
References [3—7] were devoted to the analysis of interac-
tions in D = 4. A full list of cubic interaction vertices in
the case of D = 4 flat space was given in [6]. In this paper
we continue the investigation of the problem introducing
the interaction for massless higher spin fields in higher
space-time dimensions (D ) 4) which was initiated in
[8]. In Ref. [8] a full list of cubic interaction vertices for
totally symmetric massless on-mass-shell representations
of the Poincare group for any D was obtained. Notice
the results of Ref. [8] as well as of this paper do not con-
tradict those of Refs. [9—12] because in our vertices for
the case of interactions of higher spins with a graviton
there are higher derivatives only. As is well known vari-
ous types of symmetry properties of massless representa-
tions classify according to unitary irreps of the transver-
sal SO(D —2) group; i.e. , in addition to the totally sym-
metric representations there are mixed symmetry ones
[13—19]. It is likely that in studies of the self-consistency
of higher (fourth, ...) order interactions the former repre-
sentations should be taken into consideration. We think
that the higher order interaction vertices will be efFec-
tively nonlocal. The aim of this paper is to construct
cubic interaction vertices for all massless representations
of the Poincare group in any even space-time dimension
D = 2n+ 2. To solve the problem it has been suggested
[20] that the language of highest weight representations of
the SO(2n) group be used, and it was demonstrated how
the procedure of construction of cubic interaction ver-
tices works in the simplest cases D = 5, 6. The language
of highest weight turns out to be extremely eKcient for

the analysis of cubic interaction vertices of any symmetry
representations. Of course, use of this language leads to
breaking of the manifest SO(2n) transversal invariance.
It is the price we pay in solving the problem under consid-
eration. EKciency of the different way of breaking of the
manifest transversal invariance [SO(8) -+ SO(6) x SO(2)]
has been demonstrated in Ref. [21] by constructing the
cubic vertices in the D = 10 superstring theory.

Before we proceed let us comment on the self-
consistency of higher (fourth, ...) order interaction ver-
tices. It is known (see Ref. [4]) that cubic vertices do not
guarantee self-consistency of fourth order interactions.
However due to Ref. [22] the possibilities for construct-
ing consistent higher order vertices increased. Namely,
in [22] for the case of massless higher spin fields living
in D = 4 anti —de Sitter space-time the following remark-
able fact was discovered: in order to solve the problem
of higher order vertices it is necessary to use the spec-
trum of massless particles that contains every massless
representation just once. Taking that into account one
can suppose that the problem of higher order vertices in
a flat space-time may be also solved by using the spec-
trum which contains every massless representation of the
Poincare group just once. Another fact that supports
this point of view is provided by the following reason-
ing. There exists the so-called most singular representa-
tion (the oscillator representation) of the orthosymplectic
algebra osp(8) that has the following highly interesting
property: when it is restricted to the Poincare or anti —de
Sitter algebra then it turns out to contain every mass-
less bosonic representation of corresponding algebra just
once (see [23]). In other words the above-mentioned spec-
tra can be obtained &om one and the same representa-
tion of the osp(8). Because of that it is strongly believed
that the difBculties of higher order vertices may be solved
by incorporating an infinite number of different massless
particles (every massless representation of the Poincare
algebra just once). The investigation of fourth order to
interaction carried out in [24] supports this point of view.

Starting Rom the commutation relations (CR's) of the
Poincare algebra
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we introduce the light cone coordinates x+ = (xo +
x + )/~2, x, I = 1, . . . , 2n and consider x+ as the
evolution parameter. Without loss of generality we an-
alyze (1) for x+ = 0. In the light cone coordinates the
Poincare algebra splits into a kinematical part spanned
by the generators P, P, J, J+, J+, which are
usually realized quadratically in the physical fields, and
a dynamical part spanned by the generators H = P+ and
J realized nonlinearly.

