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Bound states and instabilities of vortices

Michael Goodband* and Mark Hindmarsh~
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We exainine the spectrum of small perturbations around global and local (gauge) Abelian vortices,
using simple numerical matrix techniques. The results are of interest both for cosmic strings and
for their condensed matter analogues, superQuid and superconductor vortices. We tabulate the
instabilities of higher winding number vortices, and find several bound states. These localized
coherent oscillations of the order parameter can be thought of as particle states trapped in the core
of the string.

PACS number(s): 11.27.+d, 11.10.St, 11.15.Kc

I. INTRODUCTION

The ideas of gauge unification and spontaneous sym-
metry breaking lie at the heart of modern particle
physics. The well-established view is of some grand
unified theory (GUT) with the gauge symmetry group
G, suffering a series of spontaneous symmetry breakings
which reduce the group to that of the standard model.
In a cosmological context this series of spontaneous sym-
metry breakings is seen to occur as the Universe cools.
The first symmetry breaking occurs at an energy of the
order 10 GeV, and it is possible that topological defects
may form, via the Kibble mechanism, at this transition
[1,2]. Such objects have many important implications:
For example, defects of dimension 2 (domain walls) and
0 (monopoles) would come to dominate the energy den-
sity of the Universe soon after a GUT phase transition,
which would necessitate a period of inflation if the theory
admitted such defects.

When a symmetry is broken at a phase transition such
that the vacuum manifold is not simply connected, there
arises a network of cosmic strings [3], defects of dimen-
sion 1, which may provide seeds for large scale structure
formation in the Universe. Because strings are very thin
and the cosmological scales of interest are many orders of
magnitude bigger, they have been approximated by line
sources with energy-momentum density diag(p, 0, 0, —p)
where p is the energy density of the classical solution.
There are, however, a few instances when one is inter-
ested in the string structure. They include calculating
scattering cross sections (which are important for baryon
number violation by strings [4]) finding bound states,
quantum corrections to the energy, and curvature correc-
tions for highly curved strings [5]. All of these require a
knowledge of the perturbation spectrum about the string.

In this paper we find the perturbation spectra in the
backgrounds of global and local U(1) vortices. Simple

U(1) strings provide an ideal testbed for developing nu-
merical techniques for eigenvalues. They are not trivial,
like the kink [6], nor are they as geometrically involved
as three-dimensional (3D) objects such as the sphaleron
[7]. However, one has to deal with all the same problems,
gauge choice and numerical stability being the principal
ones. Furthermore, they are a stepping stone on the way
to an efBcient technique for mapping the stability region
of the electroweak string, which we shall describe in a
separate publication [8). Our methods are quite straight-
forward: We find the vortex solution using shooting or
relaxation algorithms. The numerical profile functions
are then used in constructing a discretized matrix of sec-
ond derivatives of the fields. This matrix is then diago-
nalized to find the eigenvalues and eigenfunctions, using
the standard linear algebra packages incorporated into
MATLAB.

We find a continuum of scattering states, oscillatory at
infinity, for each particle species, obeying the expected
dispersion relation ~ = k + rn, . There are unstable
modes for higher winding number strings, corresponding
to strings splitting in various ways. We tabulate these,
and show how different angular momenta in the modes
lead to different splitting configurations. We also find
bound states, N on global strings of winding number N
(we searched up to % = 5), but on the gauge strings
we found only one, which crossed into the continuum for
a suKciently large ratio of the scalar to gauge coupling.
The bound states are excitations of the fields at the core
of the string, decaying exponentially at infinity: One can
think of them as particles trapped on the string.

As is well known, global strings are closely related to
superfluid vortices, and local ones to flux tubes in super-
conductors. We conclude by discussing the connection
and outlining the possible significance of our results for
condensed matter physics.

II. PERTURBATIONS
ABOUT GLOBAL STRINGS

'Electronic address: m.j.goodbandsussex. ac.uk
~ Electronic address: m. b.hindmarshsussex. ac.uk

The model considered in this section has a complex
scalar field with the Lagrangian density
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& = (&"&)*(4&)—A(&*& —&'/2)'

invariant under global U(1) transformations. The field
acquires a vacuum expectation value, breaking the sym-
metry and giving rise to a particle spectrum of one Gold-
stone boson and a Higgs boson of mass /2Aq2.

