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Classical splitting of fundamental strings
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We find exact solutions of the string equations of motion and constraints describing the classical
splitting of a string in two. We show that for the same Cauchy data the strings that split have a
smaller action than the string without splitting. This phenomenon is already present in 8at space-
time. The mass, energy, and momentum carried out by the strings are computed. We show that the
splitting solution describes a natural decay process of one string of mass M into two strings with
a smaller total mass and some kinetic energy. The standard nonsplitting solution is contained as
a particular case. We also describe the splitting of a closed string in the background of a singular
gravitational plane wave, and show how the presence of the strong gravitational field increases
(and amplifies by an overall factor) the negative difference between the action of the splitting and
nonsplit ting solutions.

PACS number(s): 11.25.—w, 11.27.+d, 98.80.Cq

I. INTRODUCTION

A great amount of work has been devoted to string
theory in past years. However, very little attention has
been paid to the theory of fundamental strings as a clas-
sical theory. The interaction of strings through joining
and splitting has been mostly considered at the quan-
tum level, although self-intersections of classical cosmic
strings have been studied in [1], and the classical string
splitting for hadronic strings has been discussed in [2].
At the quantum level, the usual procedure to compute
the quantum string scattering amplitudes is based on the
evaluation of the correlation functions of vertex operators
of functionals, which are constructed out of a particular
type of solution of the classical string equations of mo-
tion and constraints: one in which the string propagates
without splitting and sweeping a world sheet that has
the topology of a cylinder or a strip [3]. In this paper,
we will show that in addition to these classical solutions
which are used to build vertex operators, there also exist
classical solutions in which the string splits. More pre-
cisely, let us consider as our classical action the Polyakov
action [4] (we set here 2n' = 1)

19 = — do d~g gg Gg~(X)0—X BsX, (1.1)
W'S
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where g g is the world sheet metric and G~~ is the back-
ground space-time metric. Since we are going to consider
classical solutions, both g b and G~~ have Lorentzian
signature. We will show that there exists stationary
points of S which correspond to a classical splitting of
one string in two. Moreover, we will show that for some
fixed Cauchy data X (0, 7p) and X (cr, wp), the solutions
corresponding to a string that splits in two, have smaller
action than the one in which the string does not split; i.e.,

the sum of the areas swept by the two pieces in which
the string splits is smaller than the area swept out by
the string that does not split. Of course, the existence of
difFerent kinds of solutions for the same Cauchy data is
due to the fact that the world sheet metric is not fixed by
any dynamical equation, and so we are &ee to choose it at
will. Indeed, if we enforce the conformal gauge globally
on our world sheet, we are left with a world sheet that
has the topology of a cylinder (for closed strings), and
therefore with a string that does not split. However,
nothing prevents us &om considering a different world
sheet topology, and the interesting point is that the so-
lutions so obtained describe strings that split and have
a smaller action than the string that does not split. In
order to show explicit solutions of this type, we give here
some interesting examples, saving a more general discus-
sion for future work. We will consider first an example in
flat space-time, to show how the phenomenon of smaller
action for the string that splits is already present in this
case. Second, we will consider a closed string moving in
the background given by a singular plane wave, and show
how the presence of a strong gravitational field. increases
and ampli fies the negative difFerence between the action
for the string that splits and the action for the string that
does not split. In fact, such a difference is amplified by
an overall factor and becomes infinitely negative at the
space-time singularity. The classical splitting string so-
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lution contains the standard (nonsplitting) solution as a
particular case. We also show that the splitting solution
describes a natural disintegration process of one string
of mass M decaying into two pieces of a smaller total
mass with some kinetic energy. In this sense, we want to
stress that the splitting string solutions which we obtain
are exact solutions of the O'Alambert equation (2.4) and
constraints (2.5) (it must be noticed that c) X and c)2X
exhibit equal Dirac b singular terms for each of the two
pieces in which the string splits).

It is also possible to construct string solutions where
one string splits into more than two pieces.

II. STB.ING SPLITTINC
IN FLAT SPACE-TIME

tions for each of the functions X&+~. Since we want to
describe a closed string splitting into two closed strings,
the appropriate boundary conditions are the periodicity
conditions

x(~)(~+&~,T) = x(~)((J,T) Q = I II III, (2.6)

where

I = 2~ &II = o.p &III = 2~ —O. (2.7)

X(')(0, o) = X'(')(, ) = X(')(2, ). (2 8)

Of course, for the splitting to be possible, the string
configuration X( ) (0', 7) with which we start must satisfy
the consistency condition

Let us consider a closed string X(rT, 7) moving in a
D-dimensional Hat Minkowski space-time. In order to
describe a string that splits, we choose a world sheet JUf

with the topology of a pant, and call (op, 7p) the point at
which the string breaks into two pieces. To construct a
solution for the string with this world sheet topology, we
consider in ~ the three regions I, II, and III given by

