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Cauge-independent trace anomaly for gravitons
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We show that the trace anomaly for gravitons calculated using the usual efFective action formal-
ism depends on the choice of gauge when the background spacetime is not a solution of the classical
equation of motion, that is, when o8' shell. We then use the gauge-independent Vilkovisky-DeWitt
effective action to restore gauge independence to the ofF-shell case. Additionally we explicitly eval-
uate trace anomalies for some ¹ phere background spacetimes.
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I. INTRODUCTION

The usual effective action, in general, depends on the
choice of quantum gauge fixing when the background field
is not a solution of the classical equations of motion, that
is, when the background is off shell [1]. This has posed
a problem in the use of the effective action formalism
to study, for example, the spontaneous compactification
of Kaluza-Klein spaces [2,3] (see [4] for additional refer-
ences). The same gauge dependence problem exists in
the calculation of the trace anomaly for gravitons [5] be-
cause both the background spacetime and the graviton
fields stem from the metric. When the background space-
time is not a solution of the Einstein equations, the trace
anomaly calculated &om the usual effective action may
depend on the gauge choice. We illustrate this explicitly
in Sec. II for the simple case of Einstein gravity with
cosmological constant in a fIat background.

To overcome the gauge dependence we use the
Vilkovisky-DeWitt (VD) efFective action formalism [6,7].
The VD formalism has been applied to spontaneous com-
pactification of Kaluza-Klein spaces and unique answers
which are independent of the choice of gauge have been
obtained [8—11]. Recently, it has also been used to study
two-dimensional (2D) quantum gravity [12] and even
gravity —grand unified theory (-GUT) unifications [13]. In
Sec. III we define the unique trace anomaly for gravitons
using the one-loop VD effective action. We evaluate this
VD trace anomaly for the case considered in Sec. II and
show that it is indeed independent of gauge choice.

For most gauges the VD effective action involves evalu-
ating the determinants or the ( functions of complicated

nonlocal operators. However, the calculation simplifies
when the Landau-DeWitt gauge is used. Since the VD
effective action is independent of gauge choice, one can
of course choose whatever gauge is convenient without
altering the final results. In this particular gauge the
operators become local, but remain nonminimal [14). In
a previous paper [15] we devised a method to evaluate
the ( functions (at argument 0) of nonzniniznal vectoz
and tensor operators on maximally symmetric spaces. In
Sec. IV we use this method to calculate the VD trace
anomalies for such background spaces. Explicit results
for %-spheres and Euclidean spaces of dimensions 4, 6,
8, and 10 are given. Finally, conclusions are given in Sec.
V.

II. GAUGE DEPENDENCE OF THE TRACE
ANOMALY

In this section we demonstrate the dependence of the
trace anomaly for gravitons on the quantum gauge choice.
To do so we consider the simple case of Einstein gravity
with a cosmological constant in a Hat background space-
time. The corresponding action is (in Euclidean signa-
ture)

S=— d xZ,

where

~g(B —2A)

[see Eqs. (72)—(74) for curvature conventions]. The met-
ric is split into its background and quantum parts:

(2)
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where h,
„

is the graviton field. To evaluate the trace
anomaly for gravitons, we expand the Lagrangian in pow-
ers of 6» keeping only the quadratic part:
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where h = h». Next, we introduce the gauge-fixing term and the corresponding ghost term. We choose a one-
parameter (n) family of covariant gauges:

ZGF: 41(bop )4 2 Ii p) (h'p g/g/ 2 b p) (4)

The corresponding ghost Lagrangian is

Zsi, = g„(—B')g„, (5)

where g and )gI& are vector ghosts. Putting the Lagrangians Eqs. (3)—(5) together, we have the quantum Lagrangian
for gravitons:

b,„„-(B' ——2X)h„„—-b
~

1 —
~ (—B') —W h

1 1 & 1 5

4 " " 4 g 2aj

+ h„„~1———
~

B Bph„p——h
~

1 ——
~
B„B„h„„+q„( B)g„—.(

2 ( o(j 2 ( aj (6)

We use (-function regularization to evaluate the trace anomaly. The ( function of an operator M is defined by

(M(s) =—) A ', (7)

where A's are the eigenvalues of the operator M. Thus we first have to find the eigenvalues of the operators acting
on h„„andon the ghost fields &om Eq. (6). To do so we rewrite this Lagrangian as

1
Zq —— @,0;~@~ +—g" ( .B)g„,—

2

where @;,i = 1, ... , 10, are the ten independent components of h„„.The eigenvalues of the matrix 0;~ are [16]

A1 —A2 —A3 —k —2A )

A4 ——As ———(k —2A),
2

As ——Ar = As ———(k —2o(A),=1 2-

(1 —n)k + 1/'(1 —n+ ng)k —2nA(1+ n)k~+ 4n A )20!