Since we use extensively the constructions of Ref.
[25], we would like to introduce the complex exten-
sion of the rotation group, denoted as SO(2n, C). Af-
ter that we transform the quadratical form (x, x)
xIxI to the antidiagonal form (x, x) = xIsIJx, where
8 = b ' " + . It will be convenient to introduce
the index i = 1, . . . , n and split all vectors as A
(A', A '+ ), after that we have the scalar product
(A a) = g" (A'a " '+ + A " '+ B') For the case
of small transversal indices i, j, . . ., we drop the summa-
tion over repeated indices. The reality condition can be
written as (A )* = s A

DifFerential realization r(G) of the on-shell representa-
tion [p+ ——p s p /(2p )] of the Poincare algebra has
the form (see Ref. [26])

where Mi —M '+ . Throughout this paper, un-

less otherwise specified, the indices l, k for Sl k and Sl k
run over l = 1, . . . , n —k —1, k = 1, . . . , n —1, and
l = n —k, . . . , n, A: = 1, . . . , n —1, respectively. The gener-
ators Si & form the su(n) subalgebra of so(2n) while 8„+i
and Bi+i form the Chevalley basis of so(2n). The Car-

tan subalgebra is spanned by S 1 and Sl 1. The highest

weight vector ~rn) [where rn = (mi, . . . , m„)] is defined
in the following way:

[~, , = +„+, = (2~, , —p, ) = (2~„', —p„)]l ) = 0, (4)

where pl = ml —ml+1& l': 1 n —1, p = m 1+m
The numbers m1, . . . , m, the so-called weight of the rep-
resentation, satisfy the inequalities m1 & m2
m„ i ) ~m„~. To carry out the calculations it is neces-
sary to have a certain realization of the representation.
I.et us briefiy describe the realization we use (for more
details see Refs. [25,27]). First, for any g' ESO(2n, C)
we have the Gauss decomposition

„(p ) = p, r(p ) = Ii, r(P ) = p', r(J+ ) = x— =g go g+ ~ g+ q0 sg s (5)

(JIK) I K "K I + MIK &(I+I) "I/3

(J—
)

— II MIK KL L/P (2)
where

where P = p, h = p s p /(2P), x:—xs 0/Op
x = —aB/oiP, and MIK are the generators of the SO(2n)
group.

To use the standard framework of the highest weight
representation we should convert generators of SO(2n)
&om the tensor form to the Cartan-Weyl form. To
do that let us introduce anti-Hermitean generators of
SO(2n): MI I = iMII which satisfy the following CR's:
[M ', M ' ] = s ' M ' +3 perms. Now we link
the M with elements of so(2n) algebra taken in the
Cartan-Weyl form in the following fashion:

gp: diag(bi, . . . , b, b, , &i )
(8)

g, , = 0, f r io) j, g, , = 1, (, = —$ „s, = b, „
and g is a lower triangular matrix with units on the
diagonal. The superscripts (t) and —1 denote a matrix
transposition and inversion respectively. Now the repre-
sentation of the SO(2n) group of weight rn is constructed
on the space of the functions 4(g, () in the following way:
for all g ESO(2n) one defines the operator Ts as

(6)

g+ ~2n —l+ 1,l+ k g — ~2n —l —k+ 1,l
l, k l, k

g+ ~n+k+1, l+k g — ~2n —l —k+1,n —k
l, k l,k— )

where rI g, ( g, as well as b; are defined &om the de-
composition g+"' g = g go lg+

' ' '
. Using (5) and (6)

one can calculate the generators of a representation. In
the quite extensive literature we find expressions for the
Chevalley basis or for the S+ part of the algebra only.
Since we will need manifest expressions for all generators
let us write down the results of our calculations (here and
henceforth n designates the set (g, ()):
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.( a
Sl+k(n) = )

~&j,l+k

0Sl.(n) =
t

+n —k, 2n —L —k+1

~j,l+k g(

1 6 —1 0
l, k( ) „%,j 'Ij, l+k ) ~j,l g ) Il, b Ib,j 4,l+k g

2

lt9

in —k j 2n —l —%+1 jn —k i 2n —L —0+1
i(j ',2

o a l
%jg l j~(lj)