As is well known, there exist time-independent classical
vortex solutions to the equation of motion,

—0 P+ 2A(~g~' —g'/2)P = 0.

The solutions are z independent and are of the form P =
(g/~2) f(p)e' where N is the winding number. The
energy per unit length of such configurations is given by

pected that the decay would occur. Similarly, one expects
the decay of higher N strings into strings of lower wind-
ing number, provided the decay conserves the topological
charge. Decays which would appear to be possible on en-
ergetic grounds (e.g. , one N = 2 string to one N = 1
string), but do not conserve the topological charge, do
not occur because there is an infinite energy barrier sep-
arating the two configurations. So only the N = 1 string
is expected to be stable.

Now consider z independent perturbations to the clas-
sical string background P, (x) of the form P, (x') +
eh/(x')e ' and P,*(x') + eh/*(x')e' where i = 1, 2.
This gives corrections to the energy

E = ~g' pdp
i

—
i +, f'+ (f' —1)'fdf1 N 2 Ag

«p) where

E= E(Q,)+~ E2+O(e ),

The energy is logarithmically divergent for large p:

E = E....+ ~g'N' ln
~

—~,
(Bl
(, p. )

where p is the core radius. In physical situations there
exists a physical cutofF, such as a container or a nearby
antivortex, making the energy finite. It can be seen from
the N ln(R) behavior that two N = 1 global strings have
significantly lower energy than one N = 2 global string.
The decay of an N = 2 string into two N = 1 strings
conserves the topological charge and so it would be ex-

E2 —— d x(hp*, hp)M
~

where

&
'&* ) '

The matrix M is the perturbation operator, obtained by
taking second functional derivatives of the energy. To
find the perturbative modes about the string, which can
be interpreted as particle states, we solve the coupled
eigenvalue problem

& —&'+ 2A(21$ I
g'/2) 2A(g

2AQ* -&'+ 2A(21&. l' —~2/2)

The string is a cylindrically symmetric solution, and so it is convenient to expand the perturbations in angular
momentum states,

) i(N+m)8 and e i (N m) 8— —
s e

It is also useful to rescale the coordinate by defining r = /2Ai)2p to remove the parameters A and g from the equations.
So rescaling and substituting in the string solution and perturbation expansion give the coupled eigenvalue equations
for the functions s and s*

~

—V'„'+, + —(2f' —1) I
s + f's* = ~'—s

( (m+N) 1 ) 1
r2 2 ) 2

~

—9', + + —(2f —1)
~

s" + f s =(u—s*(m —N) 1 2 l „1
r2 2 ) 2

where w is now dimensionless. To recover the dimensionful values, one should multiply by m~ ——2Ag . Note that
the eigenvalue equations are the same after complex conjugation and changing m ~ —m; so we need consider only
m & G.

If we set (s,s ) to real and imaginary parts, we can separate the above eigenproblem into two separate eigen-
problems with explicitly real fields,

( D. + ,'(2f' 1)—-
sm 2 sm

D + i(2f2 1) ) (s— ) ks — )

We will often write "energy" for "energy per unit length. " No confusion should result.



52 BOUND STATES AND INSTABILITIES OF VORTICES 4623

( Dg+ -'(2f2 —1)

1 y2 D + &(2f2 1) ) ( —m) ( —m) (2)

where Dq ———0 + (m+ N) /r and D2 ———8 + (m—
N)2/r2.

First consider the vacuum where f = 1 and N = 0.
Then we have Dq ——D2 and we can diagonalize M with
the eigenvectors (1, 1) s and (1, —1) s to give

+ 1
i

sp = cu sp, (~)

~

—+, + iso=~ so.
( , m'i

(4))
We can see that for the vacuum the solutions are Bessel's
functions J (kv') where for (3) k is given by the contin-
uum u = k + 1 and for (4) by co2 = k . The eigen-
value spectrum of (3) corresponds to the spectrum Higgs
particle with rest mass 1 in units of 2Ag, whereas the
eigenvalue spectrum from (4) has a continuum down to

= 0 corresponding to Goldstone modes.