X )(o., w) = ) X( )(r) exp i n0. ~,
. 2zr

A~
(2 9)

The general solution of Eqs. (2.4) with the periodic
boundary conditions (2.6) is

I = ((0', r): 0 ( 0' ( 2zr, r; ( 7 ( 7'p),

II = ((0., 7.):0 ( 0' ( 0'p, Tp ( T ( tf j,
III—:((0' 7.):0'p ( CT ( 27r 7 ( 7f ),

(2.1)
and

~(» + „(» (2.1o)

and impose the continuity of the dynamical variables
X(o, w) and X(O, T') at the splitting world sheet time

X„)(7)= A(+) exp
~

i nw
~
+ B( —) exp

~

i n7
. 2zr f 2zr.

r

(i)( )
X (cT, 7'p) if 0 ( 0' ( op,
X( )(rT, Tp) if Op ( rr ( 2zr,

(2.2)

(i)( )
X ( T0p) if 0(0'(Op,
X (0') 'Tp) if 0'p ( rT ( 2' ~

(2.3)

In each of the regions we are in the conformal gauge.
Thus the equation of motion and the string constraints
read the same for the three functions X(+)(o., r), with
Z = I, II, III:

for n g 0, (2.11)

where J' = I, II, III as defined above.
Now, in order to construct a solution of the equations

of motion and constraints corresponding to a string that
splits, we begin with a function X( )(0, v) that satisfies
Eqs. (2.4) and the condition (2.8) at v. = ~p, and then we
construct X( ~ and X( ~ by determining their Fourier
coefficients X (w) and X (w) through the matching(II) (III)

conditions (2.2) and (2.3). Thus, from Eqs. (2.9), (2.2),
and (2.3) we obtain

(o.' —a.')x(~) = o, (2.4)
] ~ma'o

x(")(7p) = i ) x( )(~ )mOp —2mnm= —~

(x(~) + x'(~))' = o. (2.5)

(We shall use in this paper the symbol Q to label the
world-sheet regions I, II, and III.)

However, we must impose different boundary condi- and

1 —e™o
m:—op

(2.12)

X (7p) = —z exp
I

z no'p
I ).2zr —o.p ) m(2zr —op) —27m

in 1 —e'
)(Tp) = —i exp

~

—i nop
~ ) x(') (~,),27r —0-p ) m(2~ —Op) —2zrn ™

m= —oo

(2.13)
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so that Eqs. (2.10), (2.11), and their derivatives at w =
determine the constant coefficients (q, p, A, B„)~iil

and (q, p, A, B ) ~ l in terms of the initial data
(q, p, A„,B )~ l. In this way we obtain the solutions for
the string pieces II and III &om a general string solution
I. This last must satisfy the consistency condition (2.8).

It is important also to notice that the constraints
(2.5) are also satisfied by the strings X~ l and X~
The matching conditions (2.2) and (2.3) imply that both
X(a, w) and X'(a., ~) are continuous at 7 = Tp. Therefore

(2.is)

Next, to obtain X~ &(a, w), Yl l(a, w), X~iiil(a, r), and
Y~ l (a, 'r), we observe that, &om Eqs. (2.15) and (2.9),

T~'l(0) = T,'"(o) = o,

(2.19)
T~'l(0) = T"&(0) = M,

and

(X +X' ) (a ~) =(X' +X' ) (rT)rp) =0,
(2.14)

(X +X' ) (a. r) =(X~l+X'~&) (a 7-) =0

Then, taking into account the equation of motion (2.4),
it follows that the constraints hold for all 7 & vp.

Let us now consider a particular example given by a
circular string that winds r times upon itself:

x~'l(o) = Y„~'l(o) = o,

x&'&(0) = x",'(o) = -M,

Y„l &(0) = —Y~ (0) = -- —M,

Xl l(0) = Y„l l(0) = 0 for n g +r.

(2.20)

Therefore, the matching equations (2.12) and (2.13) read,
in this case,

()) MX' ' = —sin rw cos ro,r

() MX' ' = —sinr7. sinro,r
X' ~ = 0 for i = 3, . . . , D —1,

which satisfy

(2.i5)

xl"l(0) = o = Y„~"l(0),

X~ l(0) = 0 = Y„~ l(0)

x~"l(o) = My„(,),
Y„~"l(0) = M@„(~.),

(2.2i)

(2.22)

and

x~'l(, o) = o = Y~'l(, o) = T~'&(0)

X (a, 0) = M cos ra, .

Yl l(a, o) = M sin@a, T~ l(0) = M.

(2.i6)

(2.17)

X~ l(0) = M exp
~

—i
27r

2a —crp

Y„~ l(0) = —M exp
~

—iIII 2m

2vr —a o

roosinroo+ i2mn(1 —cosrop)
4' 2n~ —r 2o2.

0

It is necessary to check that Eqs. (2.15) are a solution
of Eq. (2.4) and satisfy the constraints (2.5).