.(„aM(n) =m, +) '
olxI, ,

l, k ( ) (~j,2n —l—&+i n kj +k —n~j—,n k2—n l —k+—i,j+l+k 2n i—)—
2

where s"I = 1 (0) for i ( j (i ) j) In th.e expression
for S& k there are terms S, with j ( 0 which should be
rewritten according to the rules S,.+ . ——,+-, , 0 ——M,.2t 2
for i, j ) 0. In (7) and below, unless otherwise specified,
the indices i, j, b run over 1, . . . , n.

From now on we consider q, for i ( j and (, . as the

creation operators, g,, as the unit operator and make,
in (7), the substitutions 8/Bq, . —i g; for t', & j,
ol/8(, - —+ (, , where II, and (; j are the annihilation

operators (q, . ~m) = 0 = (, .~m)) with CR's:

H3 —— dI'3 C3 63

—IJ3
I() *'.&~.

l ~lhs& (»)

and the CR's [H, J I] and [J I, J ] in the cubic ap-
proximation we get the following structure for H and
J I describing the interaction of the fields 4~ (here
and henceforth a = 1, 2, 3 labels the three interacting
fields):

Using the method of Gelfand and Zetlin one can intro-
duce the orthogonal basis system of the representation
[in this work we rely only on the existence of such a ba-
sis (see Ref. [28])]: (m, (A)) = X(m, (A))n&"&(m) where
the set of numbers (A] designate the basis and N is a
normalization factor. Now we introduce the generating
function ~4 (p, n))—:g&&& C (p)~m, (A)), where, by

definition, the fields Ct~ I(p) (the dependence of fields on
P is not shown explicitly) realize the highest weight rep-
resentation of the SO(2n) group. Writing the CR's for
C in the form

((2n+1)
[@ (p) @ ~ (p)].,„...+= ~-,~;-,~

@5k'I ~ ~
("+")

~hs} = hs(n, P, P) im ),

I js ') = —(h") ' ).&(J. ')'Ihs)

(10a)

(10b)

where (42~
—= Q (O (p, n )~, h(sl = g h,

I IJ J pIBIJp J
2p

'
2pip2ps

'

(12)

dl'2—= ($~ "l ) p 0 ) P dP d("p, (11),„(

(8) (J I)f I - — h-I MIK K—L L/p

one can construct quadratic level generators of the
Poincare algebra:

and P = Pn+x —Pn+2, P4 = Pi, Ps = P2. The CR of H
with J+ tells us that ~hs) is a zero-degree homogeneity
function with respect to P (the dependence of P on P
should also be taken into account):

Now let us study the cubic corrections to H and J
Analyzing the CR's of H and J with P, P, J+

a) P + A(P) hs(n, P, P) = 0,
)

(14a)
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~(P) ) Pi + P2n i—+i. t'

BP
a

c)P2n —i+i
)

(i4b)
duce new "momentum" variables: q; +1 i = 1, . . . , n —1;
p;, i = 1, . . . , n, and P" where

Prom CR's of H with J one gets the equations
r(JI~)~hs) = 0 which can be rewritten in terms of

hs(n, P, P) [(10a)]:

(i5a)

(P) = P
2 ~ —(li i-+ I).0

(15b)

To siinplify our equations we do not write the Fock vac-
uum explicitly, and we consider M, S, and S as dif-
ferential operators (7). The operator l: (P) is an anti-
Hermitean form of the orbital part of the angular moment
and can be obtained from the equation l: ' (P)~hs) =
x P (x p —x p ) ~hs) where we take into account that
P variables exhaust all p dependence of ~hs). The proce-
dure of introducing the Cartan-Weyl basis for 2, denoted
as I«+& and I&+&, is identical to the one for MI ~ [in (3)
it is necessary to make the substitutions L for S and 8
for M]. In the case of a massless fields we can restrict
ourselves to the interaction having Kth power derivatives
in the vertex. The corresponding equation on the vertex
is [A (P) —r]hs (a, P, P) = 0.