A. Numerical method

The eigenproblem above was solved with the boundary
conditions s,s ~ 0 as r ~ oo for various values of m.
The profile for a string of winding N was found by solving
the equation for f using a shooting method. This profile
was then substituted into the discretized perturbation
operator M and the eigenvalue problem was then solved
by the standard matrix methods used by MATLAB. This
procedure was performed for linearly discretized lattices
with 64, 128, and 256 points. The results for the 256
point lattice are shown in Tables I and II. The numerical
values for the zero modes give an estimate of the accuracy
of the method. The eigenvalue problem was also solved
for a linear discretization in the variable p where p =
tanh(r). This gives a nonlinear discretization in r with
more points in the core of the string. The results from
this are in agreement with those quoted in Table I to the
error given by the values for the zero modes.

configuration corresponding to the infinitesimal transla-
tion

0
P(x) m P(x+ hx) = P(x) + . bx'

= P+ eh/.

For example, for the translation mode in the x direction
we take the x derivative of the string solution,

BP, BP, sin 0 BP,= coso0. ' 0, , ao
df;~s iN sin 0= coso —e' e'

r
e' (df Nf)~, (df Nf)

2 (dr r ) (dr r )
As can be seen, the translation mode has m = 1, and the
forms for 8~, s ~ can be read oB from above and shown
to satisfy

(~pl
l

M
~ gyp ~

0

The numerical results for this zero mode are shown in
Table I and, as mentioned above, they give an estimate
of the error in the eigenvalues.

C. Bound states

For the case m = 0, we have Di ——D2 and again we
can diagonalize M with the eigenvectors (1, 1) sp and
(1,—1) sp to give

TABLE II. Eigenvalues of decay modes of global strings
of winding number N, in units of 2Ag . m is the angular
momentum of the mode and the M; values are the winding
numbers of the strings formed by the decay.

B. Zero modes

The string is a solution centered at a point in a two-
dimensional plane and so there must be a perturbed field

N EH;~z, Zero mode
1 0.7833 0.0012
2 2.4149 0.0019
3 4.9835 0.0013
4 8.5712 0.0013
5 13.0310 0.0014

of m=0 bound mode
0.8134
0.6299 0.9554
0.5180 0.8747 0.9727
0.4437 0.7926 0.9314 0.9822
0.3907 0.7206 0.8835 0.9527 0.9976

TABLE I EH'gg of global strings with winding number N
in units erg and m = 0 bound mode eigenvalues in units of
2Ag .

N
2

m
2
2
3
4
2
3
4
5
6
2
3

5
6
7
8

M,
11
111
1,1,1
1,1,1,1,-1
1,2, 1

1,1,1,1
1

$
1 1 ) 1

1)1)1)1)1)-1
1,1,1,1,1,1,-2
131
1,1,1,2
1 ) 1 ) 1 $

1 ) 1
1,1,1,1,1
1,1,1,1,1,1,-1
1,1,1,1,1,1,1,-2
1,1,1,1,1,1,1,1,-3

2
3
3
5
6
4
4
6

10
11

7
5
5
7

11
17

(d2

-0.2093
-0.1283
-0.3289
-0.1207
-0.0889
-0.2429
-0.3889
-0.2410
-0.0749
-0.0662
-0.1908
-0.3151
-0.4224
-0.3145
-0.1868
-0.0475

-0.0617

-0.0369
-0.1643
-0.0272
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m2H 2A

m2 e2
A.

It will also be convenient to rescale the fields by making the replacements

Dimensionless fields and coordinates will be used throughout this section. The stability of N ) 1 Nielsen-Olesen
vortices to splitting into vortices of lower winding has been studied previously [10], where it was shown that they are
stable for p ( 1 and unstable for p ) 1. This can be seen from Fig. 6 showing the energy per vortex for three values
of P. For P ) 1 the energy per vortex is lowest for N = 1, and so a vortex with winding number greater than 1 will
split into vortices of lower winding number and so move left on the curve. For p ( 1 the reverse is true.