In order to obtain a Sp/itting string solution, let us
choose without loss of generality rp ——0. [One can always
replace v by w —7p in Eqs. (2.15).j Then the splitting
consistency condition(2. 8) is trivially satisfied because at
7 = 0 the string (2.15) collapses to a point.

For the string coordinate T, the matching conditions
(2.2) and (2.3) yield

(2.23)
r pro(l —cos roo) —i2vrn sin.rap.

@-(~o) =—
0

Computing now the two sets of constants
(q, p, A„,B )~rid and (q, p, A, B„)~iii& &om expressions
(2.10) and (2.11), we obtain the time-dependent Fourier
coefficients X (w), Y„(w), X~ (7), and Y~ (~).
Finally the two pieces in which the string splits read

sin ro 0 a.o P„(a.p) . 2~ (.2~
X~ l(a', r) = Mw + MJ )s—in n7 exp

~

i—na-
rop 27r n ao ) ( a.o ) '

ngp

1 —cos'rap ap 'tP (ap) . 27r
Y& l(~, ~) =M~ + M —) sin n7 exp

l
i—na-

rcT0 27r n rTp g a'p )ngp

(2.24)
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(III) sin ro.p 2' —o po., ~ = —M~ +r (27r —crp) 27r

1 cos rao 27I op
r(27r —o.o) 27r

l27r
Ar f (27r —op) exP

~

i n(a —op)
27l —o p )

r. 27r i
ALT @*(27r—a p) exp

~

i 77(a —op)
~

. (2.25)
27r —cro )

1
(t (op) m —(b„„+8„( „)),

0-(ao) .~,.—2(~-+ ~-i--))

Therefore,

(2.26)

X(~~)(a 7) ——sinrr cosrcr = X (a, r),
M I

apm2~ r
(2.27)

&(~r) (a, 7-) ——sin rr sin ra = Y (o, r).M
CTp ~2' r

I et us now discuss the properties of the splitting string
solution given by Eqs. (2.15), (2.24), and (2.25). First,
we notice that, for n g 0 and op ~ 27r,

(E, &x, &&)(') = M(1, O, O),

(E p ~ )
($$) o p sin rao 1 —cos rcrp

X) Y
( 27r 27l r 27rr

r
& )(in) M 2~ —ao»»ao

X) Y
27rr

1 —cos rcTp l
27rr

From Eqs. (2.30) we see that the energy momentum of
the string before and after the splitting is conserved, as
it should be. The masses of the three strings are given
by

MI ——M,

Similarly for op —+ 0,
X( )(a, r) X( )(o, r),

crp mp

(2.28)

M
M

27r

M
MIII =—

27r

4 . 2ropo' ——sinr2 2'
4 . 2 rop

(27r —o p) 2 ——sinr2 2'

(2.31)

op J—+0 Again, we see that

My( —Mg,
c7p ~2''

(2.32)

Myra
—My.

harp

+0

From Eqs. (2.31) it also follows that

(2.33)MI & MII+ MIII.

This tells us that the classical splitting string solution
describes a natural disintegration process, in which a
string of mass M decays into two pieces with a smaller
total mass and some kinetic energy, which depends on
the point where the splitting takes place. Furthermore,
one can see in Eqs. (2.30), (2.24), and (2.25) that the two
outgoing pieces II and III go away one &om each other
with opposite momenta.

From Eqs. (2.32) it follows that the kinetic energy
A~

E(~) = — d~T(~),
7T 0

p(&) ~
g X(z)

271 0

p(&) ~
d y (z)

Zvr

(2.34)K(ao) = Mr —(Mn+ Mm)

(2 29) vanishes when

(2.35)rop ——2lm, l = 0, 1, . . . , r.

This corresponds to cutting the initial string X( ) into
two pieces X( ) and X( ) which contain an integer num-
ber of turns: l and r —l, respectively. In this case, Eqs.

Then, using the Fourier series expansions (2.15), (2.24),
and (2.25) we obtain

Thus the splitting string solution given by Eqs. (2.24)
and (2.25) gives the solution X( ) (o, r) in the limits o p ~
2a and op M 0 as it should be. In this sense, the splitting
solution generalizes the standard string solution without
splitting. Moreover, it can be checked from Eqs. (2.24)
and (2.25) that the two string pieces II and III satisfy
the (homogeneous) D'Alambert equation (2.4) and the
constraints (2.5). It should be noticed that X(+) and
Y( ) are continuous periodic functions with periods op
and 2m —up, their 6rst derivatives with respect to o. and
w have step discontinuities, and their second derivatives
exhibit Dirac delta singularities. These singularities sit
on the world sheet characteristics through the splitting
point (op, rp). However, the Dirac delta terms in the
expressions for the second derivatives with respect to o.

and w are equal and cancel in the d'Alambertian.
The energy and momentum carried out by each of the

strings g= I, II, and III is given by
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(2.30) tell us that the momentum of the two pieces van-
ishes, and moreover the series (2.24) and (2.25) sum up
to X~ & (o, 7 ) and Y~ & (o, ~), respectively. That is, cutting
the string (2.15) into two pieces which contain an integer
number of circumferences, is equivalent to not cutting it
at all. (In other words, a circular string X~I& wound r
times is equivalent to two concentric strings X~ ~ and
X~III& wound I and r —I times, respectively. ) And more
generally, a circular string with r = n turns is equivalent
to r strings with n = 1 turn each. Of course, this is due
to the fact that, in this case, the periodicity conditions
(2.6) that we are enforcing for w ) 0 are already present
In X~I&(o, r) for 7 ( 0.