(1 —n) k —k/(1 —n + n~) k4 —2nA(1 + n) kg + 4n~Ag )20! ~

(10)

(12)

having been written in momentum space. Hence, the ( function for the graviton field Ii„ is

10

(s, (s) =) ) A,. ',

and the ( function for the ghost fields is,

(s~(s) =).(k') '

(14)

(15)

((0) = lim ) (ak + b)

d4k
d7. s —1&—~(aI' +6)

(2vr) 4 I'(s) ()

(17)

(Tp") = [( s (0) —2(,'sh(0)],
4

(16)

where V4 is the volume of the spacetime. (,'(0) can be
calculated as follows. For a general eigenvalue ak + b,
where a and 6 are constants,

Following the arguments similar to [5] and [17], for ex-
ample, it is easy to see that the trace anomaly for gravi-
tons is given by

Evaluating the k integral first and then the w integral,

v,
((0) = lim d7' ~' e

k-+o I'(s) o g4vra~ j
V4 I'(s —2) b= lim

4~o (4n-) 2 I'(s) a2

v, (1& t'b&'

(4 )' &» &-j

Using this result, we see that, for Ai —As in Eqs. (9)—(11),
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8

a~o * (4m)2 (2)lim) ) A,
' =

~

—
~

3(—2A) +2(—2A)
III. C AUG E INDEPENDENCE OF THE

VILKOVISKY-DEV7ITT TRACE ANOMALY

and, for Eq. (15),

+3(—2oA) 2

(5+ 3n )(2A ),

C,.(0) = o . (2o)

In this section we introduce necessary elements of the
VD effective action formalism. We then calculate the
trace anomaly for the fIat space case considered in the
previous section and show that it is indeed independent
of gauge choice.

To establish notation we write the conventional one-
loop effective action as

lim) (Ao'+ Aio') = (1+n )(2A ) .
k

(21)

Combining the results in Eqs. (19) and (21), we have

For Ag and Aqo it is more difficult to evaluate the k in-
tegral because the eigenvalues are not polynomials in k .
However, we are only interested in the ( functions at
8 = 0, and this depends only on the small w behavior in
the integrand, behavior which is much like the w integral
in Eq. (17). To extract the small 7' behavior from the
integral over k, we need only concentrate on the large k
behavior. Hence, we can expand A9 and A]o as power
series in 1/k, and then evaluate the integrals to obtain
((0). This is done in detail in [15]. Following the proce-
dures there, we have

r, [y] = S[y] —-T. inS„[y],1
(26)

where P is now a general background field which may not
be a solution of the classical equation of motion and S is
defined in Eq. (1). Note that we have used a condensed
notation where i represents both discrete and continuous
indices and S; denotes a functional derivative. The VD
efFective action can be obtained simply be replacing the
ordinary derivative with the covariant functional deriva-
tive:

kS,, ~ S.„=S,, —r,,Sk,

where I',". . is the connection of the field space. For non-
gauge theories, the connection can be constructed from
the metric G,~ of this field space. It is just the Christoffel
connection

(„(0)= ', (3+2m')(4A') .
(

1 k= —G (Gi;~+ Gi, ,, —G,~, i) . (28)

Then from Eq. (16) the trace anomaly for gravitons in
a fIat background spacetime with the one-parameter co-
variant gauge of Eq. (4) is

(T„")=,(3+ 2n')(4A') .

The prescription for defining G;~ has been given by Vilko-
visky [6].

For gauge theories, the connection on the physical field
space is the ChristofFel connection modulo local gauge
transformations. Let Q' be the generator of the gauge
symmetry:

We see that this trace anomaly depends on the gauge
parameter o.. For example, in the Landau-DeWitt gauge,
o. =0,

b(I~' = Q* e

where e are parameters for the transformations. Then

(24)
w p = G*gQ* Qp (30)

and in the Feynman gauge, o. = 1,

is the metric on that part of the field space orthogonal
to the physical directions. The connection I'," for the
physical field space is given by

(25) (31)

This happens because the fIat background is not a classi-
cal solution of Einstein gravity with a cosmological con-
stant. The usual effective action for an ofF-shell back-
ground is in general dependent on what quantum gauge
fixing is used. It is therefore, not surprising to see
that the trace anomaly calculated from this effective
action also depends on the choice of gauge fixing. In
the next section we remedy this by adopting the gauge-
independent VD efFective action formalism, and define
the unique trace anomaly for the off-shell case.

where

T," = —2Q", (,.Q.
)

+' Q' Q".IQ( Q, )

Q; =G', v Qp.