In fact, the set of vertices hs satisfying Eqs. (14) and
(15) is the solution to all CR's of the Poincare algebra.
However, &om the set of solutions of physical interest are
the vertices satisfying the additional condition which we
call the locality condition. Let us formulate it. Expres-
sions ~hs) and

~ js ) (10) must be regular in the limit
h( ) ~ 0, and to have a nontrivial 3-point amplitude of
scattering it is supposed that hs(p) g 0 [for the definition
of hs(p) see (16b)]. Prom (10b) it is clear that

~ js ) will

have a singularity when h(s) ~ 0 due to hs(p) g 0 and
this singularity can be cancelled by an appropriate selec-
tion of h3(p). Thus we have the conditions

gi j P2n —i+1-P'
q'j= '

pj (is)

and 8"~ = h"~ + s"~. As a result we take the following
solution of Eqs. (17):

where

hs = hs(n, p„p„,P),
~ ~ ~
(a) —/ —1 —1 p(a) ( ) —1( ) —1$

(h', ,b. „—8,. „h,. i),
1

(isa)

(isb)

(18c)

Recall that n designates the set (g, (). Furthermore,
there are additional equations on the ~hs) [they are
the remains of Eqs. (17)], which we would like to
write after introducing the dimensionless variable p

(1)p„P /(pi) (notice that the variables a are also di-
mensionless) and rewriting expression (isa) in the form

h3 —(pi)"hs„(a, p, P). We have written down the
dimensionfull factor (pi)" explicitly. Now the relevant
equations can be written as

) Si+„(n )hs„(n, p„, P) = 0,
a

) S„++(,),+,„,(n )hs„(n, P„, P) = 0,

(19a)

(19b)

where l = 2, . . . , n —k, k = 1, . . . , n —1, and i, j
2 . n —1.

(b) Second, we rewrite the "—"and "0" parts of
Eq. (15a) in terms of the variables n and p„. The equa-

(1)

tions obtained are) r(J I)ths(n, P, P)
h(s) ~p

=0, (16a)

hs(p)
= hs(a, P, P) $0.

h(3) ~O
(16b) xh „(n, p„, P) = 0, (20a)

Equations (14)—(16) are the complete system of equa-
tions on the tree-level cubic interaction vertices which
we are going to solve. We analyze Eqs. (14)—(16) in the
following way.

(a) First, we are solving the "+"part of Eq. (15a):

) [S.', . ;( )+p.(~; "S+,'-' ( ) —( j))]

xhs„(n, P„, P) = 0, i, j = 1, . . . , n —1, (20b)

Li+„(P) + ) S,+„( ) (n) hs(a, P, P) = 0, ) M( )(n ) + h, , ~ —2P„hs„(n, P„, P) = 0

Li+q(P) + ) S,+q )(n) hs(n, P, P) = 0.

To solve Eqs. (17) it is convenient, in place of P, to intro-

(20c)

[in Eq. (20c) l = 1, . . . , n].
(c) Third, writing Eqs. (16a) in terms of the same vari-
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ables we obtain

(21a)

) p)
o.,p —~ o.+l,p+ 1

1) $1)
1)can+1 ~ 1 p+1+ (2)
? ~ I? o'

(25)

) P S:( li(a )6 (0)(o, P) = 0, (2lb)
(1)1

(2) , I? (1) ) ~ (2) 1)
'I? = E'

vp +XI n 7 cr, v~ i,v+i 'I

V V

) P P —M( l(n') hs (0)(a', P) = 0, (21c) 1 -=-
(2)

()1 +1 '
7f V

(26)

Si,,-i(~ )
(

—(1) (~)

Pi

—(2) (~) —(3) (1)
i ' —i( ) Si ' —l(~) (&)