From Eqs. (2.33), (2.34), and (2.35) it follows that
in each of the r equal windings in 0. described by the
string I, there is a splitting point o.p, i = 1, 2, . . . , r that
maximizes the kinetic energy of the pieces II and III.
That is, for each of the turns of the string upon itself,
there is an intermediate point where the splitting of the
string is most energetically favorable.

Also &om Eq. (2.31) we see that the kinetic energy
K(o'0) of the pieces II and III decreases with the growing
of r. In face, K(op) M 0 for r ~ oo and reaches its
maximum value for r = 1 and op ——m. The value of this
maximum kinetic energy is

x dw sin
~

n—7
p CTp

(2.40)

For large w~ and n g 0,

. , (2~
d~ sin

~

—n7.

)
(2.41)

On the other hand,

): I&-(oo)l'+ I@-(oo)l' =1—,.»n'

(2.42)

Thus, for large ry,

] Tf C7p

SII = — d~ do((c& X'
) + (8 Y &) )

7t Q p

= M' —' ) .ll&-(oo) I'+ I@-(~o)I'I

4)
1 —— 0.229M. (2.36)

Op
Syg

——M ~y —1—2'
4 . , rood

sin (2.43)

So, the most energetically favorable case correspond to a
string with r = 1, which cuts into to equally long pieces.
This also indicates that for a string with r & 1 the most
energetically favorable process is not the breaking of the
string into two pieces, but the breaking into r pieces at
the midpoints of each winding. Thus the fundamental
case to be considered is that of a string with r = 1 that
cuts into two pieces.

Let us now discuss the string action. Let Sy be the area
swept by the classical solution X& ~ that does not split,
when it evolves in w &om 0 to vy, and Syj, Sjyy the areas
swept by the two pieces of the splitting string evolving
for the same w interval. We are interested in comparing
Sj with Sly + Syph', for long enough evolution time, i.e. ,
vy )) 2'.

In Hat space-time the string action (1.1) takes the form

TX 2'
S = d~ do( —X X'~+ X' X'") (2.37)

2Ã Q p

that using the constraints (2.5), can be rewritten as

Notice that when o.p + 2m, Spy ~ Sy. In addition, the
use of the large wy approximation deserves the following
comment: one has to wait long enough time to appreciate
the difference between the areas swept by the string I,
and the strings II and III. In fact, as can be easily seen
&om Eqs. (2.24) and (2.25), at first order in the Taylor
expansion in ~ around w = 0, X~ ~, X~ &, and X~
coincide, and, therefore, when wy -+ 0,

1—(SI —SII —SIII) 0 ~

~f ~r -+0 (2.44)

Let us come back to the comparison between Sy and
Spy + Syph', for large 7y. First, the behavior of Syph' is
obtained from Eq. (2.43) through the replacement op —+
2'll —0 p.

27l —Oo 1 . 2 POpl'
Syph' M ~y 1— s1n

2m. r 2 (2m —O.o) 2
( 2

(2.45)

1 2'
S = — d~ do. (c& X)'.

7t Q p

Now for the string I, using Eq. (2.15) we have

(2.38)
Then

Sr& + Sj:rr

1
SI = — d'r do M sIn r'r ~ M 7 f (7f ~ oo).

7l p p

(2.39)

M 7.
y 1—2

2 +
'rl r (oo 27' —oo )

, fr~. 1

l
sin

&2)
(2.46)

For the string II, using Eqs. (2.18) and (2.24) we obtain and &om Eqs. (2.39) and (2.46) we obtain
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&~ = (~11 + ~111) —~1

—M 7f —+ Sln
err I

o'p 2m —op) 2
(2.47)

which is a negative quantity. Therefore, the string that
splits sweeps a smaller area than the string that does not
split. From Eq. (2.47) it also follows that the decrease
in area ~ES~ vanishes for rcrp ——2l7r. This corresponds to
the splitting into two pieces containing an integer number
of circumferences, which is equivalent to nonsplit ting.