(32)

The derivation of Eq. (31) can be found in [1]. Note
that there is a factor of 2 in the symmetrization. The
covariant derivatives in Eq. (32) are with respect to the
ChristofFel connection. The VD one-loop efFective action
is now given by
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I'vD[p]=S[p] ——Trln G'( S;.— . . SI, —T, SI,
/

k

plus contributions from the ghost determinant. In this definition I'VD is a scalar on the physical field space. A
change of gauge conditions corresponds to just a coordinate transformation of the physical field space and leaves I'~D
invariant.

We now return to the problem in Sec. II of calculating the trace anomaly for gravitons in a flat background
spacetirne. First we evaluate the ChristofFel symbols and T; in Eq. (31). Following Vilkovisky [6], we take the metric
for the field space of metrics as,

1
G ( ) („)= ~g(g" g P+ g"Pg —g" g P)b (x —y) . (35)

The ChristofFel symbol [see Eq. (28)] is thus [16],

E

y~-(~) 1
(~b )(& )p + bp(vb )(~b ) b pbbs(~b )2

1 1

2
b~-b-—(~-b-)p

— b~-(-4-b-p + Cps- —b~-b-p) (36)

where ~g,k means that the quantity is evaluated at the background value. Now, from Eq. (1),

S g (~) b k
—ASP~ ) (37)

and combining with Eq. (36), we have

() S ()
y~-(x)y-p(y)

(38)

Therefore in the case of a Hat background the only possible VD correction comes from the T,". term.
To evaluate T,",we need to know the generators of the gauge symmetry. For metric fields gauge symmetry is general

coordinate covariance:

6g~~ = —g~c„t9~E —gc„~B~C —6 |9~gp~ ) (39)

for some set of gauge parameters e . The generators are, thus,

Qg"„"() = —g„c)b (x —y) —g c)„b(x —y) —b (x —y)0 g„
The gauge-space metric in Eq. (30) is then [18]

(40)

py~b .g = —2b pc) b (x —y), (41)

and its inverse is

t'1 l
~ *' "I(-k = 2b-p I ~, I

b'—(x —y) . (42)

Using these results in Eqs. (31)—(33), we have

and

Q
* („) ————

~

—
~ (b„c) + b„c)~ —b„c) )b (x —y)

1 /11
back 2 ( c) ) (43)

4T
( ) ( )

S g (g) = ——A(bp778$/ + bg gag —b/g/ag) —(b~qc)p + bpqc)~ —b~p077)b (x —y)
back

By defining

(44)

2' —= ——6„(*)(T, ' (( )) („)S,.(,)) h p(y)

] 1 i
( PP~P 2 ~P) gg ( &Pi~ 2 ~P) (45)
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the VD corrections can be accounted for by adding 2' to Z~ in Eq. (6),

CzD = Cq+ 8

= —h„„(—0 —2A)h„„——h
~

1 —
I (—8 ) —2A h

1 1 ( 1 i
4 " 4 ( 2nj

I

——1
~ (—o)') +2A, 'h„,—-h

~

——1
~ (—0')+ 2A ","h„„+q„(8')—q„.1 (1 l 2 8 (9p 1 (1 l 2 B„(9„

O2 "' 2 (, ~ &
a2

The corresponding ten eigenvalues for CvD, as compared to Eqs. (9)—(13), are

(46)

Ai ——A2 ——A3 ——A: —2A,

A4 ——As ———(k —2A),
2

(47)

(48)

&s = &v = &s =
~

—
~

k',
(.~i

k (1 —a) + 2nA + Q(1 —n + a')k4+ 2aAk'(1 —2a) + 4a~A~)
20!

k (1 —a) + 2nA —Q(2 —a + n )k + 2aAk (1 —2n) + 4a~A~)
20! ~

(49)

(5O)

Following the same procedures as in Sec. II, we obtain
the necessary (-function values for the graviton field in
the VD formalism as

V4
(52)

and for the ghost field we again have

C,'(o) =o (53)

Therefore, the trace anomaly in the VD formalism is
given by

clearly vanishes. Moreover, the ChristoKel symbol term
does not contribute in our case [Eq. (38)]. The usual trace
anomaly in the Landau-DeWitt gauge is thus identical to
the VD trace anomaly.