P P 3~(0) (

(22a)

where j = 2, . . . , n. The hs„(p) is defined by (16b) mak-
ing there the substitutions h3(0) -+ h3. (0) and h3 -+ 63-.
The set of Eqs. (19)—(21) supplemented by Eq. (14) is

(I)
the complete system equations for )))s„(n, )0, P). Since

hI3 (0) which is a dimensionless 3-point amplitude of scat-
tering, is the object of prime physical interest we re-
strict ourselves to solutions of Eqs. (14), (19)—(21) for

(1)
hs (pl(n, P); i.e., from now on we analyze the relevant

equations in (P„) approxiination.
Equations (19) and (20) express the invariance condi-

tions with respect to the transversal rotations. In the ap-
proaches based on the tensor realization of the represen-
tations of the transversal group one would erst analyse
these equations and then the rest ones (see Refs. [8,29)),
while in the approach based on the highest weight [20]
it turns out to be more convenient to use the following
procedure in solving (19)—(21).

(i) Multiplying the / = 1 part of Eq. (20a) and the i = 1
part of Eq. (20b) by Pi, subtracting Eqs. (21a) and (21b)
respectively &om the resulting expressions, and repeat-
ing this procedure for cyclic permutations of the particle
labels (1,2,3), one obtains the equations

(~)~ (~)and g '~ is the inversion of g &. In (24)—(26) the in-
dices 0, p, v run over 1, . . . , n —1. Let us make of a com-
ment on the variables introduced. To solve Eqs. (22) we

diagonalize the generators Sl &
erst and then S&

t

i.e. , we split the solution procedure in two stages. The
superscripts (2) and (3) are used to indicate these stages.

(ii) Now we rewrite Eqs. (19) and the t = 1 part of
Eqs. (20c) in terms of the new variables (24). The result
of this procedure is

(X)+) S+ ( l(n ) h(n, X, P) =0, (27a)

L+ (X)+) S+ ( l(n') h(n', X, P) = 0, (27b)
)

~(x)+ —) ' h.("', x, p) =o,
l a

(27c)

where A(x) and L&+& (X) can be obtained from (14b) and
(15b) respectively making there the substitutions n ~
n —1 and P ~ X. The S+

~

— and S
~

— are obtained
&om (7), making there the shift n ~ n —1 and then
substituting m M m = c' ' m +1 —8 1m, o =
1, . . . , n —1. In Eqs. (27) the indices cr, p for L+, S

1, . . . , n —2 and o = n —p —1, . . . , n —1, p = 1, . . . , n —2
respectively.

(iii) Rewriting Eq. (21c) and Eq. (14) in terms of (24)
we get

where j = 2, . . . , n. The general solution of Eqs. (22) is
) P (P +mi )h(n, X, P) =0, (28a)

n —1 ) (p. + ~,")h(~', x, p) = o. (28b)()(~) (1)] v+] TA TTl-m
'?

(1)
hs„(0)(c(, P) =

1 ~I ~ 1 1 ~ ()
Q V=1

(P'„',)'-'-'h("', x, p), (23)

where we have introduced the variables

(3)=) p/( ()
a

o~Y o')Y ~

) ~
p ](3)(~)

(3) ~ ~ (2)
g = g 0

1 1 1 P) (2) (3) 1 P)
(g) —(g) ) y) ( cr, v'9 i,v ) (' o —(z)

v 0 1 ? l,o

(24)
p ' G(n, x),h(n, X, P) =

(3)
where G(n, X) is the generating function of the Clebsch-

It should be emphasized that at this stage only Eq. (28a)
expresses the locality condition while Eqs. (27), and (28b)
reIIIect rotation invariance and homogeneity conditions.
Thus to this stage we have reduced the 2n —1 locality
condition Eqs. (21) to the single Eq. (28a). The general
solution of Eqs. (27) and (28) is
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Gordan coefFicients describing the coupling of four repre-
sentations of the SO(2n —2) group: three representations
with highest weights m{ ) and one vector representation