For the fundamental case r = 1, the relative decrease
in area is

(
—c) +8 )X' =0; j=4, . . . , D —1. (3.4)

Finally, the longitudinal coordinate V is determined
through the constraints

which yield

G~~ a~X"O~ X~ = 0, (3.5)

which can be solved by Fourier expanding X(o., r) and
Y(o, r) in o Then, the r-dependent Fourier coefficients
X„(7) and Y (w) express in terms of Bessel functions.

The remaining transverse coordinates j = 4, . . . , D —1
satisfy the fIat space-time equations

~&s,
~

'g1 op — = — —+ S111 ~')
(2.48)

D —1

pc) V = 2 ) c) X~c) Xi,

(3.6)
w hich reaches its maximum value for 0 0

4
gg „——— 0.405.

7r
(2.49)

p8 V= —(X —Y )+ ) ((8 X') +(8 A')2).

Thus, for the string con6guration that we have chosen
[Eq. (2.15)] the area swept by the strings that splits into
two equally long pieces reduces to 60%%up of the area swept
by the string that does not split.

Let us describe now the splitting solution. We consider
a generic string configuration evolving in the region of
negative w, i.e. , before the string reaches the singularity
at U=O, and splitting at a certain point (o p, Tp) with
Tp ( 0. We choose for the three strings Q = I, II, III, a
solution of the form

III. STRING SPLITTING IN A SINGULAR
PLANE %AVE BACKGROUND

We discuss now the splitting solution for a closed
string in a strong gravitational field. We consider a D-
dimensional singular gravitational plane wave described
by the metric

U(&)

X = ) X( )(7)exp~ i no
E ~~

Y(~) = 0,
X +) = 0, j = 4, . . . , D —1,

(3.7)

ds = (X —Y )dU —dU dV + ) (dX~), (3.1) with the string coordinate V determined through the con-
straints

U = pv. . (3.2)

In this gauge the string equations for X and Y reduce to
the linear equations

where U = X —X, and V = X + X are light cone
coordinates, X Xy X Yy and n is a constant.
This space-time is sourceless and has curvature on the
null plane U = 0. In this space-time, the classical string
equations of motion and constraints have been solved for
the ordinary nonsplitting string in [5]. In this metric, the
equation for U is simply 0 U = 0. This allows us to take
the light cone gauge exactly for all

pa. V(~) = —,(X(»)2 + (O.X(~))' g (a.X(»)'
7-

(3 8)

2

X +"(~) /2mnl

J

X(~) = 0,7-2 (3.9)

which can be written in the form

The Fourier coefficients X„(w) are solutions of the
equations

—0 + 0 + —X = 0,

—c9 +8 ——iY=O,

(3.3)

X„(r)= C„Q-rJ „- ~n~~
A~

+D( )Q ~J — ~n~7 (n g 0),
tt'

A~ )
X(X)( ) ~(X)( )1/2 — + D(&)( )1/2+ (3 1())
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where J „and J„are Bessel functions with the index and DN in the form(I) ~

1v= —+a
4

(3.ii)

and +=I,II,III as defined above.
As in the Bat space-time case, the functions

(U, V, X)(irl and (U, V, A)(ilail which describe the evolu-
tion of strings II and III, are 6xed by the initial string
(U, V, X)~ri, and the matching conditions (2.2) and (2.3).
However, since we are working now in the light cone
gauge, the following two remarks are in order. First, the
choice of the light cone gauge for string I, and the match-
ing conditions (2.2) and (2.3) for U, imply that the light
cone gauge holds for the pieces II and III as well, as stated
in Eqs. (3.7). Second, the string coordinates V(iil and
V&riil are determined through the constraints (3.8), in-
stead of through the matching conditions (2.2) and (2.3).
However, this is consistent because the matching condi-
tions for the string coordinate X, together with the con-
straints (2.2) and (2.3), imply that V~+l (J=I,II,III) also
satisfy the matching conditions (2.2) and (2.3).

I et us choose now a speci6c initial con6guration for
the string coordinate X( ) given by

C( l = C „= g—r—pJ„( r—rp),(I) k

D~ l = D~ i = g —rpJ—„( r~p—),(I) k

C('l = D~'l = O for n p kr.

(3.14)

This initial string configuration (U, V, X)(il that we have
chosen must satisfy the splitting consistency condition
(2.8). For U [Eq.(3.2)] this condition is trivially satisfied.
On the other hand, Eqs. (3.12) and (3.13) yield

f„(rp) = 0. (3.i5)

x('l(, ,) = o (3.16)

p8 V('l (o, r) = k f„(~)—f„(~)sin(2ro),

and so the condition (2.8) holds for the X string coordi-
nate. Finally, using Eqs. (3.12) and (3.15) in the con-
straints (3.8), we obtain

where

X( l = f„(r) co—s ro, (3.12)
pa. v~'l(~, rp) = O,

(3.iv)

f„(7) = rgb'rp[J„( re)J —~( rr) —J—„( rrp) J„(rr—)].
(3.13)

This describes a straight string along the X axis. Ac-

cording to Eq. (3.10) we have chosen the constants C„(I)

i.e., V~ l(o, 7p) is independent of o and also satisfies the
consistency condition (2.8).