In the next section we shall choose the Landau-De&itt
gauge to avoid evaluating the complicated nonlocal T;.
terms when evaluating trace anomalies in more general
spacetirnes. Although the operators whose ( functions
we need are simplified in this gauge, they remain non-
minimal. The ( functions for nonminimal operators have
been discussed in some detail in [15]. In the next section
we shall make use of those results to calculate the trace
anomaly.

(T„")vD= (12A ), (54)

which is independent of the gauge parameter o.. We have
thus confirmed explicitly that the trace anomaly in the
VD formalism with a Bat background is gauge indepen-
dent even though this background is not a classical solu-
tion of Einstein gravity (with cosmological constant).

Note that the usual trace anomaly in Eq. (23) will be
the same as the one in the VD formalism in Eq. (54)
if the gauge parameter n is set to zero (Landau-DeWitt
gauge). This is because in the Landau-DeWitt gauge the
nonlocal TP~ terms vanish [19]. This can be easily seen in
the case that we are considering. For the Landau-DeWitt
gauge, we have basically

IV. VILKOVISKY-DEWITT TRACE ANOMALIES
ON 1V-SPHER.ES

In this section we show how to calculate the trace
anomaly in the VD formalism for a general background
spacetime, and then we consider explicitly the case of
even-dimensional N-spheres. As discussed in the last sec-
tion, w'e shall adopt the Landau-DeWitt gauge so that we
can avoid calculating the nonlocal T," terms.

We now return to the Lagrangian in Eq. (1) and
consider a general N-dimensional background spacetime
with metric g„„.Instead of the splitting in Eq. (2), we
have

(55)

and the VD correction due to the T;" term in Eq. (45).
I

gpv = gpv+ hpv ~

The quadratic part of the Lagrangian becomes

(56)

l:~„g= h„„p""'~h g(——) + 28( (7 )(7~) —g ~V'(pV )
—Kp ~ h p,

where
1

~244 iP — (g44Pg2 42 + g4442g2 P gP& P42) (58)
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Zp P ——2R,( P)+M(( RP)) —g PRp — gp R P+ gp g PR —(R —2A)~pP . (6O)

The gauge-fixing part of the Lagrangian is

h,„„p""~2b'( V' )V'P) —g PV'(pV'
) h p,2n

and the corresponding ghost Lagrangian is

(61)

(62)

Combining Eqs. (57)—(62), we obtain the quantum Lagrangian in a general background spacetime:

$ p( —Q)+2~ 1 ——jb' Q )V'p) —
I

1 ——~g V'( V )
—K h p

+q g ~ SP(—CI) —R~P gp .

To calculate the VD corrections, we need to first evaluate the connection symbols in Eq. (31). Because we adopt the
Landau-DeWitt gauge, the nonlocal T; - terms will not contribute, and we only have to concentrate on the ChristoKel
symbols. For a general background spacetime [llj,

= h(x — )h( — ) —g""8 + —g b"" ——h" h g
1 1

~~-(~)g-p(~) " " '
4

1
pu g(~ p)gs + gsv, np1

(64)

From Eq. (1),

Sg ( )
——B""——g""B+Ag" (65)

The VD correction terms can be accounted for by adding to Zq the Lagrangian

c' = ——h„„(x)(P

1
~P &)P~

pp'

s
(*)~ p(~)

(~ p) 1 p 1 ap
2b( B

)
——g Bp — gp B

2 N —2
(h P — gp g P)R—

2 N —2
b P(R —2A) h p. (66)

The VD Lagrangian becomes

1
„

( 1& ( ( 1)= —h„„p""'~h P(— )+2
i

1 ——
i 8( V' )V'P —

i
1 ——

i g V'(p'(7
)

—Pp h p

+&.g" ~P(—O) R,P „,, - (67)

(68)

As in Eq. (16), the trace anomaly for gravitons in a general N-dimensional background can now be written as

( )vD y ~M (O) 24M (O)]
m~0

where MT is the tensor operator for h&„in Z~D,

(69)
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Mz ~ =0 (— )~2i1 —— b V~)V ) —~1 ——~g V(V )
—PpnP ( 11 ( P

r' 1)
p& per (P o)

and M~ is the ghost operator,

P gP( ) ~ P

(70)

(71)

Since MT is a nonminimal operator, it is quite difficult to evaluate its ( function. However, we have devised a
method in [15] to accomplish this in the case of maximally symmetric background spacetimes. In particular, we have
explicitly given the ((0) values for nonminimal tensor and vector operators on N-spheres of even dimensions 2—10. In
the following we use these results and evaluate the VD trace anomalies for gravitons.

on N-spheres the Riemann tensor, the Ricci tensor, and the scalar curvature are given by

1
+pvnP =

2 (ggsngvP gppgvn) )