A. Perturbations and gauge fixing

Now, consider perturbations to the classical string solution of the form P, (x) + e»(x)e ' ', P;(x) + e»*(x)e' ',
and A~(x) + ebA" (x)e ' . This gives corrections to the action

S = S(Q„As) + e S2 + O(e ),

where

'- t
2

and where 17 is the perturbation operator and b@t = (» e', »e ', SA~e ' ). The perturbation operator 17 is
given by

( —8' —2i A„B"+ A'„—P(2IPI' —1) —PP'
Py*' ——a'+ 2iA„a~ + A„' —P(2~P~' —1)
i g„P* —iP*B„+2A„Q* —iB„Q+i QB„+2A„Q

9„~—i~,9„+2A

2ig„/*+i/*B„+ 2A„Q*
a -~' —~ ~-+2~ -III'

and the equations of motion for the perturbations are 'Vb@ = 0.
In order to set up an eigenvalue problem for the perturbations we need to remove the linear derivative terms, as

well as removing the gauge degrees of freedom. To do this we choose the background gauge condition [11]

E(A) = B„bA" —i (bP*P, —P,*bg) = 0,

which is imposed by adding the gauge-fixing term

rGF = -~s'(A) ~'

to the Lagrangian. This enables us to separate out the ti.me derivatives to give the eigenvalue equations

(») (»lMGF»e 2

(hA;) (bA;)
and

where i = 1, 2 and the gauge-fixed perturbation operator is

( —&' —»A*'|7*+A,'-+ P(2141' —1) + IWI' (P 1)&2 2'~ C—+'A'—
(P —1)$" —V'2 + 2i A;V', + A2 + P(2~$(2 —1) + ~@( 2i V', Q* + 2A, @*

2iV, /*+ 2A;Q* —2iV';Q+2A;Q —b' V' +2b'~~/~ )
The bAO and bA perturbations decouple because the background string solution is independent of t and z.
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The gauge condition (9) above does not fix the gauge completely. For comparison, consider the more familiar
Coulomb gauge V' . A = 0, where it is still possible to make the gauge transformations

Ai m Ai —V;A

and the gauge-transformed field still satisfy the gauge, as long as A is harmonic. Similarly for the background gauge
condition it is still possible to make gauge transformations for A satisfying

(—a'+ 2lyl')A = o.

This is why in quantum field theory the above gauge-fixing term would be accompanied by a Faddeev-Popov ghost-
term of the form

ZFpG = —A*(—8 + 2lp~l )A.
2

In 2+1 dimensions the perturbation operator for bAO and the ghosts is the same, and so bAO and A will have the
same eigenvalue spectrum. In any calculation of quantum corrections, the perturbation operator for the ghosts enters
with the opposite sign and a factor of 2 compared to that for bAo. Thus the eigenvalue spectrum of the ghosts cancels
that from bAo and a subset of the spectrum &om MGF. We can therefore ignore 8AO, and we must be aware that
not all the eigenvalues of M correspond to physical states.

In 3+1 dimensions, where the modes can have a z dependence, the ghosts cancel the contributions to the energy
&om a linear combination of bAo and bA„and the spectrum built on the unphysical eigenmodes of M

H. Nuxnerieal xnethod

We expand the scalar field perturbations in angular momentum states and the gauge field in total angular momentum
states given by

e—i8
A+ —— (A„—iAg)

2

The background string solution is

and
ei8

A = (A + iAg).
2

f iNg iNa
+

—iNa iee',

and the perturbations are

) i(N+vn) 8 bye y e —i(N —na)gs e

bA+ ——) ia e'( a* '~ +'~'ta —me

Substituting in the above gives the eigenvalue equations

(D, V A B~ (g
V D2 B A s*
A B D3 0 a

( B A O D) (a* j
where

(d
8—m

(N(l —a) + m)'
r2

( ( ) ™)
p( f ) fr2

m —l2( ) fr2

D ——V~ ™+Il~ 2f'
r2

v = (P —&)f',

A=~21 —+ (a —~) l,

B= —~2l —— (a —]) l.(df Nf
(dr r )
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As before, the eigenvalue equations are the same after complex conjugation and changing m -a —m, and so we need
consider only m & 0.