We can determine now the constants (C„,D ) and(II) (II)

(C„,D„)from the initial data (C,D„),by using
the matching conditions (2.2) and (2.3). These are

(II) sin vm, ,1&2+„sinro p—(—7p)P~ ' rop

( 2~
C~ 'l = K~~ J„——lnlr y„(~ ) for n p O,

0'p

Sln P7t &~2 Sin ro pD 7p
PK ' rop

D~ = KQ rpJ „———in[—rp P„(o.p) for n P 0,
op

(3.18)

and

(III) sin P7l 1(2+ sin ro p|p
= —K t,

—+o)P~ ' rOp

C = K exp
l

i n—op
l Q rp J„— ln—lrp f'(2m —Op) for n P 0,

270 —op ) ( 2K —Op )

(III) sin PÃ ~y2 & sin ro p
Dp =K Tp

P7i rop

(
Inly y:(2~ —~p) f»neo

27K —0 p

(3.ig)
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Hence, the Fourier expansions (3.7) for the X coordinates of strings II and III read

cr 1 (2vr 2vr l t' 2mX""(or) =Xo~"(r)+ 'I ). +
I

—lnlr —lnl« ~4' (~o)exp' i
2m )n/ ( oo oo ) ),

and

(3.20)

'k ) I „~ JnJr, JnJrp ~
g(2~ —op)

[n[
" 2~ —op

' 2~ —op )go

t'. 2m
x exp

~

i n(o —o.o) I( 27r —rrp )
(3.21)

where

E (u, v) = Quv[J (—v) J „(—u) —J „(—v) J„(—u)] (3.22)

V V-
Sin P'7f' Sln TCTp Tp 7

X,' '(r) = -X,' '(r) = k yrpr
p7I poo '~ r ) (ro)

(3.23)

Let us discuss now the properties of the splitting string
solution given by (3.20) and (3.21). First, we notice that,
from Eq. (2.26),

(3.27)

S = d7 do (X —Y )8 UB U —0 UB V
WS

a a

D—1

+ ) a.x'a x' j.i=2

X ( , o)rX i(o', r).
np —+p

(3.24) In the light cone gauge, using the constraints (3.8) and
for the particular string configuration (3.7), the action for
the three strings takes the form

That is, the splitting solution with strings II and III
contains the one string nonsplitting solution as a partic-
ular case. In addition, for

1 Tf A

Sg = — dr do(0 X~+&),
Tp p

(3.28)

Top ——2lvr; l = 1, . . . , T —1 (3.25)

where J' =I,II,III. Then, using Eqs. (3.12), (3.20), and
(3.22), we have

the Fourier series (3.20) and (3.21) sum up to X ~ i(o, r).
Thus again, cutting the string by an integer number of
windings is equivalent to not cutting it at all.

Let us study now the string action. We want to com-
pare the area Sp swept by the string without splitting,
with the areas Spy and Sjyi swept by the strings II and
III. We consider the evolution of the three strings for the
same v interval

and

Tf
Sg = k dr F„(rr, rro)

Tp

(3.29)

xl&„(op)l (3.30)

2

Srr = k dr ).+ Inlr lnlro
Op C7p

7pCw&wy &0 (3.26)

in the ingoing region, where the string has not yet reached
the singularity at w = 0. We shall compute the action
for a long v interval, i.e., wf —wp && 2m, as we did in fiat
space-time. However, in this case we shall implement
this approximation by letting 7p M —oo, and allowing
7.

y
—+ 0 in order to incorporate the efFect of the space-

time singularity at w = 0.
In the space-time (3.1) the string action is

From Eq. (2.27) we see that Sg -+ Sy when rro ~ 2x as
it should be.

We shall do the comparison of the two areas SI and
Spy+ SyyI in two regimes: Grst for o.=0 which corresponds
to Hat space-time, and then for o. & 4 which corresponds
to a strong gravitational wave.

For n=O, the index v is 2 and the Bessel functions
reduce to circular functions:
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(2 2 I 2 . t'2
+1/2 Inlr Inlrp = —sin Inl (r —rp)

~
o'p o'p ) ~ ( o'p

(3.31)

Then, for rp M —oo, Eqs. (3.29) and (3.30) yield

(~—p) 4k 2k2
S = dr sin r(r —rp) (rf —rp)I 7r2 ?r2

Tp

(3.32)

and

( ll) 4k2 ~ . 2 ~2vr

)
,P = 0. dr ) sin Inl (r rp)

i.e., it vanishes not only for an integer number of windings
T0 Q —2lm, E = 0, 1.. . , T, but also for a half-integer num-
ber of windings. This is so because the barycentric term
[Eq. (3.23)] vanish for an integer or half-integer number
of windings. However, the Fourier expansions (3.20) and
(3.21) sum up to X( ) (0, r) for an integer number of wind-
ings, but do not for a half-integer number of windings.
This happens here because when op corresponds to a half-
integer number of windings, we have a straight string
configuration with X'(0, rp) = X'(op, rp) = 0. Hence the
initial closed string may split into two open strings. Thus,
in this case the strings II and III are open strings that
stay together and change their respective shapes com-
pared with string I.