1R„„—(N ——l)g„

R = N(N ——1),1

(72)

(73)

(74)

where r is the radius of the sphere. The operator MT in Eq. (70) becomes

MT, P = b, P — +,(N' —N+4) — A — , g Pg, —

+2
I

1 ——
I

~ V-)V ' —
I

1 ——
I a V(P'-)

( 1) ( P ( 1 t

~)
and the operator Mv in Eq. (71) becomes

(75)

M P=bP/—
T

(76)

Using the results in the Appendix of [15] and taking the Landau-DeWitt gauge (a ~ 0), the ( functions for MT
on N-spheres in Eq. (75) are

(M. (0) = 2(Ar')' —16(Ar') + (77)

(M. (o) =

C.(0) =

while the ((0) values of minimal operator M& in Eq. (76) are

&5 (0) = —(«')' ——(Ar')'+ (Ar')—
64 16 16 (78)

16
( 2) 4 1088

( 2) 3 584
( 2) 2 2000 2 45097

(79)3645 3645 81 27 150
625 2 5 10625 2 ~ 419875 2 s 49855 2 2 5628229 2 2242392227

Ar Ar Ar' '+ Ar 80
8257536 1032192 774144 3584 32256 2721600

358
45

4808
(M~(0) =

3,5
347857
14175

66840359
1871100

&5 (0) =

(m+x) j2

I'((N + 1)/2)

we obtain the VD trace anomalies for gravitons on N-spheres:

Putting these back into Eq. (69), and using the fact that the volume of a ¹phere is

(81)

(82)

(84)
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p) N=4

(T y.
)
N=s

(T ~)N=10

1

(4~) 2

1

(4~) s

1

(4~)4

1

(4~) s

12A2 —96—+A 1558 1

15 r4

135 3 945 A 7935 A

16 4 r2 4 r4

896 60928 A 163520
243 243 r2 27

9375 5 159375 A 20993
8192 1024 r2 256

42093 1

7 r'
A 560000 A 5705524 1—+r4 9 r6 27 rs

75 A 6730425 A 84423435 A+r4 32 r6 32 r
5361041197 1

396

(87)

(88)

(89)

We can also obtain the trace anomalies in Euclidean
spaces by taking r ~ oo in Eqs. (86)—(89). Hence, in
Euclidean spaces,

1 2(12A ) I

(T ~)iv=6
[

As
(4rr)s g 16 )

(4rr) 4
q 243

/9375, i
(4rr)s i 8192

(TA )vD

(Tv )VD

(90)

(91)

(92)

Note that the N = 4 result here agrees with the one in
Fq. (54).

V. CONCLUSIONS

We have con6rmed that the trace anomaly for gravi-
tons is gauge dependent if the background spacetime is
not a solution of the classical equations of motion. By
using the VD effective action formalism the gauge de-
pendency was eliminated and a unique off shell trace
anomaly for gravitons was obtain. Explicit evaluation
of this VD trace anomaly involved the evaluation of (
functions of nonminimal operators. The necessary ((0)
values on maximally symmetric background spacetimes
were given in our previous paper [15]. Using results ob-
tained there we were able to evaluate gravitational trace
anomalies on K-spheres and Euclidean spaces (for even
dimensions f'rom 4 to 10). The 4D result of Eq. (86) can
be confirmed by [19]. However, the 6D result of Eq. (87)
does not agree with [11]. A erratum for that paper is
being prepared.

l

It should be straightforward to extend this calculation
to other maximally symmetric spaces, notably Kaluza-
Klein spacetimes such as M x S ' x S ' x . . This
consideration is important in the discussion of the can-
cellation of trace anomalies between difFerent species of
particles [20] in these spacetimes. We hope to address
this and related problems in a future publication.

Although the VD effective action is manifestly gauge
independent, it possesses, as pointed out by Odintsov
[21], an ambiguity with respect to the choice of the field
space metric. In this paper, since we are working exclu-
sively with Einstein gravity, we have chosen to stay with
the field inetric in Eq. (35). This particular field metric
comes out quite naturally &om the Einstein action, as
derived by Vilkovisky [6].

The method described in this paper can also be ap-
plied to the evaluation of the Casimir energies or the
one-loop effective potentials in Kaluza-Klein spacetimes.
In [11], we were able to obtain the VD effective action
for a general background spacetime using a method of
Barvinsky and Vilkovisky [14]. However, because of the
complexity of that calculation, it seems quite impossible
to push the method to higher dimensions. On the other
hand, the procedures in this paper are much more man-
ageable and they can be implemented by computer code.
There should be no major difhculty in extending them to
dimensions higher than 10.
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