If we resolve the functions 8, s*,a, a* into real and imaginary parts, then, as for the global string, the
complex eigenproblem separates into two eigenproblems with explicitly real functions,

(Di V A B
V D2 B A
A B D3 0

(B A 0 D4

(Di V A B
V D2 B A
A B D3 0

( B A 0 D4)

(10)

where D, V, A, and B are given above.
First, consider the vacuum, where f = 1, N = 0, and

A, = 0. Then A = B = 0) D& D2 in the above,
and the upper left block can be diagonalized with the
eigenvectors (1,1) s and (1,—1) s to give the four
8essel's equations

C. Zero modes

After gauge fixing the only mode which can have zero
eigenvalue is the translation mode. The Geld conGgura-
tions corresponding to a gauge-fixed inGnitesimal trans-
lation are

+ +2P~s =usm2

)

+ +2~s =~ s
m, '

(12) P(x) -+ P(x + 8x) = P(x) + (D, rtp) hx'

= P+ eh/,

A, (x) -+ A, (x + 6x) = A;(x) + E,;6x'
= A, +~bA;.

+ +2~a =ma(m —1)'
(14)

These perturbations satisfy the gauge condition (9) by
the equations of motion. They also satisfy

+ +2~a =~a(m+ 1)'
(15)

The eigenvalue spectra of these are u = k2+ 2P for (12)
corresponding to that of a Higgs particle, and ~2 = k2+2
for the other three corresponding, respectively, to the
longitudinal, spin +1, and spin —1 states of the massive
gauge boson.

In the presence of the string background we still obtain
the continua given above, but as for the global string,
there are discrete eigenvalues correponding to particle
states trapped on the string. The profiles f(r) and a(r)
were solved for with a relaxation method on the en-
ergy functional, and then substituted into the eigenvalue
equations above. The eigenproblem was solved with the
boundary conditions s,s,a, a —+ 0 as r —+ oo
for various values of m, by the same method used for the
global string. This was performed for linearly descretized
lattices with 50 and 100 points. The results given in Ta-
ble III are for 100 points and the translation modes give
an estimate of the accuracy. Note that the error in the
translation modes is greater for P = 4 than P = 1 or 0.25.
This is because the Higgs core is narrower with a much
sharper transition Rom 0 to 1 than in the other cases,
and so there are fewer points describing this region. One
might think that a similar situation would hold for the
gauge field for P = 0.25 but its transition from 0 to 1 is
more gentle.

by the equations of motion. The numerical results for the
translation eigenvalues of M are given in Table III.

1.9097
1.9304
-0.0459

1.5110
1.5713
-0.0267
-0.7654
1.7085
1.2163
1.2720
-0.0152
-0.4059
-1.3497

p=1
1.5540
1.5302
1.5565
-0.0187
1.0766
1.0476
1.0781
-0.0050
-0.0007
0.8043
0.7856
0.8057
-0.0013
-0.0009
0.0023

P = 0.25
0.4538
1.1073
1.1298
-0.0096
0.3604
0.6775
0.6963
-0.0001
0.1121
0.2941
0.4860
0.4932
0.0016
0.0617
0.1952

TABI E III. Eigenvalues for local string modes in units of
e q /2. The modes shown are (a) Higgs-gauge boson bound
mode, (b) gauge boson bound mode, (c) ghost bound mode,
(t) translation mode, and (s) splitting modes.

Mode
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D. Bound states

Let us first consider m = 0. In this case D~ ——D2
and D3 ——D4, and M has eigenvectors of the form
(Bp, sp, ap, ap), (sp, —Bp, ap, —ap) . Hence there are two
sets of solutions for 80 and ao, each satisfying one of two
equations

(D, +V X+al (s, l
( A+B Ds ) (ap) (ap) ' (16)

!

(D, —V X —al (s,l, (., )
J 4 p) & p) (17)

For each N, we Gnd that there exists a maximum value
of P below which Eq. (16) possesses one bound state
solution, corresponding to some sort of coupled Higgs-
gauge boson trapped on the string. For the N = 1 string
the bound state exists for P & 1.5. For P ) 1.5 this
bound mode becomes one of a number of modes in the
continuum for which the Higgs Geld is bound but the
gauge field is not. These modes could correspond to some
sort of resonant scattering state of the gauge Geld, or they
could be due to mixing of eigenvectors of very similar
eigenvalues. For P ) 1.5 the eigenvalue of the bound
mode becomes greater than m» but is still less than m~
which is why the Higgs field remains bound. Equation
(16) also contains modes with eigenvalues greater than
m& corresponding to the scattering of the gauge field by
the string. It is possible that the bound mode could mix
with a gauge field scattering mode to give an apparent
resonant scattering state of the gauge field, in which case
there may be a bound Higgs-gauge mode for all P. For
P & 1 there are similar resonant scattering modes, but
with the Higgs and gauge Gelds interchanged. For higher
values of N there is still only one bound mode, but the
upper limit on P is higher. There are also several resonant
scattering states.