For the fundamental case T=l, the relative decrease in
area is

&I&-(op)l'
2k2 CTp

, (rf —«)—) I@-(op) I

ngp
(3.33)

(
—p) IASgl 1 1 1

(op) = = — —+ sin op~
Sl r 7l (0'p 27K —op)

2k2 op sin2rcrp 2 sin rop
rf rp 1+

2TO p T —
CTQ

(~—p) 2k 27l —0'p S1I12ro p
rn vr2 f 2~ 2r(27r —0.

2 sin TcTp

r (2m —op)
(3.34)

AS = = (Sqq+ Srqq) —Sq

, I

—+
7l r (0'p 2' —0'p )

(a=p)

(3.35)

In addition, replacing 0Q ~ 2m —o.p, we have

'gl, max = 0.287. (3.38)

Notice that in this case op ——7r gives a minimum with
gq(m)=0, corresponding to the splitting of the closed
string into two open strings.

Let us turn now to the discussion of the regime o. & 4
(v ) 1). In this case, the integral (3.29) diverges in the
limit 7f ~ 0 . Thus, for v & 1 the behavior of Sy for
wf —+ 0 is dominated by the upper limit in the integral
(3.29). That is, the most important contribution to Sr
comes &om the region near the singularity. It is in this
sense that we talk of a strong enough gravitational wave
for a & 4. For wf ~ 0 we have

Sg k J'( rrp)—I'2 (1 —v) (2 —2lj)r'"-' ry )

(3.37)

which has two symmetric maxima at the points O.p
——1.291

and Op = 2' —1.291 with a height

which is a negative quantity. Again, the string that splits
has smaller action than the nonsplitting one. However,
the result (3.35) is different from (2.47), because we have
here a difFerent string con6guration. In particular, the
action difference (3.35) vanishes in the present case for J„'(—rr, ) g O. (3.4o)

where w~ is an intermediate point in the interval 7Q( 7f ( 0 and we assume that 7p is such that

rop ——(2s+ 1)vr, s = 0, 1.. . , (3.36) Let us consider the series in the integrand of Eq.
(3.30). The terms with lnrl (( 1 behave as

(3.41)

For Inrl )1, and small enough
I
—rl( i.e., lnl )) 1), the terms in the series of Eq. (3.30) are very much suppressed

because for n + oo, IP„(op) I2 1/n2. Therefore, the behavior of the series for r -+ 0 is
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~-'(-:—:-")).+- —Inly In]« I+-(«) I' -, — (—«) —&' '"),„, I+-(&o)I'.(««) l~ 1 —& («) (3.42)

Then, for v &1 and v.p ~ 0 the behavior of Slp is dominated by the upper limit of the integral. So, inserting Eq.
(3.42) into Eq. (3.30) and taking into account Eq. (3.39) we get

.J:(—::i-i-)) .. . I&-(«) I'S~.
I «) J2( «—o)

(3.43)

Now we take the long r interval approximation by doing « ~ —oo in (3.43). Thus

op oo
SII

(2vr )
t
„)"-'-*(-'—:I-I"--;.--.)
n cos —rvo —

2 p —
4

(3.44)

The factor

cos —P7 0 ——v—2 7r 7r

2 4
(3.45)

comes from the reciprocal of the Bessel functions J (—r«) for « ~ —oo, entering in (3.43), and which was assumed
not to vanish. In particular we can choose « in such a way that the factor (3.45) is 1. This yields an upper bound
estimate of the action SyI of the form

t' ~ l
"

I&-(«) I'S~
(2~) ~ ( [n))

(3.46)

and for string III we have

2n -
q/n/)

/P„(2vr —«)/ Sg. (3.47)

Notice that this upper bound becomes exact for « = 0 and pro ——2vr (the nonsplitting solution).
In order to get a better insight on the behavior of AS, we choose o. = 2 (v = z), in which case, the series (3.46)

and (3.47) can be summed in closed form. For n=2 we have

2 sin Po p sin Po 0 2 sin Po 0+1+ +r2o. p2 6 Top

(~—2) o'o t slI1 2T0o'I+
2 ( 2

8 sin —ro
T O

Sj.
0

(3.48)

Thus

/S(~=2) (S( =2) + S( =2) q S( =2)

1 ~l 1 ) . 2 sin rao—+
~

sin Pop+
7rr ~«2' —oo) 6

4 t' I—+ I

' S
7I r ( CTo 27l 0'o )

(349)