(3)(X). The G(a, X') satisfies the equations obtained &om

Eqs. (27) making there the substitution h -+ G(n, A).
Now collecting all steps in derivation of h3(p) we have

our final result:

hs(0)
——P" p ~

( .p. l' "

' —zP

where we have introduced the notation

(32)

(33a)

(a)
hs(o) = (pi)" p.

n 1
()(a) (~) l,v+1 (~) (a)

(a)
a v=1

J=) j., (33b)

(30)

One can make sure that the 63 (p)
obtained satisfies

the remainder of Eqs. (19)—(21).
For h3 (p)

to be well defined it must be a polynomial
(1)in primary operators n (5), or polynomial in n (18). As

(1)
seen &om (24)—(26) the nonpolynomial n dependence of
(3)

is the reason why the h3 (p) is not polynomial gener-

ally. It turns out that, for the h3 (p) to be polynomial, we

must impose certain restrictions on the rn~ ) and v. [we
(1)g g)

must choose xn( ' and K in such a way that g '~ and & ~,
coining &om the prefactor of Eq. (30), suppress the max-
imal negative power of these variables coming from the
G]. It is precisely the restrictions which leave no place for
the minimal gravitational interaction of massless higher
spin fields (see Refs. [20,29]).

Now let us briefly describe the advances made in this
paper. We have started with Eq. (15) which expresses
the invariance condition with respect to rotations of the
SO(2n) group and with Eq. (16) which expresses local-
ity condition. As a result, we are finishing with expres-
sion (30) where the G is the generating function of the
Clebsch-Gordan coefficients. Thus we have satisfied the
locality condition. The expression (30) is the main result
of the paper.

As an illustration of (30) let us consider particular
cases D = 5, 6. Five and six dimensions is an arena
where the complex structure of (30) can be stripped of
complications of higher dimensions while hopefully re-
taining many of the physical features of the problem of
interest. Notice (30) is valid for even dimensions. It can
be straightforwardly generalized to odd dimensions by
using the method above demonstrated.

The case of D = 5. For the case D = 5 the transversal
group is SO(3). As is known its bosonic representations
are labeled by integer j. I et 4". (p) be (2j+1)components
of the massless spin-j field: A = —j, —j + 1, . . . , j. Now
introducing one creation operator we collect all 4". (p) in
one Fock vector:

2 j—A

j(& )) = ) @j (&)
[(

~

p)~(
~ p))]i(210) (3 )

For the cubic vertex describing the interaction of mass-
less fields 4~ (recall that a = 1, 2, 3) and having vth
power of derivatives we derive the expression

[for the definition of P, see (12)]. For hs~o) to be well
defined it must a polynomial of g . As readily seen &om
(32) this requirement leads to the following constraints
on the allowed values of j and K:

J&v, (34a)

2j & J —K. (34b)

Now, having the inequalities (34) at our hand we are
ready to discuss the no-go theorem. The minimal grav-
itational interaction of massless higher spin fields corre-
sponds to K = 2 with one of j, say jz, taking the value

ji ——2 (graviton), while j2, js ) 2 (higher spins). It is
easily seen that these values K, j do not satisfy (34b).
Since (32) and (34) form a compl'ete list of interactions we
conclude immediately that the above-mentioned interac-
tion does not exist at all, a statement of no go. This
statement for the case of four dimensions has been ob-
tained in [9—12]. In these works it was shown that the
"naive" gravitational interaction of massless higher spin
fields, introduced via covariantization of their free actions
in the flat space-time turned out to be inconsistent as this
led to the loss of the higher spin gauge symmetries. The
concrete obstacle was that the variation of the higher
spin actions in a curved background contained the grav-
itational Weyl tensor which could not be compensated
by some variation of the gravitation metric. In our ap-
proach it is the inequality (34b) that leave no place for the
minimal gravitational interaction of massless higher spin
fields. Since the no-go theorem has been rigorously es-
tablished in four dimensions, our result can be considered
as a generalization of no go to higher D = 5 dimension.
Thus, (32) and (34) describe all possible Pauli-like inter-
actions of massless higher spin fields. Note that spin-j
massless field 4z can be associated with totally symmet-
ric covariant tensor field 4'+""'~&. As is well known in
four dimensions all massless fields can also be described
by using totally symmetric tensor fields. However for the
case D & 6, in addition to the totally symmetric mass-
less representations, there exist so-called mixed symme-
try ones. The latter can be associated with mixed sym-
metry covariant tensor fields only. It will be interesting
to consider the question about minimal gravitational in-
teractions for such fields. To do that we move to the
D = 6 case.