If the perturbations are considered in 3+1 dimensions,
then the bound modes can be considered as traveling
waves along the string.

The solutions to Eq. (17) also possess bound states.
For P ) 1 there is one such mode, while for P & 1, and
for higher N, there are a number of bound states. By
examining the asymptotic form of the perturbation op-
erator, one can establish that the mass squared is 2, and
thus we are dealing with modes of the gauge Geld. The
gauge mode is trapped on the string because it has a
lower mass inside the Higgs core, and so we would ex-
pect the bound mode to have lower energy (and for there
to be more of them) when the Higgs core is wider than
the gauge field core. This is indeed the case. However,
as we warned earlier, gauge field modes are not neces-
sarily physical. In fact, we Gnd that these vector bound
states have very similar eigenvalues to the ghost modes,
strongly indicating that they are just a result of the resid-
ual gauge invariance in the background gauge.

Table III shows the eigenvalues of the lowest bound
modes occurring for Eqs. (16) and (17) and for the
ghosts. One can see that the ghost bound mode eigenval-
ues are very close to those from Eq. (17). The zero mode

eigenvalues give an indication of the error: The difference
between the gauge Geld and the ghost eigenvalues is ac-
tually greater than the departure of the numerical zero
mode eigenvalue, but we believe that our identification
of them is nevertheless correct.

In 3+1 dimensions, there is also the A, Geld to con-
sider. This has exactly the same perturbation equation
as the ghosts and SAp. In [12] it was shown that since the
perturbation operator is of the form of the Schrodinger
equation with a two-dimensional potential well, it always
has at least one bound state no matter how narrow the
Higgs core. The eigenvalue of the bound mode expo-
nentially approaches m& as the Higgs core becomes nar-
rower, i.e. , as P ~ oo. The eigenvalues obtained numeri-
cally for the gauge bound mode increased towards m& as
P increased but became greater than m& for P ) 8. This
is probably because the profiles become less accurate as
the two core sizes become widely difFerent. The accuracy
of the P = 8 profile probably was not much worse than
that for P = 1, but it would not require much to obscure
the exponential behavior of the eigenvalues.

As there are in total two ghost degrees of &eedom, they
can only cancel one linear combination of bAO and bA,
leaving the other for real physical propagating modes,
at least one of which is a bound state. Thus we have a
massive gauge boson conGned to the string for all values
of P.

E. Decay modes

Abelian-Higgs strings with N ) 1 for P ) 1 are
unstable to decay to strings of lower winding number.
The gauge Geld present in the local strings has the ef-
fect of removing the energy's logarithmic dependence on
the radius, and so the allowed decays of local strings
are N wound string ~ M strings of winding M, with

P, M, = N and M, ) 1. For P & 1 the modes are the
same but the eigenvalues become positive. Consider the
eigenvalues given in Table III for the m = 2 mode for
N = 2. When P = 4 the string is unstable to splitting
into two N = 1 strings. As is well known P = 1 strings
do not interact and so w = 0 for this case. Now when
P = 0.25 this splitting mode has a small positive eigen-
value. This mode then corresponds to two N = 1 strings
oscillating about their center of mass position. Again
if we consider the z direction we obtain traveling waves
along the string. Similar waves were discussed for coin-
cident vortices in [13]. Table III gives the eigenvalues of
the splitting modes for various P.

IV. DISCUSSION

For global strings of unit winding number, we have
found a bound mode with zero angular momentum which,
when quantized, corresponds to a bound Higgs particle.
The interaction terms in the Lagrangian, however, give
a vertex for the Higgs boson to decay to two Goldstone
bosons, with a decay rate I mH. A Higgs boson occurs
as a resonance in the scattering of two Goldstone bosons
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at a center of mass energy mH. Similarly, the Higgs bo-
son trapped on the string will be seen as a resonance at
a center of mass energy of approximately 0.81mH. In-
deed, in a strongly coupled theory, the state could only
be seen as a very broad resonance, rather like the cr in
7r7r scattering.