For the fundamental case r = 1, the action difFerence takes the form

(. ,)LS = ——— —+ o 0 — + l
sin S1,I)6 ~ ( «2~ —g'o 7l

I
«27l' —vo) 2

(3.50)

which is a negative quantity for all values of op in the
interval [0,27r]. Thus, in the background of the singu-
lar gravitational plane wave (n = 2), the action of the
splitting solution is smaller than the action of the non-
splitting one. Moreover, this efFect is magni6ed by an

overall divergent wf dependent factor when we approach
the singularity at w = 0, because the action SI is
multiplied by such a factor in this limit [Eq. (3.39)]. In
addition, the efFect of smaller action for the splitting so-
lution is also increased in relative terms, as a consequence
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of the new terms appearing in (3.50). This is easily seen
in terms of the lower bound that we have for the relative
decrease in area. According to (3.50),

(a=2)
(~p) = (. ,)»(~p)

s,'-,-'~
(3.5I)

where

i(i
h(crp) =

I, p

4&i
+—I—

7r ( 0'p

+ sin op2' —o.p ) 6

+ sin
2vr —

harp ) 2
(3.52)

The lower bound h(op) has its maximum at op ——~ with
a height 6 „=0.811. Therefore

(3.53)

which is much larger than the relative decrease in area
for the same string configuration in Bat space-time, given
in (3.38).

IV. CONCLUDING REMARKS

In this paper we have explored a new type of solutions
of the string equations of motion and constraints. We are
mainly thinking in the theory of fundamental strings. We
show that the solutions in which the string splits into two
are perfectly natural within the classical theory of strings
based on the Polyakov action. There is no need of extra
interactions; i.e., extra terms in the action to produce
the splitting. The only di8'erence with the nonsplitting
solutions are the boundary conditions. In this sense the
choice of a splitting or a nonsplitting solution is somehow
similar to the choice between an open or closed string. Of
course, open and closed strings can be used to describe
difFerent physics and this can also be true for the splitting
and nonsplitting string solutions. In particular, these
solutions could be relevant for the description of cosmic
strings breaking.

The solutions that we have constructed describe the
splitting of strings as a natural decay process that takes
place in real (Lorentzian signature) space-time. This pro-
cess occurs at the classical level and this is natural be-
cause the string is an extended object. The splitting
solutions are already present in Bat space-time, and they
correspond to stationary points of the action (area) with
lower value than the nonsplitting strings. In order to
explore the eKect of a gravitational field on the split-
ting solutions, we have considered a gravitational singu-
lar plane wave background. In the case that we analyze,
the gravitational field produces an enhancement; of the
eKect of smaller area for the splitting solution. It would
be interesting to settle to what extent these results are
universal, and work in this direction is now in progress
by the present authors.

On the other hand, string splitting is usually con-
sidered and discussed within a quantum formulation,

namely, the Euclidean path integral functional approach
to the quantum string scattering amplitudes in the light-
cone gauge [7]. In this context, the stationary points of
the Euclidean action correspond to solutions of Dirich-
let or Neumann boundary value problems for elliptic op-
erators (Laplacians) on bordered Riemann surfaces [8];
i.e., the classical string equations of motion and con-
straints solve the boundary value problems for elliptic
operators with Dirichlet or Neumann boundary condi-
tions. Of course, these are diferent &om the solutions
considered in this paper, in which we solve the hyper-
bolic (Lorentzian) evolution equations for the Cauchy
data X (0', Tp) and X (o, 7p) with some fixed topology.
This topology should be viewed as enforced by the world—
sheet metric used to construct the D'Alambertian oper-
ator. Notice that quantum mechanically the initial data
X (O' Tp) and X (a, wp) cannot be given simultaneously.
Instead, one gives the initial and Anal string shapes to
compute a transition amplitude between them.

Although our splitting solutions are purely classical,
string splitting for massive strings is also present at the
quantum level. The relevant magnitude to be computed
in that case is the probability amplitude for such a pro-
cess. In fact, such probability has been computed in [6]
for Hat space-time. It would be very interesting to explore
the relationships between the classical splitting solutions
and the quantum probability for string disintegration,
and also the efFect of a gravitational field on such prob-
ability. The quantum probability amplitude for string
splitting in a singular plane wave will be discussed by
the present authors in a forthcoming paper.

We conclude with a final remark concerning the classi-
cal solutions of the string equations of motion in curved
space-times. It has been established (see, for instance, [9]
and references therein) that these solutions present a phe-
nomenon of inde6nitely string stretching near space-time
singularities, due to the absorption by the string of en-

ergy &om the background gravitational field. Of course,
there must be a mechanism that avoids this indefinite
string growing, and indeed the strings can radiate away
energy by emitting gravitons or other particlelike exci-
tations. However, another natural mechanism to avoid
string growing is string splitting, and it would be in-
teresting to elucidate its quantitative relevance to avoid
the indefinite stretching of strings in strong gravitational
fields.
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