The case of D = 6. Now the transversal group is
SO(4). Its bosonic representations are labeled by two
integers j~, p = 1, 2. The subscript p = 1,2 refers to
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the two distinct SU(2)~ subgroups of the SO(4) group,
while ji and j2 denote the Casimirs of SU(2) i and SU(2) 2

respectively. The j& are expressible in terms of high-
est weight [rn = (mi, m2)] of the representation SO(4)
group as ji ——(mi + m2)/2, j2 ——(rni —m. 2)/2, where

mi, m2 satisfy the inequality mi & [m2~. To describe
(2ji + 1)(2j2 + 1) components of massless field we use
4-" '(p), where A~ = —j~, —j~ + I, . . . , j~. Introducing
two creation operators cr~ we collect all 4'. "".'(p) in one
Fock vector:

21 22 ~j~ —A~

(pl)~ p
—J q2j ~

3(O3 O) h ~ h 4 j 4 h

a,p

( ) J~ —~/2

. C&)

(36)

where we introduce the notation

p2 p2
(~1 — al 1 ~ (a2 — a2 (37)

J.= ) j...
Y

(38a)

(38b)

Note that; J = mz . The momentum P is definedC,
'~) I

in coinplex coordinates z = (x + zx )/~2, z
(z'+ tz')/y 2, z' = (z')*, z' = (z')*: P' = (P')*,
P2 = (P2)*. An asterisk is used to denote the complex
conjugate. Again, for h3~0~ to be well defined it must
be a polynomial of g ~. As readily seen from (36) this
requirement leads to the following constraints on the al-
lowed values of j and v.:

The variables o.~ are expressible in terms of the variables
qi2, (i2 provided by Gauss decomposition [see Eq. (5)]
as ni = rli~, n2 = (iz. Note that massless representa-
tion 4~, z, can be associated with the mixed symmetry
covariant tensor Beld. This covariant tensor field has the
structure of a Young tableaux whose Brst and second row
have length equal to m, i and [rn2[, respectively. The case
m2 ——0 (i.e., ji ——j2) corresponds to totally symmet-
ric fields while m2 g 0 (i.e. , ji g j2) to mixed symmetry
ones.

Now the hs(p} from (30) can be changed to the form

1
J~ & —m,

2
(39a)

1
2j & J~ —-v.

2
(39b)

Now we are ready to discuss the no-go theorem for the
case of totally as well as mixed symmetry massless Belds.
Recall that the ath massless representation corresponds
to totally (mixed) symmetric field if j i = j 2 (j i g j 2).
The minimal gravitational interaction of massless higher
spin Belds corresponds to K = 2 with one of j, say

ji, taking the values jii ——ji2 ——2 (graviton), while

j2, js & 2 (higher spins). It is easily seen that these
values v. , j do not satisfy (39b). In other words totally
symmetric as well as mixed symmetry massless higher
spin fields do not have minimal gravitational interaction,
i.e. , (36) and (39) describe Pauli-like interactions of mass-
less higher spin fields for D = 6. As to totally symmetric
fields, the above-mentioned generalization of no go to
higher dimensions was expected.

We consider the fact that no go works for the case of
mixed-symmetry massless Belds one of the essential new
results obtained in this paper. Note that it is hard to put
the mixed-symmetry Belds in the context of commonly
used covariant procedures of deriving the no go, as even
at that level of &ee actions there is no tractable covariant
procedure to consider such fields.
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