For local strings we have found a bound coupled Higgs-
gauge boson for P ( 1.5 (and possibly for higher values of
P) and for P ( 8 we can confirm the existence of a bound
gauge boson in 3+1 dimensions. There are vertices for a
Higgs boson to decay to gauge bosons, but for the bound
modes this cannot occur due to energy conservation. So
for U(1) cosmic strings, there are bound modes for the
above P ranges. Populations of these bound states could
have interesting effects: If they are truly stable, they
could alter the equation of state of the string, adding
to the mass density and subtracting from the tension.
However, in a realistic model it is rather unlikely that
the string fields will not be coupled to light fields, which
offer a decay route to the bound states.

Global strings possess a condensed matter analogue in
the Ginzburg-Pitaevski (GP) theory [14,15] of superfluid
helium II. In the GP theory the free energy of the con-
densate is given by

where g is the condensate wave function, which for sta-
tionary superfluid has Idol = p, /m4 ——n/P, where p,
is the superfluid density and m4 is the mass of a helium
atom. The equation of motion is first order in time, com-
mensurate with the nonrelativistic nature of the system:

There exists an extremum of the free energy of the form
f(r)e' where f(r) is the same as in Sec. II. This so-
lution decribes a vortex in the superfluid in which the
superfluid flows at velocity v, = SN/m4r about a line
along the z axis, where the superfluid density is zero.
This is analogous to the global cosmic string. Unfortu-

I

nately, we cannot rely too heavily on this description of
vortices in helium II, because the core size is of the same
order as the interatomic spacing —the theory is strongly
coupled. It is nevertheless interesting to expand about
the vortex solution to find the spectrum of states in the
vortex background. To make contact with the dimen-
sionless version of the perturbation matrix M of Sec. II,
it is convenient to scale all distances in units of the corre-
lation length ( = gh2/2m4n, and to use a dimensionless
field y = @gP/o. . Then for perturbations 8y we find

Thus the energy eigenvalues in the matrix background of
states with momentum hk, /( along the string are

Of particular interest is the spectrum of bound states at
0.81, which we believe has not been convincingly

established before in helium II vortices. These are not
the "bound" states found by Pitaevski [16], which are
modes with m = 1 associated with the translation of the
vortex as a whole. What we are discussing is a zere an-
gular momentum oscillation of the size of the vortex, a
"sausage" mode. Bound states at angular momentum 0
and 2 have been reported by Grant [17], but the accu-
racy of the numerics is open to question, for both states
were found very close to threshold (~ = 1). We find no
evidence of bound states at m = 2, and, at m = 0, u is
approximately 20% below threshold.

These bound modes may be observable as a resonance
in the scattering of phonons or second sound off the core
of the vortex, but in the light of the comments above
about the applicability of GP theory to such a vortex,
this may not be observable.

The Abelian-Higgs model also has a condensed matter
analogue in the Ginzburg-Landau (GL) theory [18] of su-
perconductivity. It has been shown that there is a range
of conditions for which GL theory is applicable [19].

In GI theory the free energy is given by

h2

2

where g is the condensate wave function and 8 is the magnetic field. For the condensate in the absence of magnetic
fields Idol = n/P. There are two length scales to use in constructing a dimensionless free energy functional, the
correlation length ( and the penetration depth A = /Pm/4e2pon. The Ginzburg-Landau parameter is defined as the
ratio r. = A/(. Defining a dimensionless gauge field v; = 2eAA;/5, we find

We see that the Ginzburg-Landau parameter is analogous to gP/2, where P is the ratio of scalar to gauge couplings
used earlier. This gives the same perturbation matrix M (and M ), up to an overall scale factor, and so the energy
eigenvalues of the states in the superconductor vortex background are

1
a(Idol A )((u + k, ).
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The bound modes on the string exist for a range of v. Converting the P limits into v. gives that for v, ( i/3/2 there are
bound modes of type (a) (coupled Higgs-vector modes), while for all r there are bound modes of type (b) (longitudinal
gauge field modes). The type (a) modes are "sausage" modes such as those of the global string: They are coupled, in
phase, zero angular momentum oscillations in the sizes of the Higgs and gauge field cores.

Again, the observability of such modes is an open question, complicated by the fact that superconductor vortices
are already known to have quasiparticle bound states [20].
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